
Forensic Discovery

Wietse Venema
IBM T.J.Watson Research

Hawthorne, New York, USA

Overview

� Basic concepts.

� Time from file systems and less conventional sources.

� Post-mortem file system case study.

� Persistence of deleted data on disk and in main memory.

� Recovering WinXP/Linux encrypted files without key.

� Book text and software at author websites:
– http://www.porcupine.org/
– http://www.fish2.com/

Order of Volatility
(from nanoseconds to tens of years)

Registers, peripheral memory, caches, etc.

Main memory

Network state

Running processes

Disk

Floppies, backup tape, etc.

CD-ROMs, printouts, etc.

10-9

10-6

109

10-3

1

103

106

Se
co

nd
s

Most files are accessed rarely

 www.things.org www.fish2.com news.earthlink.net

less than 1 day 3 % 2 % 2 %

1 day – 1 month 4 % 3 % 7 %

1 - 6 months 9 % 1 % 72 %

6 months – 1 year 8 % 19 % 7 %

more than 1 year 77 % 75 % 11 %

Numbers are based on file read access times.

Erosion paradox

� Information disappears, even if you do nothing.
Examples: logfiles and last file access times.

� Routine user or system activity touches the same files
again and again - literally stepping on its own footprints.

� Footprints from unusual behavior stand out, and for a
relatively long time.

Fossilization and abstraction layers
(not included: financial and political layers)

• Information deleted at layer N persists at layers N-1, etc.
• It becomes frozen in time; older data sits in lower layers.

Useful things

Applications

Files

File systems

Disk blocks

Hardware

Magnetic fields

Deleted file attributes and content persist in
“inaccessible” disk blocks.

Overwritten data persists as “inaccessible”
modulations on newer data.

Without the right application, file content
becomes “inaccessible”.

Cost of an investigation
(not entirely serious)

Effort Skill level Time

Do nothing None Almost none

Minimal Install system s/w < 1 Day

Recommended Junior sysadmin 1-2 Days

Serious Senior sysadmin Days – weeks

Fanatical Expert sysadmin Months

MACtimes Introduction

What are MACtimes?

� Mtime Time of last modification
(Write/truncate, create/delete dir entry).

� Atime Time of last access
(Read/execute file, look up dir entry).

� Ctime Time of last attribute change
(Owner, permission, ref count, size, etc.).

� dtime Time of file deletion (LINUX).

Getting MACtimes

($dev,$inode,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksz,$blks) = lstat($file);

� Perl’s lstat() returns file attributes.

� Works in UFS, Ext2fs, NTFS, etc. (even FAT).

� TCT1 Command: “grave-robber -m” or “mactime -d”.

1The Coroner’s toolkit, see references at end of file

Example – login session
(what the user sees)
$ telnet sunos.fish2.com
Trying 216.240.49.177...
Connected to sunos.fish2.com.
Escape character is '^]'.

SunOS UNIX (sunos)

login: zen
Password:
Last login: Thu Dec 25 09:30:21 from flying.fish2.com

Welcome to ancient history!
$

Question: Why does this example use a 15 year old system?

Example – login session
(MACtime view)

Time Size MAC Permission Owner Group File name
19:47:04 49152 .a. -rwsr-xr-x root staff /usr/bin/login

32768 .a. -rwxr-xr-x root staff /usr/etc/in.telnetd

19:47:08 272 .a. -rw-r--r-- root staff /etc/group
108 .a. -r--r--r-- root staff /etc/motd

8234 .a. -rw-r--r-- root staff /etc/ttytab
3636 m.c -rw-rw-rw- root staff /etc/utmp

28056 m.c -rw-r--r-- root staff /var/adm/lastlog
1250496 m.c -rw-r--r-- root staff /var/adm/wtmp

19:47:09 1041 .a. -rw-r--r-- root staff /etc/passwd
19:47:10 147456 .a. -rwxr-xr-x root staff /bin/csh

(m=modified, a=read/execute access, c=status change)

Uses for MACtimes

� Profiling user activity (activity footprint).

� Understanding systems (execution footprint).

� Improving system security (used/unused files).

� Dead or alive (deleted/existing file attributes).

MACtime Limitations

� Shows only the last time something happened.

� Easy to forge: UNIX utime(), Windows SetFileTime().

� Digital Alzheimer's. Data erodes over time.

� Only unusual behavior persists.

MACtimes in Journaling File
Systems

Journal files are like trees,
growing one ring at a time

Example: MACtimes from cron job
(25-Hour Ext3fs journal)

Time Size MAC Permissions Owner File name
19:30:00 541096 .a. -rwxr-xr-x root /bin/bash
19:30:00 26152 .a. -rwxr-xr-x root /bin/date
19:30:00 4 .a. lrwxrwxrwx root /bin/sh -> bash
19:30:00 550 .a. -rw-r--r-- root /etc/group
19:30:00 1267 .a. -rw-r--r-- root /etc/localtime
19:30:00 117 .a. -rw-r--r-- root /etc/mtab
19:30:00 274 .a. -rwxr-xr-x root /usr/lib/sa/sa1
19:30:00 19880 .a. -rwxr-xr-x root /usr/lib/sa/sadc
19:30:00 29238 m.c -rw------- root /var/log/cron
19:30:00 114453 mac -rw-r--r-- root /var/log/sa/sa19

19:40:00 541096 .a. -rwxr-xr-x root /bin/bash
19:40:00 26152 .a. -rwxr-xr-x root /bin/date
19:40:00 4 .a. lrwxrwxrwx root /bin/sh -> bash
19:40:00 550 .a. -rw-r--r-- root /etc/group
19:40:00 1267 .a. -rw-r--r-- root /etc/localtime
19:40:00 117 .a. -rw-r--r-- root /etc/mtab
19:40:00 274 .a. -rwxr-xr-x root /usr/lib/sa/sa1
19:40:00 19880 .a. -rwxr-xr-x root /usr/lib/sa/sadc
19:40:00 29310 m.c -rw------- root /var/log/cron
19:40:00 115421 mac -rw-r--r-- root /var/log/sa/sa19

What is a journaling file system?

� Principle: append some or all file system updates to a
“journal file” before updating the file system itself.

� Sounds like extra work, but performance can be good
(one reason is that disk updates can be sorted).

� Long-time feature with enterpri$e-class file systems.

� More recently popularized on Windows and *N*X: Ext3fs,
JFS, NTFS, Reiserfs, XFS, Solaris UFS and others.

� Dramatically improves recovery time from system crash.

Why journaling file systems (1/2)

� Short answer: FSCK and SCANDISK are too slow :-(

� Long answer: need multiple disk updates for non-trivial
file operations such as create, append, remove, etc.:

– Update file data (when writing to file).

– Update file metadata:

• What disk blocks are “free”.

• What disk blocks belong to a specific file.

• What files belong to a specific directory.

• And more. All this has to be kept consistent.

Why journaling file systems (2/2)

� Problem: can’t do multiple disk updates at the same
time. Bummer.

� After system crash, file systems such as UFS1, Ext2fs
and FAT can be left in an inconsistent state. Examples:

– Lost blocks (not “free” and not part of any file).

– Dup blocks (both “free” and part of a file).

� With journaling, recovery is near instantaneous: discard
incomplete operations, commit remainder to file system.

1With FreeBSD 5.x UFS + soft metadata updates, parts of
fsck can run in the background. Eek!

Forensic information in journal files

Two types of journaling file system:

� Metadata only: Ext3fs, JFS, NTFS, Reiserfs, XFS.

� Data and metadata: Ext3fs, but it’s not the default.

Focusing on MACtime information:

� File read/write activity generates file read/write access
time entries in the file system journal.

� Journal is a time series of MACtimes.

� ! ! ! We can see before the “last” access ! ! !

Journal MACtimes benefits

� Regular activity (cron job) shows up like a heart beat.

� Can actually see logfiles grow over time.

� With data journaling, can see file writes too.

� Journals are like watching a tree grow one ring at a time.

Journaling case study: Ext3fs

� Default file system with many Linux distributions.

� Same on-disk format as Ext2fs (easy migration).

� Journal is kept in a regular file:
 linux# tune2fs -l /dev/hda21 | grep -i journal
 Filesystem features: has_journal [more stuff]
 Journal inode: 8
 Journal backup: inode blocks

� Journal file has no name, but can be captured with, for
example, icat from the Coroner’s Toolkit:

 linux# icat /dev/hda21 8 >journalfile

1Actually, it was /dev/mapper/VolGroup00-LogVol00, but that is too much text.

Looking inside the Ext3fs journal

� Linux debugfs command can examine the Ext3fs journal.
You can search for only one file at a time :-(

� Example: query the journal for password file accesses:
 linux# debugfs -R 'logdump -c -i /etc/passwd' /dev/hda2

| grep atime
 atime: 0x4614120d -- Wed Apr 4 17:01:01 2007
 atime: 0x4614201d -- Wed Apr 4 18:01:01 2007
 atime: 0x46142e2d -- Wed Apr 4 19:01:01 2007

� Specify “logdump -f journalfile” to use saved journal file.

� Modified debugfs source to dump all journal MACtime
information is available at http://www.porcupine.org/.

Example: booting up a Linux box
(records start after read/write remount)

Time Size MAC Permissions File name
12:30:12 0 mac srwxr-xr-x /dev/gpmctl
12:30:12 8538 .a. -rwxr-xr-x /sbin/minilogd
12:30:13 10680 .a. -rwxr-xr-x /bin/basename
12:30:13 81996 .a. -rwxr-xr-x /bin/mount
12:30:13 0 ..c crw------- /dev/audio
. . . 89 other /dev records omitted . . .

12:30:13 0 ..c crw------- /dev/sequencer
12:30:13 4096 m.c drwxr-xr-x /etc
12:30:13 2453 .a. -rw-r--r-- /etc/security/console.perms
12:30:13 17 .a. lrwxrwxrwx /lib/libcom_err.so.2 -> libcom_err.so.2.0
12:30:13 29205 .a. -rwxr-xr-x /lib/libcom_err.so.2.0
12:30:13 16 .a. lrwxrwxrwx /lib/libext2fs.so.2
12:30:13 56251 .a. -rwxr-xr-x /lib/libext2fs.so.2.4 -> libext2fs.so.2.4
12:30:13 4096 .a. drwxr-xr-x /lib/modules/2.4.18-14
12:30:13 4096 .a. drwxr-xr-x /lib/modules/2.4.18-14/kernel
. . . 185 other /lib/modules records omitted . . .

12:30:13 39 .a. lrwxrwxrwx /lib/modules/2.4.18-14/pcmcia/yenta_socket.o
12:30:13 57624 .a. -rwxr-xr-x /sbin/depmod
12:30:13 22424 .a. -rwxr-xr-x /sbin/fsck
12:30:13 74528 .a. -r-xr-xr-x /sbin/pam_console_apply
12:30:13 70550 .a. -rwxr-xr-x /sbin/quotaon
. . . 1326 records omitted . . .

Ext3fs journaling gotchas:
bystander attributes
� The journal contains updates for entire (meta)data disk

blocks. An inode (file attribute block) is much smaller.

� When one file attribute is updated, many neighboring file
attributes end up in the journal too, because they happen
to live in the same disk block (bystanders).

Disk block containing only one modified inode.

Journal with modified inodes amidst bystander inodes.

Time

Journal block N

Journal block N+1

Journal block N+2

Ext3fs journaling gotchas, cont’d

� The debugfs journal dumping feature sometimes does
not recognize where the journal ends, and produces
garbage from that point onwards.

� The Ext3fs journal file size is fixed (typically: 128MB with
2.6 kernels). The amount of history is limited.

� When saving the journal from a file system that uses
data+metadata journaling, save the journal elsewhere,
otherwise the journal will overwrite itself!

Journal MACtimes - conclusion

� Ext3fs journaling is forensics friendly. The journal is kept
in a regular file, and is easy to capture and analyze.

� Other journaling file systems may not be as helpful.

� Non-journaling approaches to crash-proof file systems
may or may not have forensic benefits:

– UFS soft metadata are all about very carefully
scheduled disk updates. No forensic benefits.

– Solaris 10 ZFS copy-on-write file system. Obvious
forensic benefits, because data is not overwritten (at
least, not immediately).

MACtimes in DNS

And sources of time in other
unconventional places

DNS Terminology

� A – Address records, which map a domain name to an
IP number.

� PTR - pointer records, which map an IP number to a
domain name.

� MX – Mail Exchange records, which tell mail agents
where email should be sent to.

� TTL - Time To Live, how long to remember a reply after
it was received.

Simplified DNS architecture

� Not shown: root servers; other (non-)forwarding servers;
other (non-)recursive queries; remote cache snooping.

local
DNS

server

authoritative
DNS

server

cache zone file

local
DNS
client

spike.porcupine.org flying.fish2.comtail.porcupine.org

query: www.fish2.com A=?

reply: www.fish2.com A=216.240.49.171

MAC-DNS-time, theory

1 Get the left-over TTLs from the local DNS server cache.

2 Look up the original TTL values from the remote DNS
server for the corresponding PTR, A, MX, etc. records.

� The computed reply arrival time may be wrong, because
the original TTL may have changed.

NOWDNS reply
arrival

DNS reply
expires

2: Subtract original TTL (from remote DNS server)

1: Add left-over TTL (from local DNS cache)

futurepast

MAC-DNS-time, practice

 # kill –SIGINT <BIND-pid> (BIND < 9)
 # rndc dumpdb (BIND 9)

� Dumped log records + processing with small perl
program1, for an ftp connection event:

Oct 13 09:57:13 PTR=pox.remarque.org.
Oct 13 09:57:14 A=209.209.13.172
Oct 13 09:57:14 tsunami in.ftpd[5674]: connect

from pox.remarque.org

1Source code available at book website.

Other Time Sources
� Every cache can be exploited to some extent:

– Proxy server caches.
– DNS server caches.
– ARP caches (e.g., IP to ethernet address mapping).

� Other unconventional sources of time information:
– Long-lived process memory (syslogd!).
– Main memory.
– Swap files.
– Deleted files.

Swap file persistence - YMMV
(translation: your mileage may vary)

• Nr. of time stamps per month for small www+ftp server:
 # strings /dev/rwd0b | grep

,
^[A-Z][a-z][a-z] [0-3][0-

9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]
,
| awk

,
{print $1}

,

| sort -M | uniq -c

• No time stamps in swap file after hardware upgrade :-(

0

5

10

15

20

25

30

35

Feb Apr Jun Aug Oct

Intermezzo: information on
retired disks

Global hard disk market
(Millions shipped, source: Dataquest, iSuppli)

0
50

100
150
200
250
300
350
400
450

1997 1999 2001 2003 2005

Retired
(estimate)
Shipped

Long-term collection of retired disks

� Experiment: buy used drives, mainly via Ebay.

� Time frame: 1998 - 2006.

� 1005 Drives purchased.

� 750 Drives included in “corpus” for research.

� 449 Drives contained active file system.

� 324 Drives had more than 5 files.

� 882 GB of file content was recovered.

Simson Garfinkel, to be presented at DFRWS 2007

Results from early informal survey
(Garfinkel & Shelat)

� Time frame: November 2000 - August 2002.

� 158 Drives purchased.

� 129 Drives still worked.

� 51 Drives “formatted”, leaving most data intact.

� 12 Drives overwritten with fill pattern.

� 75 GB of file content was found or recovered.

IEEE Privacy & Security January/February 2003, http://www.simson.
net/clips/academic/2003.IEEE.DiskDriveForensics.pdf

What information can be found on
a retired disk
� One drive with 2868 account numbers, access dates,

balances, ATM software, but no DES key.

� One drive with 3722 credit card numbers.

� Corporate memoranda about personnel issues.

� Letter to doctor from cancer patient’s parent.

� Email (17 drives with more than 100 messages).

� 675 MS Word documents.

� 566 MS Powerpoint presentations.

� 274 MS Excel spreadsheets.

Deleted Files Introduction

Deleted files - overview

� Organization of typical UNIX and Linux file systems:
UFS1, Ext3fs2, and their direct family members.

� What information is destroyed and what is preserved
when a file is deleted.

� Tools to access (deleted) file information.

1Berkeley fast file system, found on *BSD, Solaris, etc.
2Third extended file system, found on Linux.

UNIX/Linux file system basics

foo 123

bar 456

and so on...

directory /home/you

inode 123

data block #s
file/directory/etc

mactimes
reference count

owner/group ID

data block

data block

data block

data blocks

access perms
file size

Direct and indirect data blocks
(the truth, the whole truth, and nothing but the truth)

inode
block 0

block 11

1 indirect

3 indirect

2 indirect

block 12

blk 2059

. . .

. . .

1 indirect blk 2060

1 indirect
4196363

. . .

. . .
. . .

2 indirect

2 indirect
. . .

1 indirect
Specific block numbers are typical for Berkeley UFS-like file systems

1 indirect. . .

Typical UNIX/Linux disk layout

super
block

inode
bitmap

data
bitmap

data
blocks

inode
blocks

zone zone zone zonezone

label / /home partition/usr partition

- -- Entire disk -- -

UNIX/Linux file system

File system zone

If possible, all data about a file is within the same zone.

swap

What is preserved when a file is
deleted: UNIX/Linux systems

foo 123

bar 456

and so on...

directory /home/you

inode 123

data block #s
file/directory/etc

mactimes2

reference count1

owner/group ID

data block

data block

data block

data blocks

access perms

2status change time = time of deletion
file size 1zero references

foo

= Some Linux

= UNIX+Linux

Summary: what happens when a
file is deleted?

File property Stored in Status
Directory entry Directory Marked as unallocated
 File name Preserved
 Inode number System dependent
File attributes Inode block Marked as unallocated
 Owner/group Preserved
 Last read time Preserved
 Last write time System dependent
 Last status change Time of deletion
 Reference count Zero
 Type/Permissions System dependent
 Size/Data block #s System dependent
File content Data blocks Preserved, unallocated.

Techniques to access (deleted)
file information

application

operating
system

hardware

regular
application

vfs
ffs, ext2fs, etc.
device driver

disk blocks

ils, icat, unrm,
fls, etc

beware of
file system
caching
effects!

Tools to access (deleted) file
information
� Coroner’s Toolkit utilities:

– access file attributes by inode nr: ils /dev/hda8 30199
– access file content by inode nr: icat /dev/hda8 30199
– access deleted data blocks: unrm /dev/hda8

� Sleuthkit (Brian Carrier):
– list directory entries: fls /dev/hda8
– several others.

� Tools can also be used before data is deleted.

Post-mortem analysis
example

Tracing an intruder’s file back to
its origin

Post-mortem analysis - overview

� What was logged.

� Chronological analysis of:
– What files were accessed.
– What files were modified or created.
– What deleted file information is available.

� Not (see book or website for these):
– How the duplicate disk image was created.
– How the duplicate disk image was mounted on an

analysis workstation.

What was logged

A scream of agony in the middle of the night:

Sep 25 00:44:49 dionysis rpc.statd[335]: gethostbyname error for
[a very long non-conformant hostname...]

Sep 25 00:45:16 dionysis inetd[473]: extra conf for service
telnet/tcp (skipped)

Sep 25 00:45:28 dionysis in.telnetd[11554]: connect from 10.83.81.7
Sep 25 01:02:02 dionysis inetd[473]: pid 11554: exit status 1
Sep 25 17:31:47 dionysis in.telnetd[12031]: connect from 10.83.81.7
Sep 25 17:32:08 dionysis in.telnetd[12035]: connect from 10.83.81.7

(IP address information changed to protect the guilty)

What was accessed, part 1/2
(initial intrusion)
Sep 25 2000 00:45:15

Size MAC Permission Ownership File name
207600 .a. -rwxr-xr-x root root /image/usr/bin/as
63376 .a. -rwxr-xr-x root root /image/usr/bin/egcs
63376 .a. -rwxr-xr-x root root /image/usr/bin/gcc
63376 .a. -rwxr-xr-x root root /image/usr/bin/i386-redhat-linux-gcc
2315 .a. -rw-r--r-- root root /image/usr/include/_G_config.h
1297 .a. -rw-r--r-- root root /image/usr/include/bits/stdio_lim.h
4680 .a. -rw-r--r-- root root /image/usr/include/bits/types.h
9512 .a. -rw-r--r-- root root /image/usr/include/features.h
1021 .a. -rw-r--r-- root root /image/usr/include/gnu/stubs.h

11673 .a. -rw-r--r-- root root /image/usr/include/libio.h
20926 .a. -rw-r--r-- root root /image/usr/include/stdio.h
4951 .a. -rw-r--r-- root root /image/usr/include/sys/cdefs.h

1440240 .a. -rwxr-xr-x root root /image/usr/lib/gcc-lib/[...]/cc1
45488 .a. -rwxr-xr-x root root /image/usr/lib/gcc-lib/[...]/collect2
87312 .a. -rwxr-xr-x root root /image/usr/lib/gcc-lib/[...]/cpp
5794 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/include/stdarg.h
9834 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/include/stddef.h

(m=modified, a=read/execute access, c=status change)

What was accessed, part 2/2
(initial intrusion)

Size MAC Permission Ownership File name
1926 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/specs

Sep 25 2000 00:45:16
205136 .a. -rwxr-xr-x root root /image/usr/bin/ld
176464 .a. -rwxr-xr-x root root /image/usr/bin/strip

8512 .a. -rw-r--r-- root root /image/usr/lib/crt1.o
1124 .a. -rw-r--r-- root root /image/usr/lib/crti.o
874 .a. -rw-r--r-- root root /image/usr/lib/crtn.o

1892 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/crtbegin.o
1424 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/crtend.o

769892 .a. -rw-r--r-- root root /image/usr/lib/gcc-lib/[...]/libgcc.a
314936 .a. -rwxr-xr-x root root /image/usr/lib/libbfd-2.9.5.0.22.so

178 .a. -rw-r--r-- root root /image/usr/lib/libc.so
69994 .a. -rw-r--r-- root root /image/usr/lib/libc_nonshared.a

(m=modified, a=read/execute access, c=status change)

� Conclusion: intruder compiled a simple C program.

Modifications to existing files
Sep 25 2000 00:45:16

Size MAC Permission Ownership File name
0 m.c -rw-r--r-- root root /image/etc/hosts.allow
0 m.c -rw-r--r-- root root /image/etc/hosts.deny

3094 mac -rw-r--r-- root root /image/etc/inetd.conf
(m=modified, a=read/execute access, c=status change)

� TCP Wrapper allow/deny access control disabled.

� Extra telnet service entry in inetd.conf:
 $ grep telnet /image/etc/inetd.conf
 telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
 telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

� Suspicion: an intruder installed a backdoor.

Two new files in system directories:
prick, xstat
� Not part of the RedHat 6.2 Linux distribution:

Date and time Size MAC Permission Ownership File name
Sep 25 2000 00:45:15 20452 m.c -rwxr-xr-x root root /image/bin/prick
Sep 25 2000 00:45:16 3448 m.. -rwxr-xr-x root root /image/usr/bin/xstat

� /bin/prick is a copy of RedHat 6.2 Linux /bin/login1.

� What about the present /bin/login program?
Date and time Size MAC Permission Ownership File name
Sep 25 2000 17:34:17 3448 ..c -rwxr-xr-x root root /image/usr/bin/xstat
Sep 25 2000 17:34:20 12207 ..c -rwxr-xr-x root root /image/bin/login

� “strings /bin/login” reports “/usr/bin/xstat”.

� “strings /usr/bin/xstat” reports “/bin/prick”.
1Found by comparing the MD5 hash with a “clean” RedHat install.

Login backdoor upon backdoor

/usr/bin/xstat (was 00:45
/bin/login backdoor)

/bin/prick (was original
/bin/login program)

/bin/login is 17:34
login backdoor program

/bin/sh
super-user shell

/bin/sh
super-user shell

regular
login shell

in.telnetd
network server backdoors inserted here

Inode sequence number analysis

� When the operating system is installed, files installed
together are assigned successive inode numbers.

� Example: FreeBSD directory listing in unsorted order:
$ ls -fli /bin
Inode Permission Ref Ownership Size Last update Name
70657 -r-xr-xr-x 1 root wheel 8052 Nov 4 2004 cat
70658 -r-xr-xr-x 1 root wheel 4960 Nov 4 2004 chflags
70659 -r-xr-xr-x 1 root wheel 14096 Nov 4 2004 chio
70660 -r-xr-xr-x 1 root wheel 5864 Nov 4 2004 chmod
70661 -r-xr-xr-x 1 root wheel 15344 Nov 4 2004 cp

� Jumps in inode numbers are normal, but an out-of-order
entry indicates that a file was added or replaced later.

Deleted file analysis

� Deleted file with inode 30199 is original /bin/login file1:
Date and time Size MAC Permission Ownership Disk Inode
Mar 07 2000 04:29:44 20452 m.. -rwxr-xr-x root root <image.hda8-30199>
Sep 25 2000 00:45:15 20452 .a. -rwxr-xr-x root root <image.hda8-30199>
Sep 25 2000 00:45:16 20452 ..c -rwxr-xr-x root root <image.hda8-30199>

� Inode 30199 matches a sequence perfectly:
$ ls -fli /image/bin # list directory entries in unsorted order
...skipped...
Inode Permission Ref Ownership Size Last update Name
30197 -rwxr-xr-x 1 root root 4016 Mar 7 2000 dmesg
30198 -rwxr-xr-x 1 root root 7952 Mar 7 2000 kill
60257 -rwxr-xr-x 1 root root 12207 Aug 18 2000 login replaced!
30200 -rwxr-xr-x 1 root root 23600 Mar 7 2000 more
30201 -rwxr-xr-x 1 root root 362 Mar 7 2000 vimtutor

1Attributes + content recovered with ils + icat from Coroner’s toolkit.

Tracing an intruder file to its origins

� The backdoor login program with inode number 60257
was created in a different zone of the same file system.

 $ find /image -xdev -print0 | xargs -0 ls -id | sort -n
 ...skipped...
 60256 /image/etc/.tmp/.tmp
 60257 /image/bin/login backdoor!
 60261 /image/etc/.tmp/install
 60262 /image/dev/.l
 60263 /image/etc/.tmp/.tmp/.m.list
 ...skipped...

� fls finds deleted directory entry with inode nr. 60257:
 Size MAC Permission Owner File name inode comments
 12207 ..c -rwxr-wr-x root /image/etc/.tmp/.tmp/l <60257> (deleted)

� Suggests that from here it was moved to /bin/login.

Clues found so far

00:44:49 Break-in with rpc.statd exploit.
00:45:15 Relatively small program compiled.
00:45:16 First login backdoor installed. Original

/bin/login program saved as /bin/prick.
00:45:16 Truncated hosts.allow/deny files.
00:45:16 Duplicate telnet service configured.
00:45:28 Telnet connection (no login).
17.31.47 Telnet connection (end 17:32:06).

17.32:08 Telnet connection (end 17:34:27).

17:34:20 Second login backdoor installed. First
backdoor renamed to /usr/bin/xstat.

Lessons from a honeypot, part 1/2

� Confession time: this was a honeypot machine.

� Honeynet project: http://project.honeynet.org/

� Lots of deleted Solaris files, including log files and
firewall configuration files (in swap space).

� False evidence in the form of deleted copies of white
papers that discussed similar break-ins.

� False evidence as the result of using the same machine
for target practice.

Lessons from a honeypot, part 2/2

� Wipe the file system(s) before installing the OS.
 dd if=/dev/zero of=/dev/hda1, etc.

� Wipe the swap space too.

� Limit your downstream liability by limiting what
connections the honeypot is allowed to make (the
honeynet people already did this).

� Don’t use the honeypot for target practice.

� Don’t let any sensitive data near the honeypot.
Computers are like tar pits.

Persistence of deleted
information

Overview

� Persistence of deleted file information.

� Persistence of information in main memory.

� Recovering encrypted Linux/WinXP files without key.

Persistence of deleted file
information

Why deleted file data can be more
persistent than existing file data

Deleting a file destroys structure
but not content

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
file/directory/etc

mactimes2

reference count1

owner/group ID

data block

data block

data block

Data blocks

access perms

2status change time = time of deletion
file size1zero references

foo

system dependent

preserved

filename inode

Measurements with deleted file
attributes (easy)
� Deleted file attributes are collected with grave-robber or

with ils from the Coroner’s Toolkit. This takes only a few
minutes, depending on the file system size.

� Slightly altered MACtime semantics for deleted files:

– Mtime: Linux: the last modification before deletion.
Other: the time of deletion.

– Atime: the last read/execute access before deletion.

– Ctime: the time of deletion.

– (dtime: Linux-specific time of deletion).

Persistence of deleted file attributes
(dedicated UNIX server, 9GB half full disk)

Measurements with deleted file
content (not so easy)
� Problem: deleted file content rarely gives hints about the

time of deletion (exception: short-lived logfiles).

� We actually have to measure when a file is deleted, and
how long it takes before its content is overwritten.

� Experiment with half-dozen file systems: every night,
hash every disk block1 and record its status (allocated,
free, metadata)2. Keep doing this for several months.
Result: 100 MBytes of data.

1We kept only 16 bits of each hash, to save space.
2Data collection tools are at the book website.

Persistence of deleted file content
(same dedicated UNIX server, 9GB half full)

Summary: persistence of deleted
file content

Machine File system Half-life

spike.porcupine.org1 entire disk 35 days

flying.fish.com2 / 17 days

flying.fish.com2 /usr 19 days

www.porcupine.org1 entire disk 12 days

1FreeBSD 2Linux

Why deleted file data can be more
persistent than existing file data
� Existing files are easy to access, and easy to modify.

Deleted files are less accessible, and become fossils.

� File system locality protects deleted data. Example: a
deleted file in zone X survives write activity in zone Y.

super
block

data
blocks

inode
blocks

data
bitmap

inode
bitmap

zone zonezonezonezone

label /var/home/

UNIX/Linux file system

File system zone

- -- Entire disk -- -

Main Memory Persistence

Recovering Linux/WinXP
encrypted files without the key

Information in main memory

� Running processes1.

� Terminated processes1.

� Kernel memory.

� Recently active files/directories (file cache).

� Deleted files (from processes1 or from file cache).

� Different persistence properties.

1Some information may be found in swap files.

Block cache versus virtual cache
(owned by system, not by applications)

Application

File System

Block Cache

Disk Blocks

Application

Virtual Cache

File System

Disk Blocks

DOS, Win95/98/ME, BSD BSD, Linux, Solaris,WinNT/2K/XP

dumb!

small!

smart!

large!

user

system

system

hardware

File caching in main memory
measurements
� Disk blocks are cached in memory in page size chunks.

� Every hour, compute a hash of every 1kbyte memory
block1.

� Once: compute hashes of 1kbyte file blocks, zero-
padding short blocks.

� Off-line analysis: compare memory hashes with file
hashes to get an idea of what is cached in memory.

� Minor impact from collisions, such as all-zero blocks.
1Tools are at the book website.

att.ps
fish-audit.ps
fish.ps
fw-audit.ps
handouts.html
how2.ps
index.html
intro.ps
nancy-cook.ps
network-examples.ps
networks.ps

5 10 15 20 0 5
Time of day (hours) hit bufferedabsent

File caching in main memory
(low-traffic web pages, FreeBSD)

--start of system backup

Recovering WinXP/Linux
encrypted files without key

Two experiments with remarkably
similar outcomes

Experiment 1: Windows/2K/XP EFS

� EFS1 provides encryption by file or by directory.
Encryption is enabled via an Explorer property dialog
box or via the equivalent system calls.

� With encryption by directory, files are encrypted before
they are written to disk.

� Is unencrypted content of EFS files cached in main
memory?

� If yes, for how long?

1EFS=Encrypting File System

Experiment 1: create encrypted file

� Create “encrypted” directory c:\temp\encrypted.

� Download 350kB text file via FTP, with content:
00001 this is the plain text
00002 this is the plain text
...
11935 this is the plain text
11936 this is the plain text

� Scanning the disk from outside (VMware rocks!)
confirms that no plaintext is written to disk.

Experiment 1: search memory dump

� Log off from the Windows/XP console and press
Ctrl/ScrollLock twice for memory dump1 (160 MB).

� Analyze dumped memory with standard UNIX tools.

� 99.6% of the plain text was found undamaged.

1Microsoft KB 254649: Windows 2000 memory dump options.

Experiment 2: Linux eCryptfs

� eCryptfs1 provides encryption by file system.

� Standard with kernel version 2.6.19 and later.

� Files are encrypted before they are written to disk.

� Is unencrypted content of eCryptfs files cached in main
memory?

� If yes, for how long?

1http://ecryptfs.sourceforge.net/

Experiment 2: create encrypted file
(tested with kernel 2.6.15)

� Mount eCryptfs file system on /mnt.

� Run script that generates 29 MB easy to recognize text:
 $ awk ,BEGIN { for (i = 0; i < 100000; i++)

 printf(“%5d This is the plain text\n”, i) },

 >/mnt/test

� This produces the following content:
00000 This is the plain text
00001 This is the plain text
...
99998 This is the plain text
99999 This is the plain text

Experiment 2: search memory dump

� Unmount the file system and dump the VMware guest1
memory (256 MB) with the pcat command from TCT.

� Analyze dumped memory with standard UNIX tools.

� 99% Of the plaintext was found undamaged. One hour
later, 96% of the plaintext still persisted.

1Kernel 2.6 /dev/mem and /proc/kcore appear to be crippled. SBO?

Conclusion - recovering encrypted
files without key
� Good: file system encryption provides privacy by

encrypting file content before it is written to disk.

� Bad: unencrypted content stays cached in main memory
even after the user has logged off (WinXP) or after the
file system is unmounted (Linux).

� Similar experiments are needed for other encrypting file
systems, but we expect to find similar plaintext caching
behavior.

Long-term memory
persistence

Trail of secrets across memory
(Chow et al., USENIX Security 2004)

X windows
server

keyboard

scan codes

characters IPC buffer

X library
web browser

application

o.s. kernel

hardware

Short-term memory persistence
after process termination (1MB stamp)
.

Time (seconds)

A
m

ou
nt

 o
f s

ur
vi

vi
ng

 m
em

or
y

FreeBSD
256MB

FreeBSD
server
256MB

Linux
server
384MB

Long-term memory persistence
(Chow et al., USENIX Security 2005)

Time (Days)

S
ta

m
ps

 R
em

ai
ni

ng
 (M

B
)

Initial stamp size 4MB of 1GB
(WinXP desktop,
kernel memory)

Initial stamp size 64MB of 1GB
(Linux desktop,

process memory)

Initial stamp size 64MB of 256MB
(Linux server,

process memory)

Progress in subversion

Hardware is getting softer

Progression in subversion
(also known as rootkits)

Application

O.S. Kernel

Hardware

1994 SunOS mass exploitation

1997 Bugtraq demo
1999 Knark mass exploitation

2006 ACPI+PCI Firmware demo

2005 Subvirt (VMware+VirtualPC)
2006 Bluepill (AMD VT extensions)Virtualization

Reflashing for fun and profit

� It’s all about business models:
� Time to market: ship it now, fix it later.
� CPU updates (Intel: non-peristent, “signed”).
� Hard drive, BIOS, etc. updates.

� Already popular with consumer electronics:
� Watch TV without paying.
� Re-enable wireless telephone features.
� Disable DVD player “region lock”.
� Upgrade digital camera to more expensive model.

Conclusion

� Deleted file information can survive for a year or more,
even with actively used file systems.

� Main memory becomes a primary source of forensic
information, especially with infection of running
processes or running operating system kernels.

� Hardware is becoming softer1 all the time, as complexity
increases. Do not blindly trust that a device will give you
all the information that is stored on it.

1Field upgradable firmware.

Pointers

� Dan Farmer, Wietse Venema: “Forensic Discovery”,
Addison-Wesley, Dec. 2004; “The Coroner’s Toolkit”.
http://www.porcupine.org/forensics/
http://www.fish2.com/forensics/

� Jim Chow et al.: “Shredding Your Garbage”, USENIX
Security 2005; “Understanding Data Lifetime via Whole
System Simulation”, USENIX Security 2004.

� Brian Carrier, Sleuthkit and other software.
http://www.sleuthkit.org/

	Forensic Discovery
	Overview
	Order of Volatility�(from nanoseconds to tens of years)
	Most files are accessed rarely
	Erosion paradox
	Fossilization and abstraction layers�(not included: financial and political layers)
	Cost of an investigation�(not entirely serious)
	MACtimes Introduction
	What are MACtimes?
	Getting MACtimes
	Example – login session �(what the user sees)
	Example – login session�(MACtime view)
	Uses for MACtimes
	MACtime Limitations
	MACtimes in Journaling File Systems
	Example: MACtimes from cron job�(25-Hour Ext3fs journal)
	What is a journaling file system?
	Why journaling file systems (1/2)
	Why journaling file systems (2/2)
	Forensic information in journal files
	Journal MACtimes benefits
	Journaling case study: Ext3fs
	Looking inside the Ext3fs journal
	Example: booting up a Linux box�(records start after read/write remount)
	Ext3fs journaling gotchas: bystander attributes
	Ext3fs journaling gotchas, cont’d
	Journal MACtimes - conclusion
	MACtimes in DNS
	DNS Terminology
	Simplified DNS architecture
	MAC-DNS-time, theory
	MAC-DNS-time, practice
	Other Time Sources
	Swap file persistence - YMMV�(translation: your mileage may vary)
	Intermezzo: information on retired disks
	Global hard disk market�(Millions shipped, source: Dataquest, iSuppli)
	Long-term collection of retired disks
	Results from early informal survey�(Garfinkel & Shelat)
	What information can be found on a retired disk
	Deleted Files Introduction
	Deleted files - overview
	UNIX/Linux file system basics
	Direct and indirect data blocks�(the truth, the whole truth, and nothing but the truth)
	Typical UNIX/Linux disk layout
	What is preserved when a file is deleted: UNIX/Linux systems
	Summary: what happens when a file is deleted?
	Techniques to access (deleted) file information
	Tools to access (deleted) file information
	Post-mortem analysis example
	Post-mortem analysis - overview
	What was logged
	What was accessed, part 1/2�(initial intrusion)
	What was accessed, part 2/2�(initial intrusion)
	Modifications to existing files
	Two new files in system directories: prick, xstat
	Login backdoor upon backdoor
	Inode sequence number analysis
	Deleted file analysis
	Tracing an intruder file to its origins
	Clues found so far
	Lessons from a honeypot, part 1/2
	Lessons from a honeypot, part 2/2
	Persistence of deleted information
	Overview
	Persistence of deleted file information
	Deleting a file destroys structure but not content
	Measurements with deleted file attributes (easy)
	Persistence of deleted file attributes (dedicated UNIX server, 9GB half full disk)
	Measurements with deleted file content (not so easy)
	Persistence of deleted file content (same dedicated UNIX server, 9GB half full)
	Summary: persistence of deleted file content
	Why deleted file data can be more persistent than existing file data
	Main Memory Persistence
	Information in main memory
	Block cache versus virtual cache�(owned by system, not by applications)
	File caching in main memory measurements
	File caching in main memory �(low-traffic web pages, FreeBSD)
	Recovering WinXP/Linux encrypted files without key
	Experiment 1: Windows/2K/XP EFS
	Experiment 1: create encrypted file
	Experiment 1: search memory dump
	Experiment 2: Linux eCryptfs
	Experiment 2: create encrypted file�(tested with kernel 2.6.15)
	Experiment 2: search memory dump
	Conclusion - recovering encrypted files without key
	Long-term memory persistence
	Trail of secrets across memory�(Chow et al., USENIX Security 2004)
	Short-term memory persistence after process termination (1MB stamp)
	Long-term memory persistence� (Chow et al., USENIX Security 2005)
	Progress in subversion
	Progression in subversion�(also known as rootkits)
	Reflashing for fun and profit
	Conclusion
	Pointers

