Building and deploying Billy Goat, a Worm-Detection System

James Riordan, Diego Zamboni, Yann Duponchel
IBM Zurich Research Laboratory
{rij,dza,ydu}@zurich.ibm. com

May 8, 2006

Abstract

Billy Goat is a worm detection system widely de-
ployed throughout IBM and several other corporate
networks. We describe the tools and constructions
that we have used in the implementation and de-
ployments of the system, and discuss contributions
which could be useful in the implementation of other
similar systems. We also discuss the features and re-
quirements of worm detection systems in general, and
how they are addressed by Billy Goat, allowing it to
perform reliably in terms of scalability, accuracy, re-
silience and rapidity in detection and identification of
worms without false positives.

Keywords: intrusion detection, Internet worms,
information security, honeypot.

1 Introduction

Recent years have brought a continued increase in
both the importance of security in networked systems
and the difficulty of securing them. Beyond the basic
need for integrity, confidentiality and privacy, secu-
rity has become essential toward providing reliability,
safety, and freedom from liability.

One of the greatest threats to security has come
from automatic self-propagating attacks, including
viruses and worms. The presence of these attacks
is not new, but the damage that they are able to in-
flict and the speed with which they can propagate
have become paramount. Increases in connectivity
and complexity only threaten to exacerbate their vir-
ulence.

This paper describes a worm detection system that
we have built and deployed, throughout IBM and in
several customer networks, over the past five years.
The deployment within IBM covers the entirety of
the corporate intranet, automatically gathering data
from approximately 1.2 million virtual sensors, cen-
tralizing the data to form a single coherent model of
suspicious network activity, and analyzing this model

for evidence of worm infections. The focus of this pa-
per is on the technical mechanisms and constructs
that we have used in building Billy Goat, to allow
it to operate reliably in very large deployments and
processing extremely large volumes of data.

The rest of the paper is structured as follows:
Section 2 provides an overall description of worm-
detection systems in general. Section 3 presents the
architecture of Billy Goat, both as a sensor and as
a distributed system. Section 4 talks about related
work. Section 5 describes the data models used
throughout Billy Goat. In Section 6 we describe
some of the components we have implemented, and
decisions we have taken while building Billy Goat,
including constructs that can be used in other con-
texts. Sections 7 and 8 describe some of our observa-
tions and experiences during Billy Goat deployments.
Section 9 concludes the paper, and presents some av-
enues for future work.

2 Worm Detection Systems

The requirements on a worm-detection system
(WDS) are different from those of a general-purpose
network-based intrusion-detection system (NIDS).
While the latter needs to detect a wide and unpre-
dictable variety of attacks, the former can focus on
specific attacks and strategies used by worms. The
main purpose of a WDS is to detect infected machines
in the network, whereas a general-purpose IDS must
detect the attacks themselves. These requirements
influence the desired characteristics of the system,
particularly in the following aspects:

Accuracy: To offer real utility, a WDS must be able
to identify worm-infected machines with a high level
of accuracy, so that it can be trusted as the basis for
contention and remediation action. A WDS can use
highly-specialized techniques to detect worm-infected
machines. This enables increased accuracy, at the ex-
pense of the ability to detect a wider range of attacks.

Speed: Given the explosive nature of modern

worms [8], a WDS should be able to detect an in-
fected machine as quickly as possible, to provide its
users a chance to contain the damage, or even to func-
tion as the basis for an automated response system.
Manageability: At a systems level, installation and
update of the components must be automated as
much as possible, to be able to deal with monitor-
ing very large networks. At middleware and archi-
tecture levels, the base infrastructure must offer suf-
ficient flexibility to enable the rapid creation of new
detection capabilities.

Interoperability: A WDS should integrate as much
as possible with the existing tools and processes,
to avoid unnecessary proliferation of independently-
managed security tools.

Resilience: A WDS must operate under extreme
conditions in terms of network and processing load,
particularly during worm outbreaks. These condi-
tions are more likely to induce failures than other
environments. However, a WDS has a specific ad-
vantage that is not enjoyed by most other IDSs: be-
cause of the repetitive nature of worm activity, the
WDS can afford to lose some data without reducing
its utility. In practice, this means it is satisfactory to
build a system that can “forcefully” recover from fail-
ure (for example, by automatically rebooting or even
reinstalling itself) rather than trying to resist it.
Graceful degradation: While WDSs may benefit
from a distributed architecture, most worm outbreaks
have the effect of overloading network links. It is
therefore necessary for all sensors to be able to op-
erate on their own, so that even if the global system
is impeded, its individual sensors can still be useful
during a worm outbreak.

3 Billy Goat architecture

Billy Goat possesses the characteristics described
above toward detection of network-service worms;
that is, worms that exploit vulnerabilities in existing
network services (e.g. HTTP, MS/RPC, MS/SQL,
etc.) and that propagate by finding new vulnerable
machines in the network and infecting them automat-
ically. Henceforth, we shall refer to these as “worms”.

Billy Goat is focused on detecting machines in the
network infected with known worms, and in this re-
spect it is free of false positives by construction. It
also provides additional information that can be ana-
lyzed to detect new worms or other emerging threats
in the network.

Billy Goat is designed to take advantage of the
propagation strategies of worms. To discover ma-
chines to infect, most worms try to connect to IP
addresses selected at random or scan entire ranges of

addresses. By doing so, they find most of the ma-
chines in a network, but they also try to connect
to a large number of unused addresses. Billy Goat
functions by responding to requests sent to unused
addresses, feigning the existence of a large number
of machines and services. This approach has three
immediate consequences:

e Active feigning of services, rather than the mere
recording of connection attempts enables greatly
improved understanding of the nature of the con-
nection, and gives Billy Goat an advantage in
accuracy.

e The fact that the addresses are otherwise unused
and not advertised means that all traffic destined
to them is a priori suspicious.

e The large number of addresses used gives Billy
Goat an extensive view of the network.

Instead of directly “guarding the valuables,” as tradi-
tional intrusion detection deployments do, Billy Goat
guards vast ranges of “nothingness” toward under-
standing who goes there and why. This is similar to
a honeypot, although it lacks the eponymous honey
and may have different scope and goals depending on
the definition of honeypot used (see also Sec. 4).

This approach, permitted by the clear focus on de-
tecting worms, coupled with the analysis performed
on the data (Sec. 6.8) frees Billy Goat from the
high rate of false positives produced by most general-
purpose IDSs. For the same reason, it is not a replace-
ment for other IDSs but a complement to them. In
particular, Billy Goat will not see the traffic directed
to existing machines and services, so it is unable to
detect attacks against them.

At the core of Billy Goat are a virtualization mech-
anism and a data repository, shown in Figure 1. The
virtualization mechanism (Sec. 6.5) permits services
to be written using standard programming models,
and respond to multiple IP addresses transparently.
This reduces the difficulty of creating new feigning
services and of integrating existing ones. The data
repository (Sec. 6.2) provides storage for all the IP-
and application-level information generated.

The feigned services offered by Billy Goat (Sec. 6.4)
include those commonly exploited by worms. Each
endeavors to offer sufficient functionality to accu-
rately determine the nature of an attack. All the
feigning servers except for SMB (Windows file shar-
ing) are implemented using a specialized framework
written in Java (Sec. 6.3) that makes it easy to cre-
ate new services, and which is carefully audited for
security.

Billy Goat
update server
New signatures

Auto-update
e - =

New functionality

Billy Goat sensor _ Web
interface |~ | Local
// Administrator

|
System updates i
|
'

Web Central Billy Goat
interface

Centralized

(Raw data| | Alarms

Billy Goat sensor

Web
interface

Local
Administrator

data [
]

Billy Goat sensor

Web
[|interface

monitoring consoles, reportin

Existing processes and tools
(g
mechanisms, etc.)

N Local
// Administrator

Policy-based subscription

Local
Administrator

Figure 2: Distributed Billy Goat architecture..

. Virtualization
Analysis

HTTP

Modular

alarming SMB/Lure
and

reporting MS/SQL

MS/RPC

— > Backdoors
—
—

Data
repository

Figure 1: Billy Goat internal architecture.

IP profiling

(open ended)

To satisfy the requirement of continued function
in times of heavy worm activity, when the perfor-
mance of the network may be dramatically dimin-
ished, WDSs require distributed architectures. Each
Billy Goat offers the ability to analyze and report
events detected locally, thus providing graceful degra-
dation of the detection service. At the same time the
data of all Billy Goats on an intranet is centralized to
assemble a more complete view (Figure 2). One effect
of this type of monitoring is the feasibility of detect-
ing infected machines on network segments that do
not have a Billy Goat sensor installed.

We refer to a machine with Billy Goat installed
on it as a “sensor” or “Billy Goat” and to the pro-
grams that implement the individual feigned services
as “feigning servers”.

4 Related work

The idea of observing traffic to unused IP addresses
has been used for detection of network noise and
scanning behavior. For example, most large Inter-

net Service Providers observe and keep statistics on
connection attempts to unused IP addresses within
their networks. We do not know of any that actually
respond to this traffic.

A similar approach is that of “network tele-
scopes” [7], which also record traffic sent to large
blocks of unused IP addresses, but without respond-
ing to the traffic, and just recording statistics about
those connection attempts.

Billy Goat fits the definition of a low-interaction
honeypot [19] in that it pretends to be something
that it is not, but without emulating the system in
depth.

Projects like HoneyNet [18] have used the concept
of deploying fake virtual networks. At the time when
Billy Goat began, their focus seemed to be more on
accurately simulating those virtual networks, to trick
human attackers. Honeyd [13] is a toolkit for building
these virtual networks. While these tools are useful
for engaging human attackers, such sophistication is
not needed to trick worms, which are commonly much
dumber.

On the other hand, Billy Goat has focused from
the start on detecting automated attacks performed
by worms, and for this reason Billy Goat does not go
to great lengths to hide what it is. This allows cer-
tain foundational constructions resulting in a simpler,
more scalable architecture, and in the ability to have
a “plug-and-play” implementation, which comes pre-
configured to observe a network in a useful fashion,
immediately after installation.

Over time, in an example of convergent evolution,
honeynets and honeypots have also been used to de-
tect worms [6, 10, 14] and Billy Goat has grown in
deceptive sophistication.

The Internet Motion Sensor [2] consists of a dis-
tributed network of dark address spaces, with the

objective of detecting and measuring threats. The
IMS uses generic listeners to capture and respond to
connections, which results in less specialized sensors,
with the advantage of making it easier to deploy lis-
teners for new services.

Pang et al. [12] have implemented a system for
measuring and characterizing network noise, using
unused TP address space and protocol-specific listen-
ers. This system uses a non-distributed architecture,
and its objective is different from Billy Goat (charac-
terizing the traffic seen, instead of precise identifica-
tion of infected machines).

The Worminator project [23] uses a distributed ar-
chitecture to correlate alarm streams from multiple
sites to detect widespread suspicious behavior. It
does not employ unused IP address ranges like Billy
Goat and other systems. The HoneyStat project [3]
uses high-interaction honeypots (full target operating
systems, running on an emulator) to collect informa-
tion, resulting in more detailed data, at the cost of
far more extensive resource requirements. Instead of
using an IP-address virtualization scheme, it utilizes
the multi-homing capabilities of the target operating
systems, resulting in a lower maximum number of
emulated IP addresses.

Another interesting project is the one reported
by Yegneswaran et al. [25]. This project observes
traffic to unused IP addresses using a combination
of passive monitors, active responders, and virtual
networks and hosts. The report describes the use of
sampling techniques to deal with the large amount of
traffic while still being able to draw meaningful con-
clusions. Unlike Billy Goat it uses a non-distributed
architecture, with the consequent functional and im-
plementation differences.

5 Data Models

At the heart of Billy Goat are several data models
used to represent the data gathered in both the IP
and applications layers. In this section we describe
the types of information that are collected, and the
data structure constructed for analysis purposes.

The data models we use address the requirements
of a WDS. In particular, we need to address the effi-
cient handling of high volumes of repetitive data; the
distributed nature of the sensors and the need for cen-
tralizing the information they produce; the need to
analyze the data collected by the sensors for evidence
of worm infections; the ability to add new feigned
services; and the ability to capture varying levels of
complexity depending on the data collected.

All data is stored in a relational database, whose
structure is described in Section 6.2.

5.1 1IP Layer

Data in the IP layer covers TCP, UDP, and ICMP
headers. It describes which source addresses have ini-
tiated contact with which destination address, along
with details that vary with each particular protocol.
We gather this data directly from the Linux kernel
IPtables facility [4].

5.2 Application layer

Feigning servers gather data in the application layer.
We split this data into three aspects: the first de-
scribes basic source and time information. The sec-
ond two aspects address the application-level infor-
mation. One contains data that, as best we are
able to determine, is inherent to the worm (constant
through all instances of it) while the other aspect
describes the data that varies between different in-
stances of the worm (in many cases the latter aspect
is empty).

The distinction between constant and variable data
is not uniformly well-defined across all worms. For
example, some account-guessing worms have a con-
stant list of account names they use, while others
modify the list based on accounts on the infected ma-
chines. Feigning servers often have a certain amount
of intrusion detection logic to make this distinction.
Thus, a feigning server subject to account guessing
may have a list of standard account names attacked.
If an attacked account name is in the list it is con-
sidered “constant,” if not it is considered “variable.”
This allows us to focus analysis on “constant” while
still offering the possibility to analyze “variable” for
emerging behavior (such as new worm variants).

5.3 Analysis model

The basic data model used for analysis is an aggre-
gation, for each source address, of the above data
models over a specifiable time frame. It answers the
question “what have we seen from this address re-
cently?” Each per-source model is comprised of the
source IP address; the time period covered by the
data in the model; the IP addresses of the Billy Goat
sensors that have reported the activity; and an aggre-
gation of the IP- and application-level data collected,
including full worm capture when possible.

The details of how analysis is performed are cov-
ered in Section 6.8.

6 Implementation

This section describes some of the components we
have designed and implemented for Billy Goat. We

IPTABLES ACTIVITY

—————————— TIME

REQUEST

TIME REQUEST_INDEX

TIME_OFFSET | --------- TIME_OFFSET SENSOR

REPORTER

REPORTER REQUEST

PROTOCOL SRC SEQID
SRC SPT
DST REQUEST_INDEX HOST
SPT SENSOR SENSOR
DPT HOST_INDEX HOST_INDEX

FLAGS SEQID HOST

SEQID SEQID

Figure 3: Database tables used in Billy Goat.

have endeavored to use standard tools, formats, and
APIs, and to provide simple, well-documented inter-
faces by which Billy Goat may be integrated with
existing tools and process. We have used many open-
source components throughout Billy Goat— in fact
its construction would not be possible without them.

6.1 Implementation platform

Billy Goat is implemented as a specialized Linux dis-
tribution, which self-installs on a standard PC requir-
ing only basic configuration information. It was our
intention to make Billy Goat as appliance-like as pos-
sible, so that it can be deployed with minimum effort
throughout a large network. Billy Goat includes ex-
tensive self-monitoring and recovery mechanisms that
monitor system activity and correct or reinitialize er-
rant components, including the system itself (e.g. re-
boot).

To support the distributed architecture, Billy Goat
includes an automatic update mechanism. This en-
sures that each sensor is always current with respect
to both signatures and software versions, and makes
it easier to manage a large distributed infrastructure.

6.2 Database Tables

We split the data collected by Billy Goat (Sec. 5)
into four database tables to accommodate the repeti-
tive, and often verbose, nature of the attacks used by
WOImS.

These tables have the form shown in Figure 3,
where solid lines indicate external keys (references
across tables) and dashed lines indicate temporal
proximity (the times are generated in different lay-
ers and hence may have slightly different values).

TIME (an SQL timestamp) together with
TIME_OFFSET (an unsigned integer that indicates
the n'" event in a given TIME) create a unique
timestamp for each event.

PROTOCOL, SRC, DST, SPT (source port), DPT
(destination port) and FLAGS apply to the IP layer,

mapping to the three covered protocols (TCP, UDP,
and ICMP). FLAGS are void for UDP and ICMP,
and the type of ICMP message is stored in both the
SPT and DPT fields. Storing the three types of traffic
in a single database table makes it easier to extract
all the information with a single SQL query.

The full descriptions of the application layer activ-
ity, REQUEST and HOST, are expressed in XML and
correspond to the previously described constant and
variable data aspects. This allows us to meaningfully
encode information gathered in the application layer.
For example, a simple UDP listener provides a greatly
different data model than an extremely complicated
protocol like SMB. XML allows us to keep simple
descriptions simple while still allowing for complex
descriptions.

Rather than the standard practice of using na-
tive database external keys for references, we have
introduced the use of cryptographic checksums:

REQUEST_INDEX = md5(REQUEST)
HOST_INDEX = md5(HOST)
This offers the significant advantage that references
depend only on the content of the database record to
which they refer. Our experience deploying a large
distributed system has shown this technique greatly
eases data centralization.

REPORTER is the IP address of the Billy Goat
sensor that observed the event. SEQID is an auto-
matically incremented value that we use to keep track
of which events have been processed by different com-
ponents. SENSOR is a short string identifying the
feigning server that produced the record.

6.3 Event framework

An extensible light-weight Java event framework is
used ubiquitously in the construction of Billy Goat:
data acquisition, centralization, analysis, alarming
and reporting.

The basic components of the framework provide
support for buffering, fanning out, predicate expres-
sion and evaluation, serialization and de-serialization,
various network transports, connections to databases,
and several other generically-useful components for
event handling.

Events are objects which have the structure of
trees, whose nodes are named and have attributes,
and whose leaves are arbitrary Java objects. This
structure is motivated by XML and, indeed, the seri-
alized form of the objects is valid XML.

Using the event framework for transport makes it
easy to inter-operate with existing tools and pro-
cesses. As examples, we have implemented compo-
nents for sending events through email, syslog, the
Tivoli Risk Manager console [22] and the Arcsight

console [1]. Switching to a different event transport
mechanism is as easy as changing its definition in a
configuration file.

6.4 Feigning servers

As mentioned, the key observation mechanism of
Billy Goat is a collection of feigning servers, each cov-
ering an infection vector used by worms to propagate.

Real servers may have vulnerabilities in different
layers, and often this requires us to write the feigning
servers in a way that can detect attacks in different
layers. For example, we may need to write the feign-
ing server to be able to detect both low-level buffer
overflow vulnerabilities and application layer vulner-
abilities. In general, we try to build the servers to
follow the corresponding protocol up to a point that
accurate identification of the activity becomes possi-
ble. For example:

e The HTTP feigning server accepts and records a
single HTTP request, and always responds with
an error, before closing the connection.

e The MS/RPC feigning server accepts and
records the first 3000 bytes (configurable) trans-
mitted by the client, before closing the connec-
tion. This initial payload generally contains ei-
ther the full code of the worm or an exploit par-
ticular to the worm.

e The SMB/Lure server is a special configuration
of Samba [17] that appears to be a badly con-
figured machine (open shares, weak passwords,
etc.). Because it is a full implementation of the
protocol, SMB/Lure can often capture the full
code of the worm, as it uploads itself.

The majority of servers are written in Java and
produce descriptions of individual interactions. The
specific syntax of the records produced is left to each
individual server.

Some protocols are sufficiently complex so that it
is not feasible, within the scope of our project, to im-
plement feigning versions of them. The most notable
example is Microsoft’s SMB protocol. In this case,
we use an open source implementation of the SMB
protocol [17] specially configured to mimic the vul-
nerabilities of the native Windows implementations.
We base our solution on the SMB/Lure system [9],
with some ideas from WormCharmer [11], but reim-
plemented it to address the needs of large-scale vir-
tualization and to fit with the rest of the Billy Goat
architecture. This is an example of how existing ser-
vices may be integrated into Billy Goat thanks to its
virtualization infrastructure.

External Network Internal network

Reverse| Single
NAT host

Figure 4: Traditional and reverse NAT.

Other feigning servers that currently exist in Billy
Goat include MS/SQL, SMTP, DNS, LDAP over
SSL, eDonkey, Kerberos, and multiple worm back-
doors, including those of MyDoom, Sasser, Dabber
and some Beagle variants.

6.5 Address virtualization

Address virtualization transparently maps the large
ranges of IP adddresses covered by a Billy Goat to
the single “real” address used by the machine. This
virtualization allows the Billy Goat feigning servers to
be written with no special consideration for the large
number of IP addresses that a Billy Goat machine
monitors. Address virtualization is handled by the
operating system using the IPtables mechanism [4].
One of the mechanisms built into IPtables is Network
Address Translation (NAT). Ordinarily, NAT is used
to allow several machines inside a network to share
a single external address. For Billy Goat, we do the
reverse: allow a single machine to respond to a large
number of external addresses (Figure 4).

6.6 Centralized configuration

To maintain local configuration information while
maintaining homogeneity across machines, we use a
central per-host configuration file in XML from which
system configuration files are derived. The file is cre-
ated by a wizard during first-time installation, and
can be later modified by hand or by specialized tools.
Having all the information in a single file makes it
easy to “back up” an entire sensor.

A related issue is maintaining the configuration for
all the distributed sensors in a central place. This
enables restoration of a sensor that is completely de-
stroyed (for example, by a catastrophic disk failure),
by restoring its configuration to a new machine. It
also becomes possible to centrally control the config-
uration of machines, similarly to network configura-
tion schemes such as BOOTP and DHCP. Based on a
unique identifier, the central server can provide each
sensor with its configuration information.

This doubly-centralized configuration keeps all the

sensors as homogeneous as possible, while allowing
for per-sensor configuration in an automated and
manageable fashion.

6.7 Data centralization mechanisms

For data centralization, we developed a generic mech-
anism for one-way transfer of relational tables. This
mechanism is built atop the BEEPLite [5] implemen-
tation of BEEP [16], a modular, extensible protocol
supporting flexible establishment and multiplexing of
communication channels. It is designed to tolerate
intermittent sensor, server or network failures. Data
is automatically transmitted or retransmitted as nec-
essary, without loss or duplication. The mechanism
makes use of the checksum-based external keys and
of the monotonically-increasing Sequence-ID field, as
described in Section 6.2.

6.8 Data analysis

The data analysis is an iterative process that at-
tempts to determine the types of activity that have
been seen by Billy Goat from different source ad-
dresses in the network. This process is most com-
plete when done in the central server to which all
Billy Goat machines send their data, because it aids
in discovery of global behavior that may not be visible
at the individual sensors.

Identification of known worms, attacks, and be-
haviors, is done using a combination of the following
methods:

e Capture of the worm itself (for example, SMB
worms that upload themselves to Billy Goat). In
this case, the MD5 checksum of its code is used
to identify the worm with 100% accuracy. As
worms become more sophisticated, we anticipate
the utilization of analysis techniques from the
anti-virus world [21].

e Observation of the exploits used by the worm
(for example, an HTTP request containing a
buffer overflow). Because Billy Goat is a first-
person observer, it can accurately collect the full
set of exploits used by a worm, and match them
with known worms (for example, we know the
full set of exploits used by the Nimda worm).

e Observation of other behaviors indicative of
worm activity (for example, horizontal scanning
or account guessing). These are weaker indi-
cators of worm activity in the sense that they
do not make it possible to precisely identify the
worm.

When precise worm identification is possible (when
we can give a name to the worm), the findings are
labeled as “alarm” and the worm name is given.
Clearly suspicious but unidentifiable findings (for ex-
ample, a large horizontal or vertical scan or an exploit
set that does not fully identify a worm) are labeled
as “warning” and a description is given. All other
data is labeled “unknown” and is available via direct
query of the database.

Billy Goat is false-positive—free by construction,
because “alarms” are only produced when a worm can
be unambiguously identified. “Warning” and “un-
known” events are also produced, but should not be
considered as unequivocal evidence of infection.

6.8.1 Alarm redistribution

We have found that, in large organizations, utiliza-
tion of existing social structures is essential toward
creating mechanisms of sufficient dynamism to ad-
dress rapidly-emerging security problems. By con-
trast, static lists tend to become outdated quickly.

We have built a subscription service for Billy Goat
that utilizes these structures. It produces alerts based
on the centralized Billy Goat data to provide the most
complete coverage. It allows individual systems ad-
ministrators to self-register to receive alerts pertinent
to their own network ranges, thereby ensuring that
alerts are delivered to someone who can actually do
something to fix the detected problems. Open reg-
istration allows for a “living” mapping between net-
work and owner. Access control is done via social
mechanisms, by notifying the subscriber’s manager
on registration.

6.9 Modes of deployment

The fundamental premise of Billy Goat is respond-
ing to traffic directed to unused IP addresses, as de-
scribed in Section 2. Different deployment modes can
be used and combined to direct such traffic to Billy
Goat.

6.9.1 Static routes

This is the standard Billy Goat deployment mode.
A specific set of unused IP address ranges is desig-
nated for Billy Goat, and the appropriate routers are
reconfigured to send traffic destined to those ranges
to a Billy Goat sensor. The amount of traffic seen
by the sensor depends on the size of the network
range assigned. Addresses within non-routable ad-
dress ranges [15] that are not used locally may also
be routed to the Billy Goat, thereby expanding its
view of the network.

Advantages: a known set of IP addresses is as-
signed to Billy Goat, which helps in controlling the
amount of traffic it has to process. Only simple con-
figuration changes need to be made to the routers.

Disadvantages: large-enough groups of network
addresses must be available and assigned by the net-
work administrator. If the assigned range is too
small, the functionality of Billy Goat is limited be-
cause it cannot observe much of the network traffic.

6.9.2 ARP spoofing

In a LAN, the machine that has a particular IP ad-
dress is found by using ARP (Address Resolution
Protocol). Using this protocol, machines and routers
in the local network that need to send traffic to an
address X broadcast the question “who has address
X7 and wait for a response. If no response is re-
ceived in a certain period of time, the address is con-
sidered nonexistent.

ARP is vulnerable to ARP spoofing [24], by which a
malicious host can “hijack” IP addresses by spoofing
ARP responses. This same technique can be used by
a Billy Goat device to automatically grab currently
unused TP addresses.

Advantages: no previous assignment of IP ad-
dresses is needed, so the deployment effort is very
low (simply connect the Billy Goat machine to the
network).

Disadvantages: ARP spoofing is potentially very
dangerous if Billy Goat attempts to spoof the IP ad-
dress of an existing device. The implementation of
this scheme needs to take into account the potential
appearance of devices (spoofing must stop immedi-
ately when another device with the same address ap-
pears on the network).

6.9.3 Billy Goat as default LAN route

Instead of having specific network ranges assigned to
the Billy Goat sensor, the router can be configured
with a route to Billy Goat for the entire LAN and
higher-priority (mask length) routes for the ranges
that are being used. This gives Billy Goat all traffic
for LAN segments that are not in use.

This scheme can be implemented statically (when
the router has a static routing table, and the route to
the Billy Goat sensor is added as the default route)
or dynamically in conjunction with a routing protocol
such as BGP.

Advantages: large network coverage, and ease of
configuration (the Billy Goat sensor can be config-
ured to “spoof everything,” and it will respond to
any traffic it receives).

Local
Infected
machine

Destination
router

>

Local router

Initial packet
< Intercept
S and reroute

Further
traffic

Internet

icmp

"host
unreachable”

Billy Goat
sensor

Figure 5: ICMP-based Billy Goat.

Disadvantages: potentially dangerous, particu-
larly in conjunction with dynamic routing. In a large
network, it is common that certain network segments
go offline for short periods of time. If Billy Goat
automatically starts responding for them, it may dis-
turb services or automated monitoring systems in the
network.

6.9.4 ICMP-based Billy Goat

One of our most recent architectural designs is a mode
of deployment in which Billy Goat operates in con-
junction with a router to provide automatic utiliza-
tion of all the unused addresses outside the local net-
work. This is how it works (Figure 5):

1. When an infected machine in the local network
tries to contact a remote non-existing address, an
ICMP “network unreachable” or “host unreach-
able” message will be generally sent back.

2. The ICMP message is intercepted by the router
local to the infected machine, which sets up a
temporary route for that destination address,
with the Billy Goat sensor as its next hop.

3. When the infected machine, after not receiving
a response, retransmits its packet, it will be sent
to the Billy Goat sensor, which will respond to
it.

Many modern worms implement their own TCP /IP
stack, often without the automatic retransmit fea-
tures. By keeping additional state in the router, the
retransmit can be spoofed so that those worms are
also caught.

Advantages: this mode of operation automati-
cally spoofs every unused address outside the LAN.
This provides Billy Goat with a truly expansive view
and allows it to quickly identify local infected ma-
chines.

Disadvantages: router support is needed to im-
plement this scheme.

Billy Goat

Figure 6: Possible NIDS placements with respect to Billy Goat.

7 Environmental effects

One of the areas that we have found most interesting
is the effect of Billy Goat on other systems in the net-
working environment. We describe some of the effects
we have observed during our deployment experiences
over several years.

7.1 Network discovery

The first aspect that we encountered was the interac-
tion of Billy Goat with devices and software that scan
the network legitimately. Normally, Billy Goat re-
sponds to these scans for each one of the IP addresses
it is spoofing, producing wildly inaccurate results for
the scanner. We addressed this problem by adding
a mechanism that makes Billy Goat respond “truth-
fully” to a configurable set of fixed IP addresses. This
makes Billy Goat appear like a regular machine to
authorized scanning devices.

7.2 Network sensors

The second area that we discovered was a sharp in-
crease in the number of alarms coming from network-
based IDSs (NIDS) that observe the stream of traffic
flowing to Billy Goat. This stems from the fact that
Billy Goat, in allowing illegitimate connections to
complete, increases the number of real, albeit harm-
less, attacks seen on the network. The size of the in-
crease depends on the relative sizes of the networks,
the saturation level of the network connections, the
root cause of the alarm and the signatures and place-
ment of the NIDS.

This effect was first noticed when the Nimda worm
was active in a well-connected network whose Billy
Goat address space was approximately 100 times
larger than the number of actual hosts, and with
NIDS at position 1 (see Figure 6). The result was
roughly a corresponding 100-fold increase in the num-
ber of Nimda-related alarms of attacks from the In-
tranet against the LAN.

A NIDS at position 2 would see an increase in the
number of Nimda-related alarms of attacks originat-
ing from machines on the LAN (those against the
Intranet and those against Billy Goat). A NIDS at
position 3 would see attacks from both the LAN and
the Intranet and would have greatly increased fidelity
stemming from the fact that it does not see any legit-
imate traffic. We are actively exploring the benefits
of these effects both on fidelity and on cost reduction
owing to the expanded view that a Billy Goat offers
a NIDS.

7.3 Failure Modes

We have observed an interesting failure mode in the
default route and Router/ICMP modes of deploy-
ment. The problem occurs when a machine or net-
work goes down and Billy Goat automatically starts
responding for it. In this case, liveness checking
mechanisms, such as ICMP echo (ping), yield decep-
tive results. This is especially problematic when these
checking mechanisms are connected to other systems.
In a testing phase, we accidentally induced the crash
of a problem-ticketing system which got caught in
the cross-fire between two automated systems: one
asserting that the network was down, based on the
truth, and the other asserting that it was up, based
on the fact that the network seemed to be reachable.
We take this failure mode, induced by a relatively
passive system, as an interesting finding to keep in
mind when developing automatic intrusion response
systems.

8 Findings

Our deployment of Billy Goat sensors, both in large
corporate networks and on the Internet, have afforded
us a view into a mass of data about worm-infected
machines that is rarely available elsewhere. In this
section we share some of our observations.

8.1 Worm flare-ups

Confirming previous findings [20], we routinely see
flares of old worms, such as Code Red, Nimda and
Sapphire [8]. These reappearances are often brief,
due to monitoring and blocking mechanisms that are
now aware of them.

We observe that the frequency of such recurrences
seems affected by the propagation vectors that each
worm uses. For example, Sapphire uses MS-SQL,
which is often turned on automatically by other pro-
grams (e.g. MS Visio 2000 and MS Project), so it

,/' éxternal '
fake network .

j .
‘ Billy Goat !

Internet

Internal
network

NAT
gateway

Figure 7: Double-routing scheme for external deployment.

is likely for previously deployed machines to become
vulnerable.

8.2 Noise

Billy Goat has been deployed in IBM and customer
networks. In addition to identifying worm traffic, we
have observed behaviors that vary from network to
network. In some networks we have been able to
track the causes of these behaviors to misconfigured
devices, poorly written software, or other explainable
activity. In these cases, the detection of noise is a use-
ful side effect of a Billy Goat deployment, which con-
tributes to general network management and health
monitoring.

Some notable examples of explainable phenomena
are:

e Machines with an incorrect DNS server configu-
ration, which happens to be in a spoofed range.
We often observe repeated DNS requests to a
specific address, from a single address.

Broken software implementations that result in
network scanning. For example, in one occasion
we detected a Linux machine that was scanning
the network on SMB ports. Upon examination,
it was discovered that an SMB client was running
on it, and it was scanning the network trying to
find suitable servers, instead of using broadcast
packets.

8.3 Internet deployments

We have installed a number of Billy Goat sensors on
the Internet for purposes of stress-testing, debugging
and data capture. Some of these sensors have been
configured to mirror address spaces used in internal
corporate networks that are connected to the Inter-
net via NAT (hence, traffic to or from these address
spaces should normally not be seen on the Internet).

Such a mirrored deployment is illustrated in Fig-
ure 7. It results in an address range that exists both
on the Internet (where it is routed to the external
Billy Goat sensor) and on the internal network (where

10

it is routed to real machines), in a manner similar to
the numerous independent instances of private ad-
dress ranges [15] (e.g. 10.0.0.0/8). Beyond the ex-
pected worm traffic observed on the Internet, this
setup has offered us a view of some interesting be-
haviors, including the following:

e We often see “ghosts” of internal network struc-
tures, such as machines on the Internet attempt-
ing to connect to internal email servers. This
is explained by application caching of DNS in-
formation on machines that change networks ei-
ther physically (laptops brought home and con-
nected to the Internet) or virtually (disconnected
VPNs).

We have also observed unexplained traffic to in-
ternal addresses. For example, responses to peer-
to-peer traffic, directed to addresses that are not
assigned (even internally). Omne possible expla-
nation for this behavior is that someone is using
an internal address range on a separate private
network, behind a NAT gateway. If some ma-
chine in this private network is identifying itself
with its internal address, its peers on the Internet
would be attempting to respond to that address,
which was previously not routed, but which now
goes to the external Billy Goat sensor. This
raises questions about the accuracy of identify-
ing and tracing peer-to-peer users through par-
ticipation in the peer-to-peer protocols.

9 Conclusions and future work

We have built and widely deployed Billy Goat,
a worm-detection system specialized in detecting
network-service worms. Billy Goat has been designed
to be scalable, to operate gracefully in a large dis-
tributed environment, and to provide extremely ac-
curate detection of worm-infected machines.

Beyond the base description of Billy Goat, the con-
tributions of this paper include:

e deployment modes for honeypots, in particular

the new ICMP-based mode;

environmental effects of Billy Goat deployements
including the effect upon NIDS;

potential failures of other systems induced by
Billy Goat;

the double routing of an IP address space on
the Internet and an intranet connected via NAT,
leading to the observation of two varieties of
“ghosts”: those manifested from internal ma-
chines and those unexplained.

Finally, we have described some Billy Goat con-
structs useful in coherently maintaining a large dis-
tributed intrusion detection system:

e cryptographic checksums as external database
references,

e doubly-centralized configuration scheme.

9.1 Future work

We are currently studying the use of data mining
techniques towards automatic signature generation
and automatic creation and deployment of feigning
servers. For example, if the IP traffic data shows
a marked increase in connections to a certain port
where no server currently exists, a generic listener for
that port could be automatically instantiated and dis-
tributed to all the Billy Goat sensors, to capture the
payload being sent to that port. This could greatly
reduce the reaction time in the face of a new worm
outbreak, and aid in worm capture.

Finally, having a sensor that produces no false pos-
itives for a certain class of attacks might make pos-
sible the long-standing dream of intrusion detection:
an automated response system. Most such systems to
date have been marred by false positives, which often
result in the response system causing more damage
than good. We are exploring automatic intrusion re-
sponse mechanisms based on Billy Goat data, with
the aim of building a system that accurately and effi-
ciently isolates misbehaving machines, while allowing
critical technical and business processes to continue
unimpeded, and with an extreme focus on potential
failure modes, and how they might be eliminated or
mitigated.

References

[1] ArcSight. ArcSight Enterprise Security Manager
— product overview, Mar. 2005. URL http:
//arcsight.com/product.htm.

M. Bailey, E. Cooke, F. Jahanian, J. Nazario,
and D. Watson. The Internet Motion Sensor:
A distributed blackhole monitoring system.
In Proceedings of the 12th Annual Network
and Distributed System Security Symposium.
Internet Society, Feb. 2005. URL http:
//www.isoc.org/isoc/conferences/ndss/

05/proceedings/papers/ims-nds¥s05.pdf.

D. Dagon, X. Qin, G. Gu, W. Lee, J. Griz-
zard, J. Levine, and H. Owen. Honeystat: Lo-
cal worm detection using honeypots. In Pro-
ceedings of the Seventh International Sympo-
sium on Recent Advances in Intrusion Detection,

2]

11

Sept. 2004. URL http://www.cc.gatech.edu/
“wenke/papers/honeystat.pdf.

M. Josefsson, J. Kadlecsik, H. Welte, J. Mor-
ris, M. Boucher, and R. Russell. The netfil-
ter/iptables project. Web page at http://www.
netfilter.org/, Mar. 2005.

T. Kramp. BeepLite networking layer, Jan. 2004.
URL http://www.alphaworks.ibm.com/tech/
beeplite.

J. Levine, R. LaBella, H. Owen, D. Con-
tis, and B. Culver. The use of Honeynets
to detect exploited systems across large en-
terprise networks. In Proceedings of the
4th IEEE Information Assurance and Secu-
rity Workshop, West Point, NY, USA, June

2003. URL http://www.tracking-hackers.
com/papers/gatech-honeynet.pdf.

D. Moore. Network telescopes: Observing
small or distant security events. In 11th

USENIX Security Symposium 2002, Aug. 2002.
URL http://www.usenix.org/publications/
library/proceedings/sec02/tech.html. In-
vited talk.

D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the Slammer
worm. IEEE Security €& Privacy, 1(4):33-39,
Aug. 2003. URL http://www.computer.org/
security/vin4/j4wea.htm.

J. Morris. Fighting worms in a large cor-
porate environment: A design for a network
anti-worm solution. In Proceedings of the 12th
Virus Bulletin International Conference 2002,
pages 56-66, 2002. System available at http:
//smb-lure.dnsalias.com/.

J. Nazario. Defense and Detection Strategies
against Internet Worms. Artech House Publish-
ers, 2003.

M. Overton. Worm charming: taking SMB
Lure to the next level. In Proceedings of the
Virus Bulletin International Conference 2003,
Sept. 2003. URL http://arachnid.homeip.
net/papers/VB2003-Worm_Charming.pdf.

R. Pang, V. Yegneswaran, P. Barford, V. Pax-
son, and L. Peterson. Characteristics of inter-
net background radiation. In Proceedings of the
Internet Measurement Conference 2004. ACM,
Usenix, Oct. 2004. URL http://www.icir.
org/vern/papers/radiation-imc04.pdf.

[13]

[14]

[15]

[23]

N. Provos. Honeyd — A virtual honeypot
daemon. In Proceedings of the 10th DFN-
CERT Workshop, Hamburg, Germany, Feb.
2003. URL http://niels.xtdnet.nl/papers/
honeyd-eabstract.pdf.

N. Provos. A virtual honeypot framework.
In Proceedings of the 11th USENIX Secu-
rity Symposium. USENIX, Aug. 2004. URL
http://www.citi.umich.edu/techreports/
reports/citi-tr-03-1.pdf.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J.
de Groot, and E. Lear. Address allocation for
private internets. RFC 1918, Network Working
Group, Feb. 1996.

M. T. Rose. BEEP: The Definitive Guide:
Developing New Applications for the Internet.
O’Reilly & Associates, Inc., 981 Chestnut Street,
Newton, MA 02164, USA, 2002. ISBN 0-
596-00244-0. URL http://www.oreilly.com/
catalog/beep.

Samba. Web pages at http://www.samba.org,
2005.

L. Spitzner. The Honeynet Project: Trap-
ping the hackers. I[EFEE Security & Privacy,
1(2):15-23, Mar./Apr. 2003. ISSN 1540-7993.
URL http://csdl.computer.org/comp/mags/
sp/2003/02/j2015abs . htm.

L. Spitzner. Honeypots: Definitions and
value. http://www.tracking-hackers.com/
papers/honeypots.html, May 2003.

S. Staniford, V. Paxson, and N. Weaver. How to
Own the Internet in your spare time. In Proceed-
ings of the 11th USENIX Security Symposium.
USENIX, Aug. 2002. URL http://www.icir.
org/vern/papers/cdc-usenix-sec02/.

P. Szor. The Art of Computer Virus Research
and Defense. Addison-Wesley, 2005.

Tivoli. Tivoli SecureWay Risk Manager —
product overview. White paper, IBM, Dec.
2000. URL ftp://ftp.software.ibm.com/
software/tivoli/whitepapers/sway_risk_
mgr_ovYerv.pdf.

K. Wang, G. Cretu, and S. Stolfo. Anoma-
lous payload-based worm detection and sig-
nature generation. In Proceedings of the
Eighth International Symposium on Recent Ad-
vances in Intrusion Detection, Sept. 2005.
URL http://worminator.cs.columbia.edu/
papers/2005/raid-cut4.pdf.

12

[24]

[25]

S. Whalen. An introduction to ARP spoofing.
2600 Magazine, Fall 2001. URL http://www.
node99.org/projects/arpspoof/.

V. Yegneswaran, P. Barford, and D. Plonka. On
the design and use of internet sinks for network
abuse monitoring. In E. Jonsson, A. Valdes, and
M. Almgren, editors, Proceedings of the Recent
Advances in Intrusion Detection 2004 workshop,

Lecture Notes in Computer Science, pages 146—
165. Springer, Sept. 2004.

