

Flaws and Frauds in IDPS evaluation

Dr. Stefano Zanero, PhD

Post-Doc Researcher, Politecnico di Milano CTO, Secure Network

Outline

- Establishing a need for testing methodologies
 - Testing for researchers
 - Testing for customers
- IDS testing vs. IPS testing and why both badly suck
- State of the art
 - Academic test methodologies
 - Industry test methodologies (?)
- Recommendations and proposals

The need for testing

- Two basic types of questions
 Does it work ?
 - If you didn't test it, it **doesn't** work (but it may be pretending to)
 - -How well does it work ?
 - Objective criteria
 - Subjective criteria

Researchers vs. Customers

- What is testing for researchers ?
 - Answers to the "how well" question in an objective way
 - Scientific = repeatable (Galileo, ~1650AD)
- What is testing for customers ?
 - Answers to the "how well" question in a subjective way
 - Generally, very custom and not repeatable, esp. if done on your own network

Relative vs. absolute

- Absolute, objective, standardized evaluation
 - Repeatable
 - Based on rational, open, disclosed, unbiased standards
 - Scientifically sound
- Relative evaluation
 - "What is better among these two ?"
 - Not necessarily repeatable, but should be open and unbiased as much as possible
 - Good for buy decisions

Requirements and metrics

- A good test needs a definition of requirements and metrics
 - -Requirements: "does it work ?"

-Metrics: "how well ?"

- I know software engineers could kill me for this simplification, but who cares about them anyway? :)
- Requirements and metrics are not very well defined in literature & on the market, but we will try to draw up some in the following
- But first let's get rid of a myth...

To be, or not to be...

- IPS ARE IDS: because you need to detect attacks in order to block them... **true!**
- IPS aren't IDS: because they fit a different role in the security ecosystem... **true!**
- Therefore:
 - –A (simplified) does it work test can be the same...
 - –A how well test cannot!
- And the "how well" test is what we really want anyway

Just to be clearer: difference in goals

- IDS can afford (limited) FPs
- Performance
 measured on
 throughput
- Try as much as
 you can to get DR
 higher

- Every FP is a customer lost
- Performance
 measured on
 latency
- Try to have some
 DR with (almost)
 no FP

Anomaly vs. Misuse

- Find out normal behaviour, block deviations
- Can recognize any attack (also 0-days)
- Depends on the metrics and the thresholds
- = you don't know why it's blocking stuff

- Uses a knowledge base to recognize the attacks
- Can recognize only attacks for which a "signature" exists
- Depends on the quality of the rules
- = you know way too well what it is blocking

Misuse Detection Caveats

- It's all in the rules
 - -Are we benchmarking the *engine* or the ruleset ?
 - Badly written rule causes positives, FP?
 - Missing rule does not fire, FN ? - How do we measure coverage ?
 - Correct rule matches attack traffic out-ofcontext (e.g. IIS rule on a LAMP machine), FP ?
 This form of tuning can change everything !
 Which rules are activated ?! (more on this later)
- A misuse detector alone will never catch a zero-day attack, with a few exceptions

Anomaly Detection Caveats

- No rules, but this means...
 - -Training
 - How long do we train the IDS ? How realistic is the training traffic ?
 - -Testing
 - How similar to the training traffic is the test traffic ? How are the attacks embedded in ?
 - -Tuning of threshold
- Anomaly detectors:
- If you send a sufficiently strange, non attack packet, it will be blocked. Is that a "false positive" for an anomaly detector ?
 And, did I mention there is none on the
- market?

An issue of polimorphism

- Computer attacks are polimorph
 - -So what ? Viruses are polimorph too !
 - Viruses are as polimorph as a program can be, attacks are as polimorph as a human can be
 - Good signatures capture the vulnerability, bad signatures the exploit
- Plus there's a wide range of:
 - -evasion techniques
 - [Ptacek and Newsham 1998] or [Handley and Paxson 2001]
 - mutations
 - see ADMmutate by K-2, UTF encoding, etc.

Evaluating polimorphism resistance

- Open source KB and engines
 - Good signatures should catch key steps in exploiting a vulnerability
 - Not key steps of a particular exploit
 - -Engine should canonicalize where needed
- Proprietary engine and/or KB
 - Signature reverse engineering (signature shaping)
 - Mutant exploit generation

Signature Testing Using Mutant Exploits

- **Sploit** implements this form of testing - Developed at UCSB (G.Vigna, W.Robertson) and Politecnico (D. Balzarotti - kudos)
 - Generates mutants of an exploit by applying a number of mutant operators
 - Executes the mutant exploits against target
 - Uses an oracle to verify the effectiveness
- Analyzes IDS results
 Could be used for IPS as well
- No one wants to do that :-)

But it's simpler than that, really

- Use an old exploit – oc192's to MS03-026
- Obfuscate NOP/NULL Sled –s/0x90,0x90/0x42,0x4a/g
- Change exploit specific data

 Netbios server name in RPC stub data
- Implement application layer features – RPC fragmentation and pipelining
- Change shell connection port

 This 666 stuff ... move it to 22 would you ?

• Done

- Credits go to Renaud Bidou (Radware)

Measuring Coverage

- If ICSA Labs measure coverage of anti virus programs ("100% detection rate") why can't we measure coverage of IPS ?
 - -Well, in fact ICSA is trying :)
 - Problem:
 - we have rather good zoo virus lists
 - we do not have good vulnerability lists, let alone a reliable wild exploit list
- We cannot **absolutely** measure coverage, but we can perform **relative** coverage analysis (but beware of biases)

How to Measure Coverage

- Offline coverage testing
 - Pick signature list, count it, and normalize it on a standard list
 - Signatures are not always disclosed
 - Cannot cross compare anomaly and misuse based IDS
- Online coverage testing
 - -We do not have all the issues but
 - -How we generate the attack traffic could somehow influence the test accuracy
- But more importantly... ask yourselves: do we actually care ?
 - Depends on what you want an IPS for

False positives and negatives

- Let's get back to our first idea of "false positives and false negatives"
 - All the issues with the definition of false positives and negatives stand
- Naïve approach:
 - -Generate realistic traffic
 - Superimpose a set of attacks
 - -See if the IPS can block the attacks
- We are all set, aren't we ?

Background traffic

- Too easy to say "background traffic"
 Use real data ?
 - Realism 100% but not repeatable
 - Privacy issues
 - Good for relative, not for absolute
 - -Use sanitized data ?
 - Sanitization may introduce statistical biases
 - Peculiarities may induce higher DR
 - The more we preserve, the more we risk
 - In either case:
 - Attacks or anomalous packets could be present!

Background traffic (cont)

So, let's really generate it

- -Use "noise generation" ?
 - Algorithms depend heavily on content, concurrent session impact, etc.
- -Use artificially generated data ?
 - Approach taken by DARPA, USAF...
 - Create testbed network and use traffic generators to "simulate" user interaction
 - This is a good way to create a **repeatable**, scientific test on solid ground
- -Use no background.... yeah, right
- -What about broken packets ?
 - http://lcamtuf.coredump.cx/mobp/

Attack generation

- Collecting scripts and running them is not enough
 - -How many do you use ?
 - -How do you choose them ?
 - -... do you choose them to match the rules or not ?!?
 - Do you use evasion ?
 - -You need to run them against vulnerable machines to prove your I **P** S point
 - They need to blend in perfectly with the background traffic
- Again: most of these issues are easier to solve on a testbed

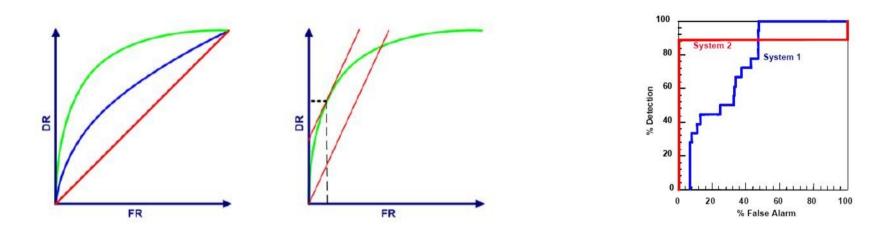
Datasets or testbed tools ?

- Diffusion of datasets has well-known shortcomings
 - Datasets for high speed networks are huge
 - Replaying datasets, mixing them, superimposing attacks creates artefacts that are easy to detect
 - E.g. TTLs and TOS in IDEVAL
 - Tcpreplay timestamps may not be accurate enough
 - Good TCP anomaly engines will detect it's not a true stateful communication
- Easier to describe a testbed (once again)

Generating a testbed

- We need a realistic network...
 - -Scriptable clients
 - We are producing a suite of suitable, GPL'ed traffic generators (just ask if you want the alpha)
 - Scriptable and allowing for modular expansion
 - Statistically sound generation of intervals
 - Distributed load on multiple slave clients
 - -Scriptable or real servers
 - real ones are needed for running the attacks
 - For the rest, Honeyd can create stubs
 - If everything is FOSS, you can just describe the setup and it will be repeatable !

• Kudos to Puketza et al, 1996


Do raw numbers really matter?

© UFS, Inc.

- If Dilbert is not a source reliable enough for you, cfr. Hennessy and Patterson
 - Personally, I prefer to trust Dilbert... kudos to Scott Adams :-)
- Raw numbers seldom matter in performance, and even less in IDS

ROC curves, then !

- Great concept from signal detection, but:
 - -they are painful to trace in real world
 - they are more meaningful for anomaly detectors than misuse detectors
 - Depends, again, on definition of false positive

"performance"...

- But it reads like "speed"
 - If you want to measure "how fast" an IDS is, you once again need to define your question
 - Packets per second or bytes per second (impacts NIC capacity, CPU, and memory bus speed)
 - Number of hosts, protocols and concurrent connections (memory size and memory bus speed, CPU speed)
 - New connections per second (memory bus speed, CPU speed)
 - Alarms per second (memory size, CPU speed, mass storage, network, whatever...)
 - Each metric "measures" different things !

Metrics, metrics

- Throughput ? Delay ? Discarded packets ?
 - On an IPS you want to measure **delay** and eventually discarded packets
 - -On an IDS you want to measure throughput and discarded packets

Models, models...

- In theory, this thing acts like an M/M/1/c finite capacity queue...
 - Arrival process is Poisson (simplification, it actually isn't)
 - Service time is exponential (simplification, it is load-dependent and depends on the number of open connections)

-There is a finite buffer c (this is realistic)

• Delay, rejection, throughput can be statistically computed with simple tests

Queues quirks

- The queueing model also says... — That traffic distribution matters !
 - That traine distribution matters !
 That packets/connections/open connections ratios matter !
 - Packets/bytes ratio matters !
 - We have also verified, as others showed before, that types of packets, rules and checks impact on the service times
- So, all these things should be carefully documented in tests... and you should read them when evaluating other people tests
- And if they don't write down them, just assume the worse

Existing IDS tests

• A bit outdated

- -Puzetzka at UC Davis (oldies but goldies)
- -IBM Zurich labs (God knows)
- -IDEVAL (more on this later) -AFRL evaluations (cool, but not open)
- Current tests (2002-2003...)
 - -NSS group tests http://www.nss.co.uk
 - -Neohapsis OSEC http://osec.neohapsis.com/
 - Miercom Labs/Network World http://www.networkworld.com/reviews/2002/1104rev.html

MIT/LL and IDEVAL

- IDEVAL is the dataset created at MIT/LL

 Only available resource with synthetic traffic
 and full dumps + system audit files
 - -Outdated systems and attacks
 - Very few attack types, in particular hostbased IDS have just basic overflows...
 - -Well known weaknesses in NIDS data:

• TTLs, TOS, source IP, ... all detectable

– IDEVAL has been used by **each** and every researcher in the field (including me), i.e. it has biased all the research efforts since 1998

NSS Tests

- NSS Group tests are perhaps the most famous industry testing ground
- On the whole, not bad, but:
 - -They are non repeatable (since attacks and other parameters are unspecified)
 - Being not really scientific and not really based on a specific scenario, what's their aim
 - -Include lots of qualitative evaluations
 - Use either noise or HTTP traffic for stress testing
 - –Unspecified distribution characters of traffic
 - -Aging attacks and evasions (for what we

Neohapsis / OSEC

- A new pretender on the block
- Good idea, an open, repeatalbe methodology, but:
 - -Not addressing breadth of KB
 - Use either noise or HTTP traffic for stress testing
 - –Unspecified distribution characters of traffic
 - -Not really suitable for anomaly based products

Miercom/Network World

- Less known than the others
- More journalistic than scientific
- Yet, a very good description of the setup, the attacks, and the testing conditions
 - -Still not addressing breadth of KB
 - -Still HTTP traffic for stress testing
 - -Still unspecified distribution characters of traffic
 - But a very very good testing methodology indeed

Existing tests for IPS

- Even less than the ones for IDS!
 - -NSS tests http://www.nss.co.uk
 - -E-week http://www.eweek.com/article2/0,1895,1759490,00.asp
 - Network World http://www.networkworld.com/reviews/2004/0216ips.html http://www.networkworld.com/reviews/2006/091106-ipstest.html
 - Network Computing http://www.networkcomputing.com/showArticle.jhtml?article ID=163700046&pgno=1&queryText=IPS+review

NSS Tests

- NSS Group tests are perhaps the most famous industry testing ground
- On the whole, not bad, but:
 - -They are non repeatable (since attacks and other parameters are unspecified)
 - -Include lots of qualitative evaluations
 - –Use either noise or HTTP traffic for stress testing
 - Unspecified distribution characters of traffic
 - -"resistance to FP" using neutered exploits?! Puh-lease...
 - Evasion techniques one at a time

Network World

- A very good description of the setup, the attacks, and the testing conditions
 - -They already did a good job on IDS
 - No performance test for very good reasons: the vendors cannot even agree on what an IPS is, let alone how to test it for speed
 - A very good testing methodology indeed, very well described
 - Unluckily, just qualitative results... but what can be really expected ?

Network Computing

- A not-so-good description of the setup, the attacks, and the testing conditions
- Still they have performed interesting testing
 - No performance test for very good reasons: the vendors cannot even agree on what an IPS is, let alone how to test it for speed
 - Quantitative results but no good indication of how they were computed

E-week

• Quoting directly:

eWEEK Labs' testbed for <censored> combined an artificial, lab-created Internet connection with **traffic** carried by our ISP.

To get **repeatable**, comparable **results**, we also ran **attack tools** such as the open-source **Nessus** on **network devices** ... Using **predictable attack traffic significantly speeds up proof-of-concept testing**.

Whether you run IPSes in front of or behind firewalls **depends on many factors.**

 My comments will not be written down in order to avoid lawsuits :) but you may guess them by comparing with the previous slides

Conclusions

- Testing IPS is a real, huge mess

 But still, we must do something
- We are still far away from designing a complete, scientific testing methodology
 - But we can say a lot of things on wrong methodologies
- You can and should design customerneed driven tests in house
 Difficult, but the only thing you can do
- In general, beware of those who claim "My IPS is better than yours"

QUESTIONS ?

Thanks for your attention !!!

Feedback/Followup/Insults welcome zanero@elet.polimi.it

Have a look at our website www.securenetwork.it

Bibliography

- Traffic measurements, internet traffic mixes
 - K. Claffy, G. Miller, K. Thompson: The Nature of the Beast: Recent Traffic Measurements from an Internet Backbone http://www.caida.org/outreach/-papers/1998/Inet98/ (1998)
 - S. McCreary, K. Claffy: Trends in Wide Area IP Traffic Patterns: A View from Ames Internet Exchange. http://www.caida.org/outreach/papers/2000/-AIX0005/ (2000)

Polimorphism resistance testing

 G. Vigna, W. Robertson, D. Balzarotti: Testing Networkbased Intrusion Detection Signatures Using Mutant Exploits, ACM CCS 2004

General performance literature

 D. Patterson, J. Hennessy: Computer Organization and Design: the Hardware/Software interface, 3rd ed., Morgan-Kauffman

Bibliography (2)

- General IDS testing literature (no IPS literature exists... sorry ;)
 - M. Hall, K. Wiley: Capacity Verification for High Speed Network Intrusion Detection Systems http://www.cisco.com/en/US/products/hw/vpndevc/ps4077/ prod_technical_reference09186a0080124525.html
 - M. J. Ranum: Experiences benchmarking Intrusion Detection Systems, http://www.snort.org/docs/Benchmarking-IDS-NFR.pdf
 - N. Athanasiades, R. Abler, J. Levine, H. Owen, G. Riley: Intrusion Detection Testing and Benchmarking Methodologies, 1st IEEE International Information Assurance Workshop, 2003
 - P. Mell, V. Hu, R. Lippmann, J. Haines, M. Zissman: An Overview of Issues in Testing Intrusion Detection Systems, NIST – LL/MIT, 2003
 - N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, R. A. Olsson: A Methodology for Testing Intrusion Detection Systems, IEEE Transactions on Software Engineering, 1996