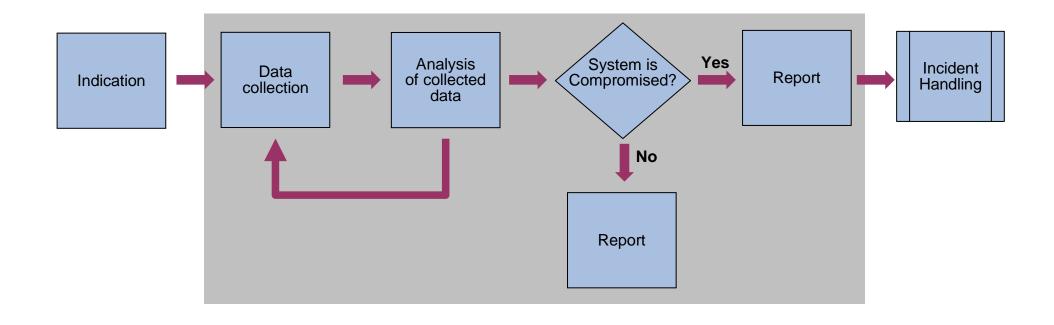
Detecting Intrusions


The latest forensics tools and techniques to identify Windows malware infections

Pär Österberg Medina, Sitic

FIRST Conference 2008 Vancouver, June 2008

About the Tutorial

About the Tutorial

About the Tutorial The Speaker

Pär Österberg Medina

- CISSP, GCIH
- Experienced with Windows and UNIX, penetration testing.
- Now an incident handler with the Swedish Government CERT, <u>SITIC</u>.

About the Tutorial Previous presentations

2006

Sitic – Spring seminar <u>http://www.sitic.se/seminarium/sitics-varseminarium/</u>

SecHeads

T2'06

http://www.t2.fi/schedule/2006/#speech8

Sitic – Seminar about Detecting Intrusions <u>http://www.sitic.se/seminarium/seminarium_dec06/</u>

About the Tutorial Previous presentations

2007

Sitic – Seminar about Detecting Intrusions

http://www.sitic.se/seminarium/seminarium_feb07/

IP-dagarna

http://oldweb.iis.se/Internetdagarna/2006/22-forensics/forensics.shtml

Susec

http://www.susec.sunet.se/susec/Susecv07/

About the Tutorial Previous presentations

FIRST2007

"Forensic Tools and Techniques to Examine Microsoft Windows"

Andreas Schuster - Deutche Telekom <u>http://computer.forensikblog.de/en/</u>

Course outline

- Present methods and techniques an organization can use in order to build a framework which can be used to;
 - Detect a potential computer intrusion or rule it off as a false positive
 - Malware that do not try to hide itself
 - Malware that try to hide itself
 - Detect IT-policy violations

Objective

- The attendees should have a good knowledge of which methods and techniques to use when investigating a suspected computer intrusion
- Memory acquisition and analysis should be a standard part of your incident investigation
- Everybody in this classroom should have come to the conclusion themselves, that an automated method for both collecting and analyzing data is needed when investigating a computer system that is suspected of an intrusion.

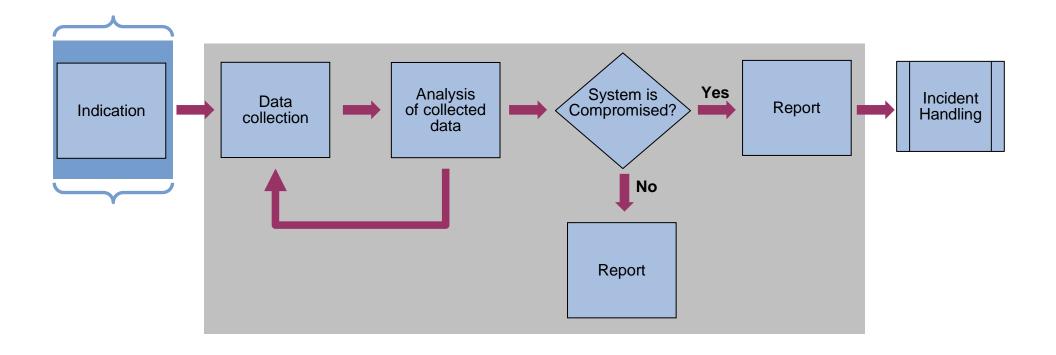
Agenda

- Description of the Method
- Data Collection
 - First Responder's Toolkit
 - Order of Volatility
 - Collecting volatile and non volatile data
- Data Analysis
 - Analyzing the data we collected
 - Exercise: Is the system compromised?

What is this course not about

- This is not a course on traditional disk forensics
 - We do not know yet if the system has been compromised which might cause a problem when we have to convince the system owners that a shutdown of the system is necessary
- I will not present a silver bullet solution that will solve all your problems when it comes to live system forensic and incident response
- This course is also not about releasing a the "holy graal" tool

People how have contributed to this course


Andreas Schuster - Deutche Telekom <u>http://computer.forensikblog.de/en/</u>

Big thanks to

George M. Garner - GMG Systems, Inc. <u>http://www.gmgsystemsinc.com/knttools/</u>

Description of the Method

Why we do the things we do

Weigh potential damage vs. workload

- Resources
 - How many hours do we have to spend on investigating a potential intrusion?
 - We do not know if the system has been compromised at this point

Knowledge

Do we have experienced Incident Handlers on site?

• Who can perform a forensic investigation of the system?

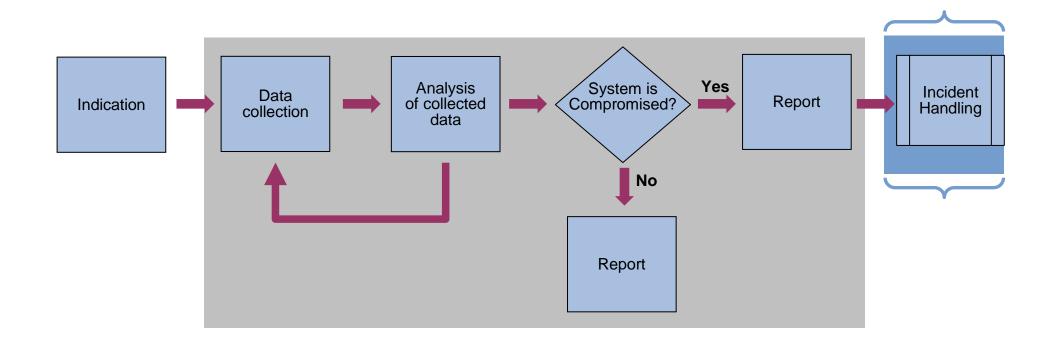
Automated procedure for collecting and analyzing data (1)

- Script language for automation Needs to be portable in the data collection part
 - Windows Batch preferable before RAM have been collected
 - Perl, Python or equivalent after the memory have been collected

Automated procedure for collecting and analyzing data (2)

Command Line Interface (CLI)

Touches less on the system that we are investigating


Easier to script

Description of the Method

Why we do the things we do

Automated procedure for collecting and analyzing data (3)

- Publicly available programs
 - Less resources needed to develop tools
 - The programs get updated as new versions of Windows get released

Leave minimal footprint on the system (1)

Do not write or delete files on the hard drive

Avoid changing any time attributes of the files

→ Or at least save them!

Leave minimal footprint on the system (2)

Do not make the analysis on the same system that we are investigating

⇒ Will change timestamps and write files to the hard drive

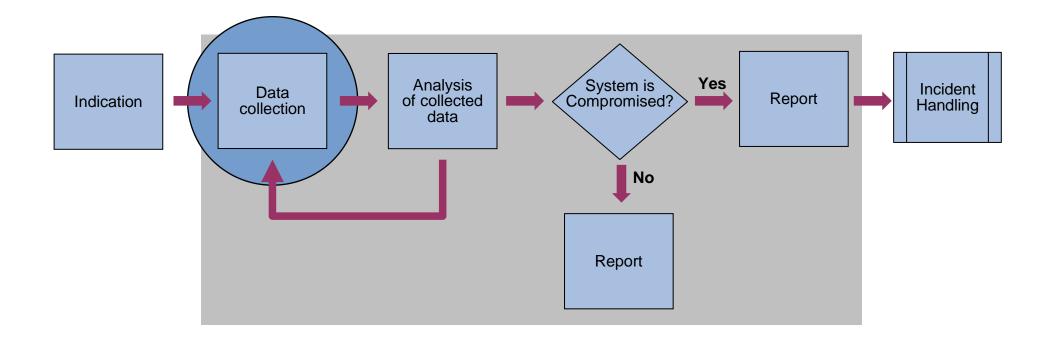
The system can be infected and therefore hiding data from us

Description of the Method

Why we do the things we do

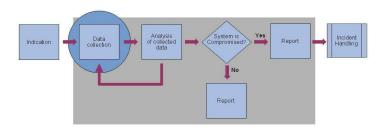
Document what is being done to the system

Sitic Sveriges IT-incidentcentrum		Handläggare: System Datum: Kommentar:		
Tidpunkt	Utförd handling/kommando		Kommentar	


Data has precedence over the integrity of the system

With no data collected there can be no analysis hence the question if the system has been compromised remains unanswered

Conclusions


- By using an automated method for collection and analysis, we can;
 - Reduce the workload for the discovery of an incident
 - Reduce the knowledge needed by the person that is collecting the data
- Data from an active system is needed if we are to answer the question: Is the system compromised or not?
- Data from an active system can facilitate a full blown computer forensic investigation

Data Collection

Data Collection

First Responder's Toolkit

What is the First Responder's Toolkit? (1)

Write protected media that contains all the program and script needed to acquire the data

→CDROM

• Write protected be default

→USB

- USB-key write protection switch
- USB write blocker
- U3 write protected CDROM emulation

What is the First Responder's Toolkit? (2)

- Trusted binaries with program that we will execute on the system
 - Checked against the right system version, patch level and architecture
 - Add a suffix or prefix (trusted_cmd.exe)
 - Avoid executing the wrong binary by mistake
 - Easier to separate our trusted binaries when we analyze the data
 - Avoid anti-forensic techniques Mailbot.AZ (aka Rustock.A) - (BlackLight, Rootkitrevealer, Rkdetector) <u>http://www.f-secure.com/v-descs/mailbot_az.shtml</u>

What is the First Responder's Toolkit? (3)

Trusted binaries with program that we will execute on the system

Change checksums

- of the whole file (manipulate strings, add extra data)
- of .text sections (ADMmutate or Hydan)

Avoiding the use of system wide DLLs (1)

We do not want to use the systems own DLLs since

⇒ We do not want to touch the timestamps

→ We can not trust the systems own DLL-files

L trusted_fport.e:3032	QUERY INFORMATION	C:\seminarium\trusted_fport.exe	SUCCESS FileNameInformation
trusted_fport.e:3032	OPEN	C:\WINDOWS\Prefetch\TRUSTED_FPORT.EXE-01820E72.pf	NOT FOUND Options: Open Access: All
trusted_fport.e:3032	OPEN	C:\seminarium	SUCCESS Options: Open Directory Access: Traver
trusted_fport.e:3032	QUERY INFORMATION	C:\seminarium\trusted_fport.exe.Local	NOT FOUND Attributes: Error
L trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 94208 Length: 16384
trusted fport.e:3032	QUERY INFORMATION	C:\seminarium\PSAPI.DLL	NOT FOUND Attributes: Error
trusted_fport.e:3032	QUERY INFORMATION	C:\WINDOWS\system32\PSAPI.DLL	SUCCESS Attributes: A
trusted_fport.e:3032	OPEN	C:\WINDOWS\system32\PSAPI.DLL	SUCCESS Options: Open Access: Execute
trusted_fport.e:3032	CLOSE	C:\WINDOWS\system32\PSAPI.DLL	SUCCESS
trusted_fport.e:3032	QUERY INFORMATION	C:\seminarium\WS2_32.dll	NOT FOUND Attributes: Error
trusted_fport.e:3032	QUERY INFORMATION	C:\WINDOWS\system32\WS2_32.dll	SUCCESS Attributes: A
trusted_fport.e.3032	OPEN	C:\WINDOWS\system32\WS2_32.dll	SUCCESS Options: Open Access: Execute
trusted_fport.e:3032	CLOSE	C:\WINDOWS\system32\WS2_32.dll	SUCCESS
trusted_fport.e:3032	QUERY INFORMATION	C:\seminarium\WS2HELP.dll	NOT FOUND Attributes: Error
trusted_fport.e:3032	QUERY INFORMATION	C:\WINDOWS\system32\WS2HELP.dll	SUCCESS Attributes: A
trusted_fport.e.3032	OPEN	C:\WINDOWS\system32\WS2HELP.dll	SUCCESS Options: Open Access: Execute
trusted_fport.e:3032	CLOSE	C:\WINDOWS\system32\WS2HELP.dll	SUCCESS
trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 57344 Length: 32768
L trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 110592 Length: 4096
trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 24576 Length: 32768
L trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 4096 Length: 20480
trusted_fport.e:3032	READ	C:\seminarium\trusted_fport.exe	SUCCESS Offset: 90112 Length: 4096
trusted_fport.e:3032	QUERY INFORMATION	C:\seminarium\iphlpapi.dll	NOT FOUND Attributes: Error
trusted_fport.e:3032	QUERY INFORMATION	C:\WINDOWS\system32\iphlpapi.dll	SUCCESS Attributes: A
trusted_fport.e.3032	OPEN	C.\WINDOWS\system32\iphlpapi.dll	SUCCESS Options: Open Access: Execute
trusted_fport.e:3032	CLOSE	C:\WINDOWS\system32\iphlpapi.dll	SUCCESS
trusted_fport.e:3032	CLOSE	C:\seminarium	SUCCESS

Avoiding the use of system wide DLLs (2)

- Standard Search Order <u>http://msdn2.microsoft.com/en-us/library/ms682586(VS.85).aspx</u>
 - 1. The directory specified by lpFileName
 - 2. The current directory (disabled in SafeDIISearchMode)
 - 3. The system directory. Use the GetSystemDirectory function to get the path of this directory
 - 4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched
 - 5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory
 - The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the 30 App Paths registry key

Avoiding the use of system wide DLLs (3)

Put the DLL files in the same directory

Lusted_fport.e:3044	OPEN	C:\SEMINARIUM\FPORT\TRUSTED_FPORT.EXE	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\SEMINARIUM\FPORT\TRUSTED_FPORT.EXE	SUCCESS	Length: 114688
trusted_fport.e:3044	OPEN	C:\SEMINARIUM\FPORT\PSAPI.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 0 Length: 24576
trusted_fport.e:3044	QUERY INFORMATION	C:\SEMINARIUM\FPORT\PSAPI.DLL	SUCCESS	Length: 23040
trusted_fport.e:3044	OPEN	C:\SEMINARIUM\FPORT\WS2_32.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 0 Length: 32768
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 53248 Length: 32768
trusted_fport.e:3044	QUERY INFORMATION	C:\SEMINARIUM\FPORT\WS2_32.DLL	SUCCESS	Length: 82944
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\MSVCRT.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\WINDOWS\SYSTEM32\MSVCRT.DLL	SUCCESS	Length: 343040
trusted_fport.e:3044	OPEN	C:\SEMINARIUM\FPORT\WS2HELP.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 0 Length: 20480
trusted_fport.e:3044	QUERY INFORMATION	C:\SEMINARIUM\FPORT\WS2HELP.DLL	SUCCESS	Length: 19968
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\ADVAPI32.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\WINDOWS\SYSTEM32\ADVAPI32.DLL	SUCCESS	Length: 616960
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\RPCRT4.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\WINDOWS\SYSTEM32\RPCRT4.DLL	SUCCESS	Length: 581120
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\CTYPE.NLS	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\WINDOWS\SYSTEM32\CTYPE.NLS	SUCCESS	Length: 8386
trusted_fport.e:3044	OPEN	C:\SEMINARIUM\FPORT\IPHLPAPI.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 0 Length: 32768
trusted_fport.e:3044	READ	C:	SUCCESS	Offset: 65536 Length: 32768
trusted_fport.e:3044	QUERY INFORMATION	C:\SEMINARIUM\FPORT\IPHLPAPI.DLL	SUCCESS	Length: 94720
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\USER32.DLL	SUCCESS	Options: Open Access: All
trusted_fport.e:3044	QUERY INFORMATION	C:\WINDOWS\SYSTEM32\USER32.DLL	SUCCESS	Length: 577024
trusted_fport.e:3044	OPEN	C:\WINDOWS\SYSTEM32\GDI32.DLL	SUCCESS	Options: Open Access: All

Avoiding the use of system wide DLLs (4)

Put the DLL files in the same directory

Dynamic Link Library Redirection <u>http://msdn2.microsoft.com/en-us/library/ms682600(VS.85).aspx</u>

- A file named just as the binary itself plus a suffix of '.local' causes Windows to check the application directory first whenever it loads a DLL, regardless of the path specified to LoadLibrary or LoadLibraryEx.
- As of Windows XP a directory named as the binary plus a suffix of 'local' can be used for even more flexibility

Avoiding the use of system wide DLLs (5)

Put the DLL files in the same directory

Dynamic Link Library Redirection

trusted_fport.e:4084	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local	SUCCESS	Attributes: D
System:4	IRP_MJ_QUERY_INFO	C:\seminarium\fport\trusted_fport.exe	SUCCESS	FileNameInformation
trusted_fport.e: 4084	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	Attributes: A
	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	Attributes: A
trusted_fport.e:4084	IRP_MJ_CREATE	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	Options: Open Access: Execute
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\psapi.dll	SUCCESS	
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	
System:4	IRP_MJ_QUERY_INFO	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	FileNameInformation
trusted_fport e 4084	FASTIO_QUERY_OPEN FASTIO_QUERY_OPEN	C.\seminarium\fport\trusted_fport.exe.Locaf\W/S2_32.dll C.\seminarium\fport\trusted_fport.exe.Locaf\W/S2_32.dll	SUCCESS	Attributes: A Attributes: A
trusted_fport.e:4084	IRP_MJ_CREATE	C:\seminarium\fport\trusted_fport.exe.Local\WS2_32.dll	SUCCESS	Options: Open Access: Execute
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\ws2_32.dll	SUCCESS	
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\WS2_32.dll	SUCCESS	
System:4	IRP_MJ_QUERY_INFO	C:\seminarium\fport\trusted_fport.exe.Local\ws2_32.dll C:\seminarium\fport\trusted_fport.exe.Local\wS2_32.dll	SUCCESS	FileNameInformation
trusted_tport.e:4084	FASTIO_QUERY_OPEN	C.\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	Attributes: A
	FASTIO_QUERY_OPEN	C.\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	Attributes: A
trusted_fport.e:4084	IRP_MJ_CREATE	C:\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	Options: Open Access: Execute
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\ws2help.dll	SUCCESS	
trusted_fport.e:4084	IRP_MJ_CLOSE	C:\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	
System:4	IRP_MJ_QUERY_INFO	C:\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	FileNameInformation
	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	Attributes: A
trusted_fport.e:4084	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\WS2_32.dll	SUCCESS	Attributes: A
trusted_fport.e:4084	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\WS2HELP.dll	SUCCESS	Attributes: A
trusted_fport.e:4084	FASTIO_QUERY_OPEN	C:\seminarium\fport\trusted_fport.exe.Local\PSAPI.DLL	SUCCESS	Attributes: A

Avoiding the use of system wide DLLs (6)

Put the DLL files in the same directory

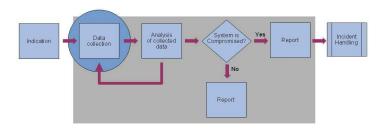
Dynamic Link Library Redirection

Edit the PE-header

PSAPI.DLL: 'EnumProcessModules'

i trusted_fport.exe 1 r0001a852 r0001a852 PSAPI.DLL:hint0012 _0001a600 r0001a600 v0041a600 rva_lookup r0001a784 _0001a604 r0001a604 v0041a604 timestamp 0000000 _0001a608 r0001a608 v0041a608 forwarder 00000000 _0001a60c r0001a60c v0041a60c rva_dllname r0001a888 _0001a610 r0001a610 v0041a610 rva_address r00017134 i trusted_fport.exe 0 r8000000f WS2_32.dll:ord0015 _0001a614 r0001a614 v0041a614 rva_lookup r0001a660 _0001a618 r0001a618 v0041a618 timestamp 0000000 _0001a61c r0001a61c v0041a61c forwarder 0000000 _0001a620 r0001a620 v0041a620 rva_dllname r0001a99e _0001a624 r0001a624 v0041a624 rva_address r00017010

Avoiding the use of system wide DLLs (7)


Does not work on "Known DLLs"

Edit View Favorites He		The second	- Company
ServiceGroupOr(ServiceProvider	Name	Туре	Data
20	(Default)	REG_SZ	(value not set)
Session Manager	advapi32	REG_SZ	advapi32.dll
AppCompacing AppPatches	ab) comdlg32	REG_SZ	comdlg32.dll
DOS Devices	ab DlDirectory	REG_EXPAND_SZ	%SystemRoot%\system3
	ab gdi32	REG_SZ	gdi32.dll
	and imagehlp	REG_SZ	imagehlp.dll
	💩 kernel32	REG_SZ	kernel32.dll
	ab 1232	REG_SZ	Iz32.dll
KnownDLLs	ab ole32	REG_SZ	ole32.dll
🕀 🧰 Memory Mar	ab oleaut32	REG_SZ	oleaut32.dll
Power	ab olecli32	REG_SZ	olecli32.dll
- 🛅 SFC	abolecnv32	REG_SZ	olecnv32.dll
🕞 🧰 SubSystems 📺	ab olesvr32	REG_SZ	olesvr32.dll
🕘 Setup	ab olethk32	REG_SZ	olethk32.dll
🗄 🦲 StillImage	ab)rpcrt4	REG_SZ	rpcrt4.dll
🗄 🦲 SystemResource 🚽	ab shell32	REG_SZ	shell32.dll
🗄 🦲 Terminal Server	aburl	REG_SZ	url.dll
- 🣃 TimeZoneInform	aburlmon	REG_SZ	urlmon.dll
Update	abjuser32	REG_SZ	user32.dll
UsbFlags	ab version	REG_SZ	version.dll
B I Video VirtualDeviceDriv	abwininet	REG_SZ	wininet.dll
	ab wldap32	REG_SZ	widap32.dll
	KIL		

Data Collection

First Responder's Toolkit

Exercise 1

Auto starting the data collection (1)

CDROM

Autorun.inf

[autorun]

open=trusted_cmd.exe

Auto starting the data collection (2)

Non flash-3-tier USB

⇒autorun.inf

USB flash-3-tier

⇒U3

→ Flex-IT

Starting a shell that we trust

Validate a command prompt that is already on the machine

Compare with list of known checksums of cmd.exe

Use a portable system independent shell that is a part of our Toolkit

→ Cygwin

- ⇒SFU (Services for Unix)
- Portable Command Prompt (Portable Apps)

Run our shell with Administrator privileges

- Almost all of the data collection needs to be done with Administrator privileges
- Do not log off or switch user!

Escalating the current user to Administrator (1)

runas.exe, WinSudo, Sudo for Windows

Depends on the "Secondary Logon" Service

Temporally add the current user to the Local Administrator group, execute our shell and the remove the user from the group.

Sudo for Windows by Reinhard Tchorz <u>http://www.rt-sw.de/en/freeware/freeware.html</u>

Escalating the current user to Administrator (2)

Windows Vista – User Account Control (UAC)

Consent Prompt - User is administrator

Credential Prompt – User is not administrator

Network based communication with the Analysis Server (1)

Netcat

→ "nc.exe -l -p 4000 > evidence.txt"

"command | nc analys.sitic.se 4000"

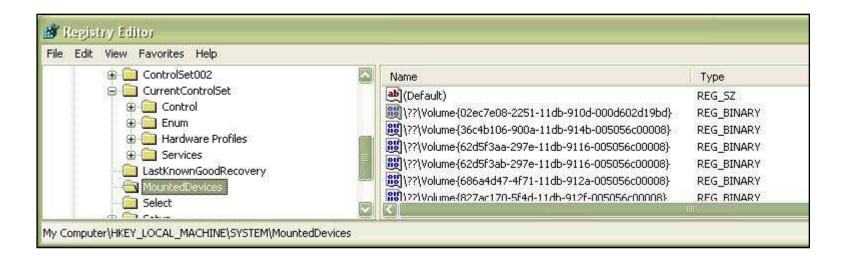
SMB

"command > \\analys.sitic.se\share\evidence.txt"

TFTP, FTP, HTTP (WebDav, POST or PUT)

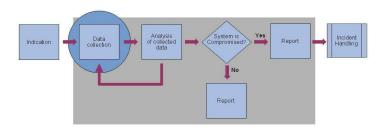
Network based communication with the Analysis Server (2)

Is the communication port blocked?


Personal Firewall rules might be needed to be changed

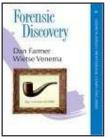
Corporate Firewall rules might also be needed to be changed

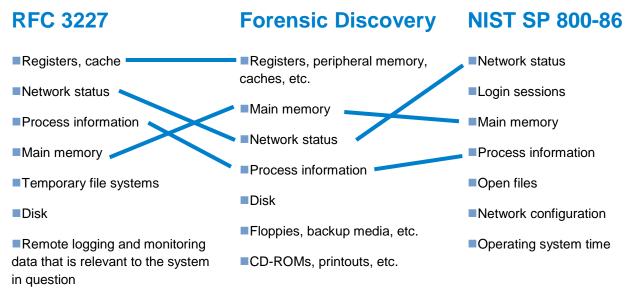
Local communication with the Analysis Server


External USB or FireWire hard drives

Changes integrity of the system

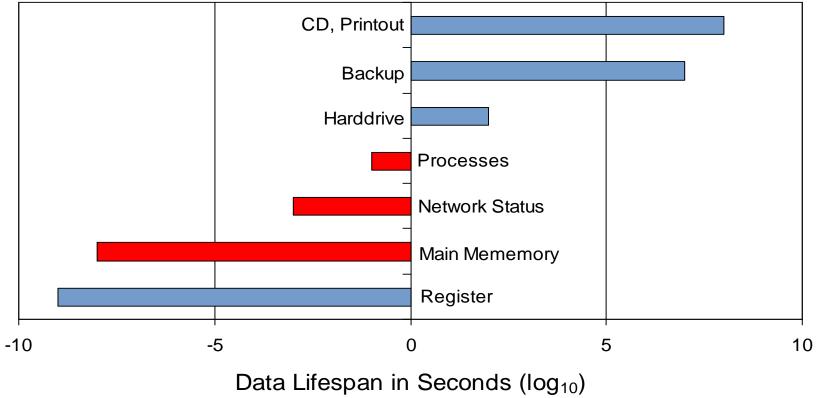
Data Collection


Order of Volatility


Best Practice: Collection of data in the "order of volatility"

- 2002: RFC 3227 Guidelines for Evidence Collection and Archiving
- 2004: Dan Farmer and Wietse Venema Forensic Discovery
- 2006: NIST Special Publication 800-86 Guide to Integrating Forensic Techniques into Incident Response

Current practice: Pull the plug!



What is the proper order of volatility?

Physical configuration, network topology

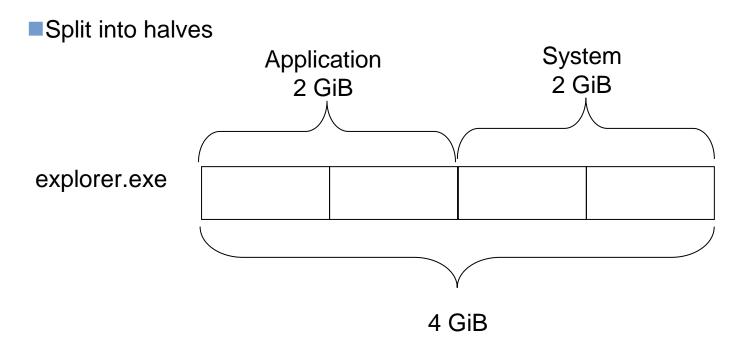
Archival media

according to Venema and Farmer (2004)

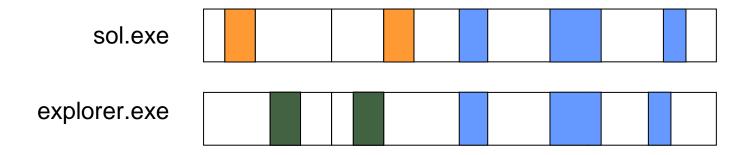
Action	% RAM ເ	% RAM unchanged							
	256 MB RAM	512 MB RAM							
Start	100.0	100.0							
Idle for 1 hour	90.4	96.7							
Idle for 2 hours	79.7	96.1							
run dd from Helix CD	76.9	89.8							
Idle for 15 hours	74.8	85.6							
run WFT from Helix CD	67.2	69.4							

Effects on main memory, according to Walters and Petroni (2006)

Concepts of Memory

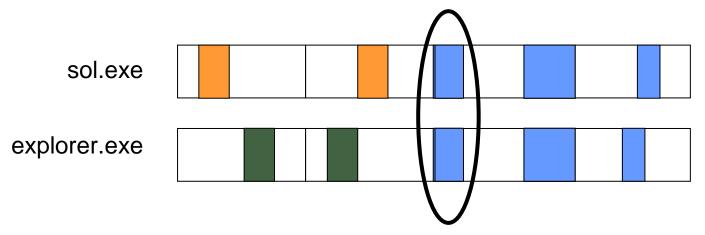

- Physical memory is the short-term memory of a computer.
- Rapid decay of information as soon as memory module is disconnected from power and clock sources.
 - More on the rapid decay later!

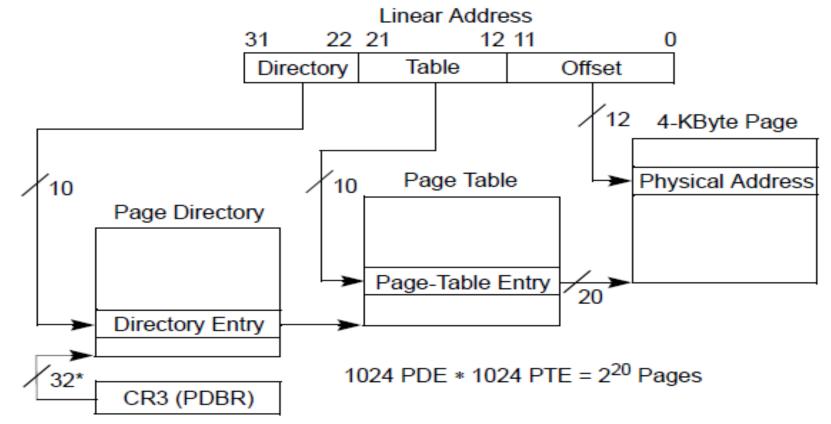
Physical vs. Virtual Memory (1)


4 GiB of (virtual) address space per process

Physical vs. Virtual Memory (2)

Physical memory is divided into so called "pages".


Allocated virtual memory is mapped onto physical memory page by page.



Physical vs. Virtual Memory (3)

The same page of physical memory can appear at different locations within the same address space or in different address spaces.

x86 and 4k page

*32 bits aligned onto a 4-KByte boundary.

Page Directory and Page Table

Page Directory:

Provides a bird's eye view of a process' the virtual address space.

→ States whether a page is 4 kiB or 2/4 MiB.

Page Table:

States whether the page is valid or invalid.

Page Frame Number (physical address / 0x1000)

x86, Page Directory Entry

31	12	11	9	8	7	6	5	4	3	2	1	0
Page-Table Base Address		Ava	ail	G	ΡS	0	А	P C D	PW⊤	U / S	R / W	Ρ
Available for system programmer's use Global page (Ignored) Page size (0 indicates 4 KBytes) Reserved (set to 0) Accessed Cache disabled Write-through User/Supervisor Read/Write Present												

Important Flags

■<u>P</u>resent, bit 0

- 0 = page is not readily accessible in physical memory, triggers a Page Fault Exception (#PF)
- \Rightarrow 1 = page is accessible
- → also known as <u>V</u>alid flag (Microsoft Windows)

■<u>P</u>age <u>S</u>ize, bit 7

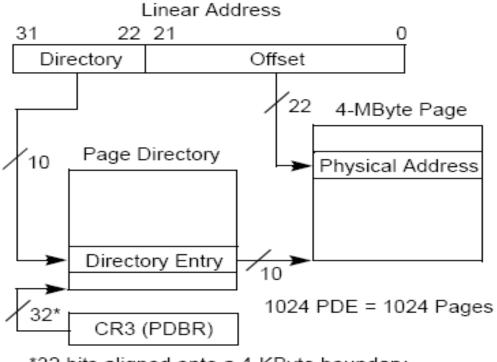
- \Rightarrow 0 = page size is 4k, go through Page Table
- \rightarrow 1 = page size is 4M, direct access to page

Invalid Pages in Microsoft Windows

Proper response to a #PF exception is up to the operating system.

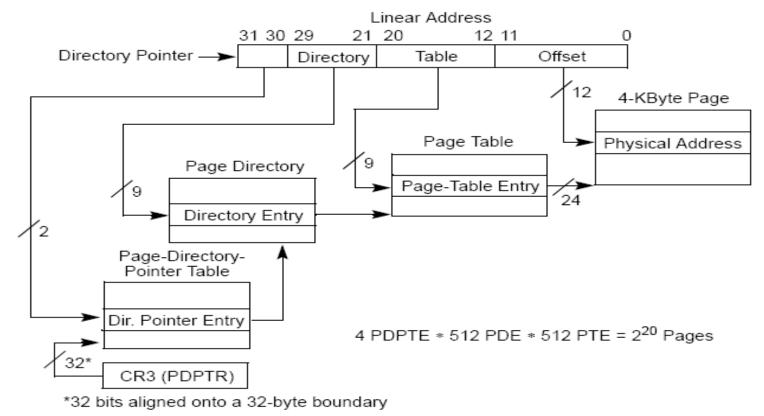
Types of invalid pages:

- Swap: The page has been moved into a page file.
- Demand Zero: Return a page filled with NULL bytes.
- Transition: The page is kept in either one of the modified, written (standby) or free pages lists.
- Prototype: The page is accessed from different processes. The processes do not reference the desired memory page, but a prototype PTE. The prototype then points to the final page (similar to a symlink).

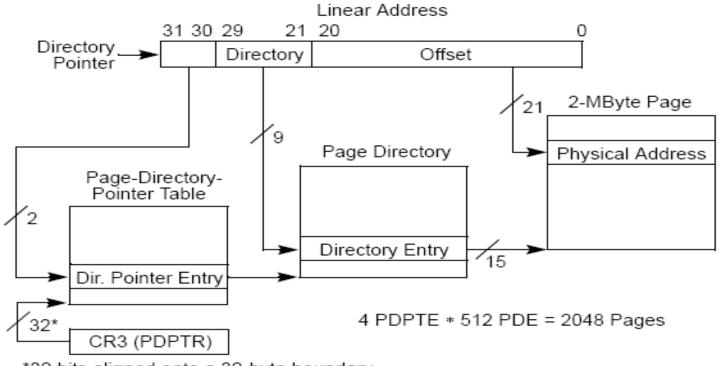

Invalid pages may exist in physical memory! (Jesse Kornblum, 2007)

Further Reading

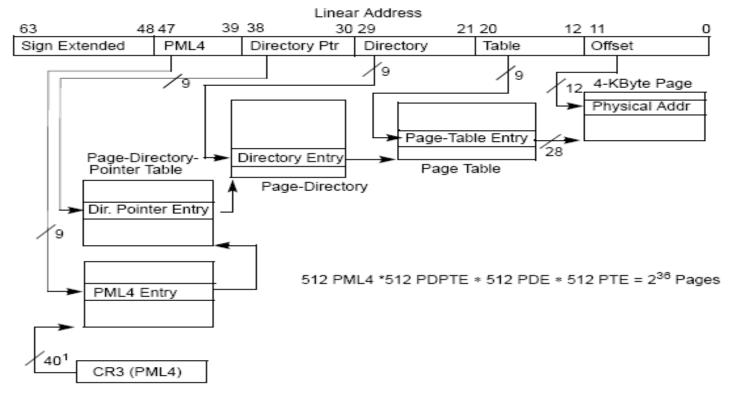
For details on addressing, page directories and page tables please see:


- Russinovich and Salomon "Windows Internals", 4th ed., chapter 7.
- Intel® 64 and IA-32 Architectures Software Developer's Manual <u>http://www.intel.com/products/processor/manuals</u>
- "Using Every Part of the Buffalo in Windows Memory Analysis" by Jesse Kornblum (2007) <u>http://jessekornblum.com/research/papers/buffalo.pdf</u>

x86 and 4M page

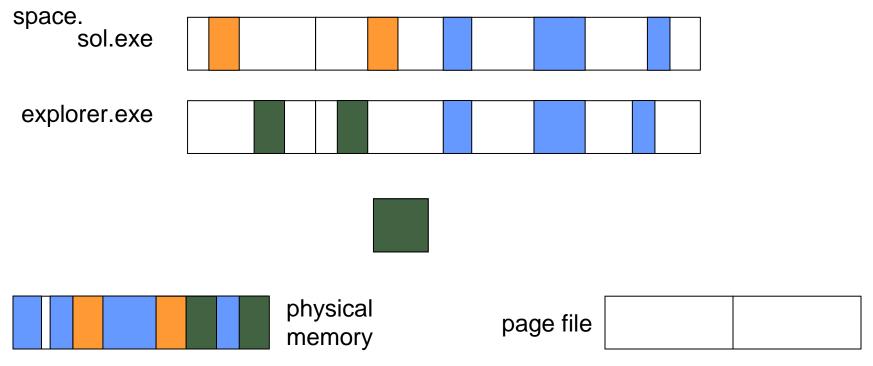


*32 bits aligned onto a 4-KByte boundary.


x86, PAE and 4k pages

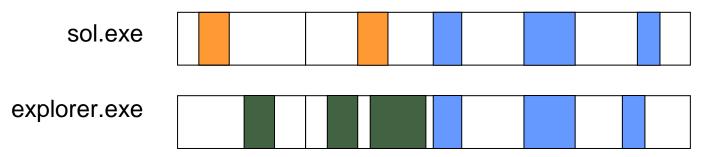
x86, PAE (2M pages)

*32 bits aligned onto a 32-byte boundary


IA-32e (64bit architecture), 4k pages

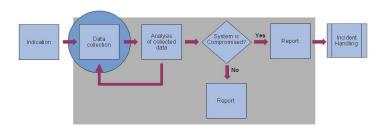
NOTES:

1. 40 bits aligned onto a 4-KByte boundary


Page file

Data can be moved from physical memory into a page file to clear some

Freed pages


Memory does not get over written when it is marked as free

Data Collection

Main Memory

Data Collection Main Memory

Classification of Methods

- Access to main memory pure hardware vs. software
- Time of installation prior to incident vs. post incident
- Required privileges user vs. administrator

- Impact on system in vivo vs. post mortem
- Atomicity of image
- Image file format raw vs. Microsoft crash dump

Data Collection Main Memory

Access to Main Memory

Software

- Affects CPU, memory, kernel and drivers.
- Can easily be fooled.
- Costs mainly driven by license.
- Easy to deploy and maintain in a corporate environment.
- Low atomicity of resulting image

Pure Hardware

- Does not utilize the CPU.
- Usually requires extra hardware, FireWire might be an exception.
- Installation requires significant time (more costs).
- Trusted access to memory? Rutkowska attack on DMA
- Higher atomicity of resulting image.

Data Collection Main Memory

Installation

prior to incident

- Installation required prior to the incident.
- Usually requires a reboot.
- Does not tamper with evidence.
- Permanently adds (privileged) code to system, increases exposure to attacks.

post incident

- Installation possible after the incident occurred.
- Could interfere with evidence.
- "Installed" only as long as needed.

Required Privileges

Unprivileged

- User-level access.
- No (secondary) logon required.
- Minimized impact on evidence.

Privileged

- Administrator / SYSTEM privileges.
- Requires either installation prior to incident or (secondary) logon.
- High impact on evidence in case of a (secondary) logon.

Impact on system

Low

- in-vivo: system continues to work.
- Degraded performance during imaging, reverts to normal afterwards.
- Generally should be safe even on servers.
- Low atomicity of resulting image.

High

- post-mortem: system forced to crash.
- System out of service for time required to obtain the dump and reboot. Extra time may be required to restore functionality afterwards.
- Acceptable only for clients. Generally best choice under lab conditions.
- High atomicity of resulting image.

Atomicity of Image

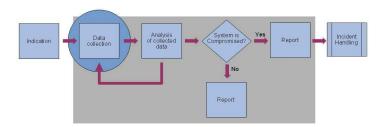
Low

- "blurred" image.
- Inconsistent state; may confuse tools and examiners (e.g. dangling pointers).
- Significant problem for analysis of user data.
- Low impact on analysis of kernel data.

High

- "crisp" image.
- Consistent state.
- Usually difficult to achieve..

Dump file format


Raw

- 1:1 copy of physical memory.
- offset == physical address
- Several proof-of-concept tools only operate on this format.

Crashdump

- Extension .DMP
- CPU state information
- One or many blocks of physical memory.
- Holes, e.g. Bios, DMA, AGP video.
- Extra data from devices that use nt!KeRegisterBugCheckReasonCall back.
- Microsoft Tools require this format.

Main Memory- Tools and Techniques

Main Memory - Tools and Techniques

Dedicated Hardware - Tribble

by Brian Carrier and Joe Grand (2004) <u>http://www.digital-evidence.org/papers/tribble-preprint.pdf</u>

PCI add-in card

- HLT to CPU
- DMA busmaster
- Output via RS-232
- NOT available.

Dedicated Hardware - Copilot

by Komoku

- Paper presented at 14th USENIX Security Symposium, 2004. <u>http://www.usenix.org/events/sec04/tech/full_papers/petroni/petroni.pdf</u>
- PCI add-in card with single-board microcomputer
- DMA
- Evaluates kernel data structures while the (host) system is running.
- NOT available to the public.

Main Memory - Tools and Techniques

FireWire (1)

Dornseif and Becher (2004)

Owned by an iPod <u>http://md.hudora.de/presentations/firewire/PacSec2004.pdf</u>

Hacking with Fire

http://md.hudora.de/presentations/firewire/2004-firewire-21c3.pdf

Boileau (2006)

http://www.security-assessment.com/files/presentations/ ab_firewire_rux2k6-final.pdf

FireWire (2)

- OHCI controller can read and write the first 4 GiB of main memory
- Quinn "The Eskimo" (2003) FireStarter modifies video memory of connected Mac
- Dornseif and Becher (2004) 0wned by an iPod <u>http://md.hudora.de/presentations/firewire/PacSec2004.pdf</u>

Boileau (2006) "Hit by a Bus:Physical Access Attacks with Firewire" <u>http://www.security-assessment.com/files/presentations/</u> <u>ab_firewire_rux2k6-final.pdf</u>

FireWire - Drawbacks

- Frequently found on laptops, but it's rare on desktops.
- Unexpected hang (Vidstrom 2006) <u>http://www.ntsecurity.nu/onmymind/2006/2006-09-02.html</u>
- Memory access can be controlled by malicious software (Rutkowska 2007)
- If the examiner can access the suspect, can the suspect access the examiner also?

Main Memory - Tools and Techniques

FireWire - Characteristics

- Access to main memory hardware
- Time of installation post incident
- Required privileges physical access

- Impact on system low
- Atomicity of image low
- Image file format raw

dd

- Most popular method in literature.
- Windows makes physical memory accessible through the \\.\PhysicalMemory and \\.\DebugMemory devices. Copy from device to file.

Main Memory - Tools and Techniques

dd - Implementations

- Port by George. M. Garner Jr. http://users.erois.com/gmgarner/forensics/
- X-Ways Capture (does a lot of other things, too) <u>http://www.x-ways.com/capture/</u>

dd - Drawbacks

- Cache coherency on Windows 2000 (Vidstrom 2006) <u>http://www.ntsecurity.nu/onmymind/2006/2006-06-01.html</u>
- Devices are not accessible from userland on Windows 64bit, Windows Server 2003 SP 1 and Vista for security reasons.

load your own driver or use symlinks

Main Memory - Tools and Techniques

dd - Characteristics

- Access to main memory software
- Time of installation post incident
- Required privileges administrator

- Impact on system low
- Atomicity of image low
- Image file format raw

Main Memory - Tools and Techniques

KnTDD

by GMG Systems, Inc. (George M. Garner Jr) <u>http://www.gmgsystemsinc.com/knttools/</u>

Accesses physical memory through a driver.

Also obtains for later analysis

kernel and network driver binaries

system status as seen from userland

Enterprise edition allows for digitally signed work packages and encrypted evidence.

Main Memory - Tools and Techniques

KnTDD - Characteristics

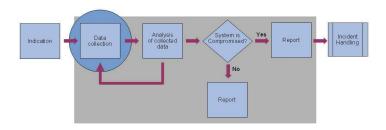
- Access to main memory software
- Time of installation post incident
- Required privileges administrator

- Impact on system low
- Atomicity of image low
- Image file format raw and dmp at the same time

Main Memory - Tools and Techniques

ManTech's Memory DD

- By ManTech International Corporation <u>http://www.mantech.com/msma/MDD.asp</u>
- Accesses physical memory through a driver.
- Free version available on SourceForge


ManTech's Memory DD - Characteristics

- Access to main memory software
- Time of installation post incident
- Required privileges administrator

- Impact on system low
- Atomicity of image low
- Image file format raw

Main memory

Exercise 2

Main Memory - Tools and Techniques

Agent based tools

- The one who hooks first, stays.
- The one who hooks deeper, stays.
- Products:
 - WetStone LifeWire Investigator <u>http://www.wetstonetech.com/</u>
 - Technology Pathways ProDiscover IR <u>http://www.techpathways.com/ProDiscoverIR.htm</u>
 - Guidance Software EnCase Enterprise <u>http://www.encase.com/products/ee_index.aspx</u>
 - Agile RiskManagement Nigilant32 (free) <u>http://www.agilerm.net/publications_4.html</u>

Main Memory - Tools and Techniques

Agent based tools - Characteristics

- Access to main memory software
- Time of installation pre incident
- Required privileges administrator (installation) unprivileged (activation)

- Impact on system low
- Atomicity of image low
- Image file format raw

LiveKD

- Microsoft's Debugger (kd, WinDbg) can't dump memory on a kernel local connection.
- LiveKD presents live physical memory like a static dump file.
- Requires MS Debugger, LiveKd and a minimum set of debug symbols (PDB) for kernel and HAL.
- Exact software versions must be known prior to memory acquisition!
- From the debugger prompt run .dump /f filename

Main Memory - Tools and Techniques

LiveKD - Characteristics

- Access to main memory software
- Time of installation pre incident
- Required privileges administrator

- Impact on system low
- Atomicity of image low
- Image file format dmp

Forced Crash

- Configure system to create a dump on crash.
- Provide means to force a crash.
- Make system crash when needed.
- What happens?
 - Upon boot: creates dedicated copy of miniport storage driver, named dump_xyz.
 - Upon crash: writes physical memory into page file on system volume.
 - Upon reboot: SMSS checks page file for dump signature and locks file.
 - Winlogon again checks for signature and extracts dump out off page file

Forced Crash - Preparation

- Go to Control Panel > System Properties > Advanced > Startup and Recovery > Settings
 - The Page File must be of the same size or greater as the memory installed
- For "Write debugging information" chose either the complete or kernel memory dump.
- Can be done conveniently through a registry patch file (.reg)

Forced Crash - Activation

- Kill csrss.exe (Client Server Subsystem).
- Write your own driver that calls nt!KeBugCheck or nt!KeBugCheckEx.
- NotMyFault from Sysinternals <u>http://download.sysinternals.com/Files/Notmyfault.zip</u>

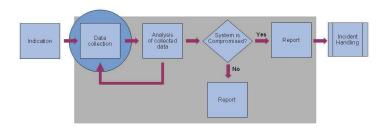
SystemDump from Citrix <u>http://support.citrix.com/article/CTX111072</u>

Bang from OSR

http://www.osronline.com/article.cfm?article=153

Activate crash sequence in PS/2 keyboard driver (USB supported in Windows 2003 SP 1).

Main Memory - Tools and Techniques


Forced Crash - Characteristics

- Access to main memory software
- Time of installation pre incident
- Required privileges administrator (installation) unprivileged (activation)

- Impact on system high
- Atomicity of image high
- Image file format dmp

Main memory

Exercise 3

Anti-forensic attacks (1)

Ddefy

⇒by D. Bilby (2006)

http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf

Hooks entry for nt!NtMapViewofSection in System Service Descriptor Table (SSDT).

→ Monitors access to \\.\PhysicalMemory.

Anti-forensic attacks (2)

- Shadow Walker
 - by Sparks and Butler (2005) <u>http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf</u>
 - Controls the contents of memory viewed by another application or driver.
 - Modifies page fault handler, marks page as not present, then flushes the Translation Lookaside Buffer (TLB).

Anti-forensic attacks (3)

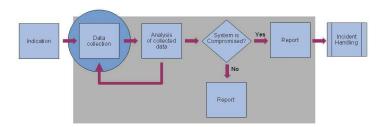
Redirecting physical memory access

by J. Rutkowska (2007) <u>http://invisiblethings.org/papers/cheating-hardware-memory-acquisition-updated.ppt</u>

Manipulates configuration of Northbridge.

At the same physical address CPU and DMA see different

Clever software could overcome attack. <u>http://fshypervisor.wordpress.com/2007/05/23//part-a-auscert/</u>


BodySnatcher

by Bradley Schatz, Evimetry <u>http://www.evimetry.com.au/</u>

Injects a minimal and trusted operating system kernel into the target system

Not publicly available.

Main Memory- Other sources

Data Collection Main Memory – Other sources

Pagefile.sys

- Contains memory pages of kernel (paged pool) and userland processes.
- Age of data highly depends on the system's memory load.
- Really helpful, more about that in the analysis session.

Data Collection Main Memory – Other sources

Hibernate.sys

- Does NOT contain all physical memory available to Windows.
- Undocumented file format/data compression algorithm.
- Matthieu Suiche and Nicolas Ruff, 2007 "Enter Sandman (why you never should go to sleep)" <u>http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf</u> library and Python bindings enables one to read and write hibernate.sys

Data Collection

Main Memory – Other sources

Hibernate.sys - Format

File format

Field	Content
Header	PO_MEMORY_IMAGE structure
Page list	Not sure – might be a list of "free pages" for loader use
Processor State	CONTEXT + SPECIAL_REGISTERS structures
Memory Range Array #1	<i>Header:</i> list entries count + next list offset + checksum <i>List:</i> Up to 255 entries <i>List entry:</i> start page + end page + checksum
Xpress Blocks Array #1	Magic: "\x81\x81xpress" (Windows > 2000) Header: size + checksum + other Content: compressed data
Memory Range Array #2	()

Conclusion FIRST2007

- You can't trust the kernel of a compromised system.
- You can't trust the hardware of a compromised system.
- But you have to rely on both, hardware and software …
- until someone comes up with a better architecture!

Data Collection Main Memory - Tools and Techniques

Cold Booting

- Based on research from Princeton University
 - J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten <u>http://citp.princeton.edu/memory</u>
- Showed that memory could retain their contents for seconds to minutes after power is lost.
- Cut the power and boot up the system with a very low memory-impact OS that dumps the memory.
- Freeze the memory modules and transport them to a secure location. Data will survive up to 10 minutes without power.

Data Collection

Main Memory - Tools and Techniques

Cold Booting - Implementations

msramdump by Robert Wesley McGrew <u>http://www.mcgrewsecurity.com/projects/msramdmp/</u>

Knopix <u>http://www.knopix.org</u>

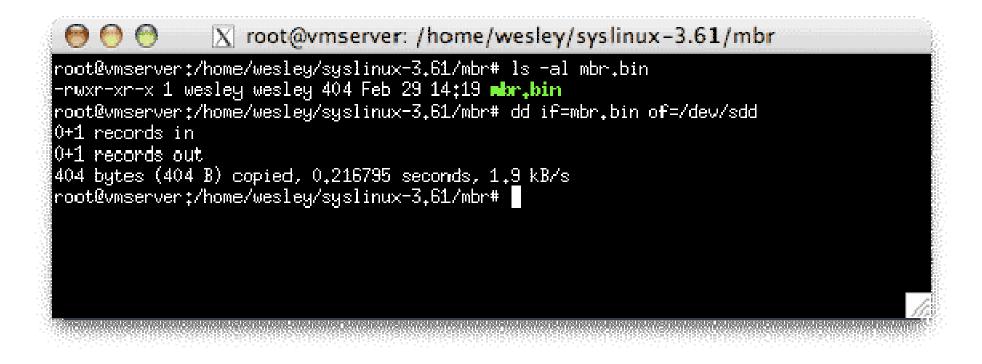
Data Collection

Main Memory - Tools and Techniques

Cold Booting - Characteristics

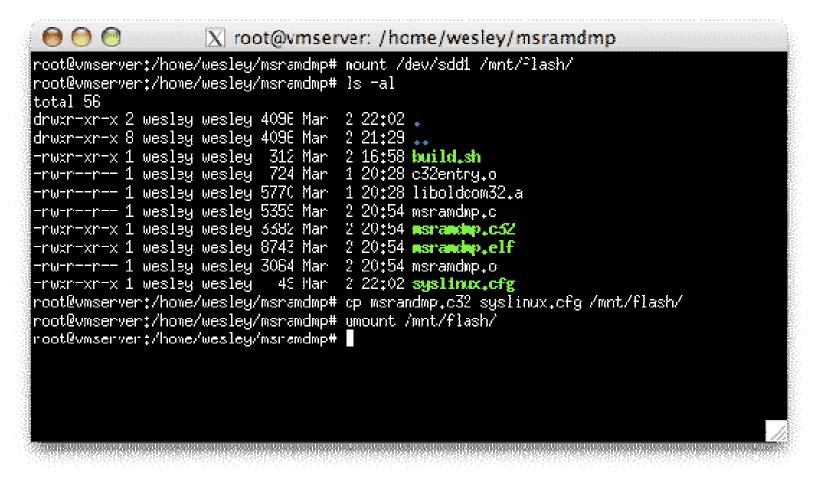
- Access to main memory software and/or hardware
- Time of installation post incident
- Required privileges none

- Impact on system high
- Atomicity of image high
- Image file format raw


Cold Booting – msrramdump

Bootable external media – USB Hard drive

00		🔀 root@vm	server: /home,	wesley	
		ofdisk (æ	til-linux−ng 2 ₊ :	13)	
	Heads:		Drive: /dev/sdc 50208 bytes, 103 ar Track: 82 (
Name	Flags	Part Type	ГЭ Туре	[Label]	Size (MB)
sdd1 sdd2	Boot	Primary Primary Pri/Log	F4T16 Venix 80286 Free Space		1,02 300,35 428, 38
[lelp			Quit] [Ur: t help screen	its] [Writ e]	- THE REAL PROPERTY IN THE R


Cold Booting – msrramdump

Copy the MBR to the disk and install Syslinux on the disk

Cold Booting – msrramdump

Mount the FAT partition and copy all the necessary programs to the disk

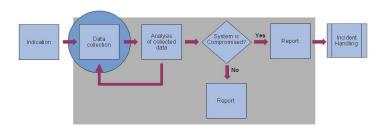
16

Cold Booting – msrramdump

Cut the power, start-up on the USB-disk and start to dump the memory

 $\Theta \cap \Theta$ 🐨 vmserver SYSLINUX 3.61 2008-02-03 EBIOS Copyright (C) 1994-2008 H. Peter Anvin мsraмdмp – McGrew Security Raм Bumper – v Ø.5 http://mcgrewsecurity.com/projects/msramdmp/ Robert Wesley McGrew: wesley@mcgrew<u>security.com</u> Found msramdmp partition at disk Øx80 : partition 2 Partition isn't marked as used. Using it. Marked partition as used. Writing section from 0x00000000 to 0x0009FFFF Writing section from 0x00100000 to 0x4000000 Done! You can turn off the machine and remove your drive. boot:

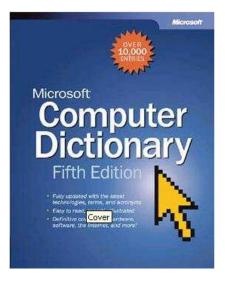
Conclusion FIRST2008


You can't trust the kernel of a compromised system

Coldboot the system and then acquire the memory

- You can't trust the hardware of a compromised system
 - Transport the memory to a trusted hardware and dump the memory from that system

Data Collection


Paged Memory

Data Collection Paged Memory

Pagefile.sys

paging file n. A hidden file on the hard disk that operating systems (such as Windows, Mac OS X, and UNIX) use to hold parts of programs and data files that do not fit in memory. The paging file and physical memory, or RAM, make up virtual memory. Data is moved from the paging file to memory as needed and moved from memory to the paging file to make room for new data in memory. Also called: swap file.

Data Collection Paged Memory

Pagefile.sys

- Located in the root directory if configured for that partition
- Can not be copied using standard methods

Error C	opying File or Folder 🛛 🔀
8	Cannot copy pagefile: It is being used by another person or program. Close any programs that might be using the file and try again.

Bypassing Windows File Protection

Bypassing Windows File Protection

Raw Device

Windows Driver Kit: Glossary

raw device

⇒A device running in raw mode.

raw mode

The mode of operation in which a device's driver stack does not include a function driver. A device running in raw mode is being controlled primarily by the bus driver. Upper-level, lower-level, and/or bus filter drivers might be included in the driver stack. If a bus driver can control a device in raw mode, it sets **RawDeviceOK** in the DEVICE_CAPABILITIES structure.

Excursus Bypassing Windows File Protection

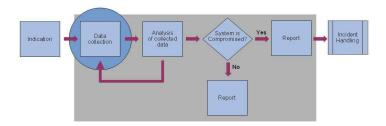
Method nr 1

List all the allocated clusters and write them to STDOUT using raw disk access

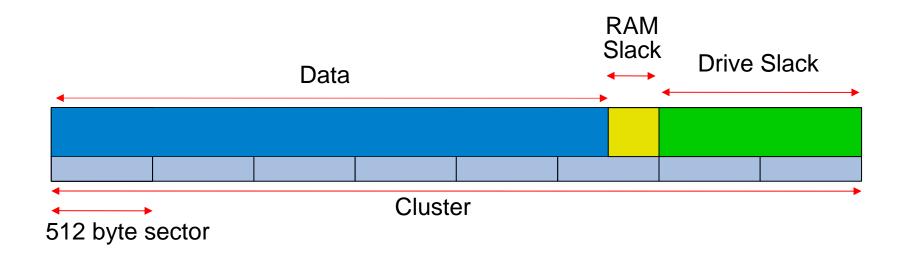
Tools to use:

⇒nfi.exe

from "Windows NT 4.0 and Windows 2000 OEM Support Tools"


⇒dd.exe

from FAU (Forensic Acquisition Utilities) by George M. Garner Jr. GMG Systems, Inc


http://www.gmgsystemsinc.com/fau/

Bypassing Windows File Protection

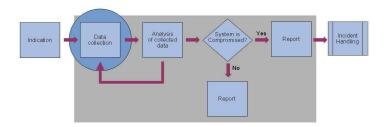
Demo of Method nr 1

Excursus Bypassing Windows File Protection

Excursus Bypassing Windows File Protection

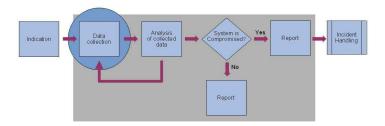
Method nr 2

List the \$Mft entry and use that as input to icat.


Tools to use:

ifind and icat Both are available from Brian Carrier's Sleuthkit <u>http://www.sleuthkit.org/sleuthkit/</u>

Version 2.03 or earlier compiled with cygwin will work


Bypassing Windows File Protection

Demo of Method nr 2

Bypassing Windows File Protection

Exercise 2

Bypassing Windows File Protection

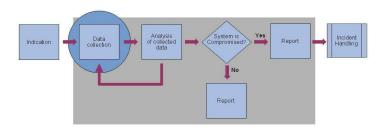
Problems

Disk Encryption

Compression

Sparse Files

Bypassing Windows File Protection


Anti Forensic techniques

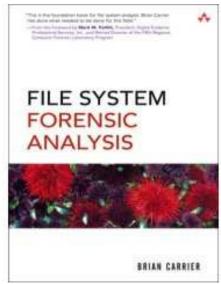
Hooking RawDevice

Hooking Low Level functions


Data Collection

File system meta data

NTFS


NTFS n. Acronym for NT file system. An advanced file system designed for use specifically with the Windows NT operating system. It supports long filenames, full security access control, file system recovery, extremely large storage media, and various features for the Windows NT POSIX subsystem. It also supports objectoriented applications by treating all files as objects with user-defined and system-defined attributes.

NTFS

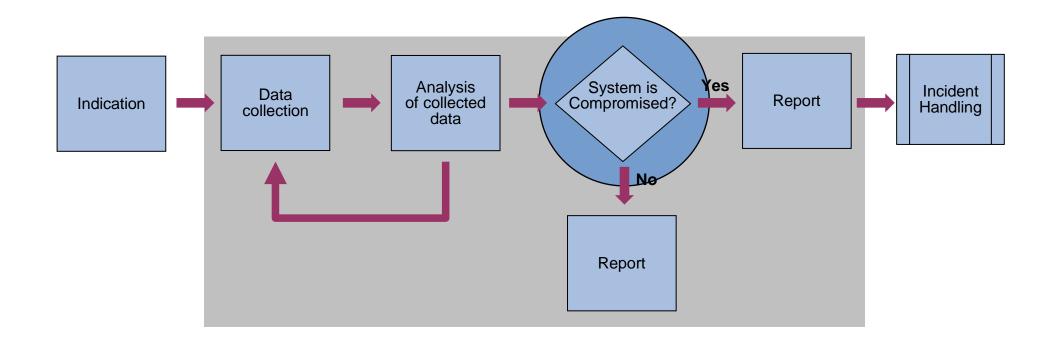
Everything is a File

One of the most important concepts in understanding the design of NTFS is that important data are allocated to files. This includes the basic file system administrative data that are typically hidden by other file systems. In fact, the files that contain the administrative data can be located anywhere in the volume, like a normal file can. Therefore, an NTFS file system does not have a specific layout like other file systems do. The entire file system is considered a data area, and any sector can be allocated to a file. The only consistent layout is that the first sectors of the volume contain the boot sector and boot code.

NTFS

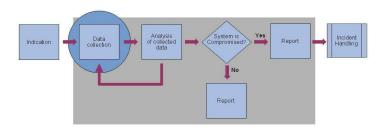
- Everything is a File
 - ⇒\$Mft ⇒\$Boot
 - ⇒\$MftMirr ⇒\$BadClus
 - ⇒\$LogFile
 - ⇒\$Volume
 - ⇒\$AttrDef
 - ⇒\$BitMap

- ⇒\$Secure
- ⇒\$Upcase
- ⇒\$Extend

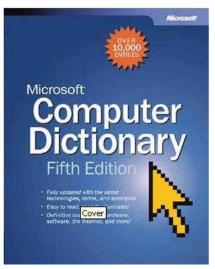

What is not acquired when collecting only Meta Data

- The actual content of the file
- Slack Space
 - Drive Slack
 - Volume Slack
 - ⇒ File System Slack
- DCO (Device Configuration Overlay)
- HPA (Host Protected Area)

What is gained by only collecting Meta Data


Speed

- Acquisition of data takes less time
- Analyzing the data is also less time consuming
- Remember that we do not know if the system has been compromised at this point


Data Collection

Windows Registry

Windows Registry

registry n. A central hierarchical database in Windows 9x, Windows CE, Windows NT, and Windows 2000 used to store information necessary to configure the system for one or more users, applications, and hardware devices. The Registry contains information that Windows continually references during operation, such as profiles for each user, the applications installed on the computer and the types of documents each can create, property sheet settings for folders and application icons, what hardware exists on the system, and which ports are being used. The Registry replaces most of the text-based .ini files used in Windows 3. x and MS-DOS configuration files, such as AUTOEXEC.BAT and CONFIG.SYS. Although the Registry is common to the several Windows platforms, there are some differences among them. Also called: system registry.

Windows Registry - Logical Structure

- HKEY_CLASSES_ROOT
- HKEY_CURRENT_USER
- HKEY_LOCAL_MACHINE
- HKEY_USERS
- HKEY_CURRENT_CONFIG

Windows Registry - Real Structure

HKEY_CURRENT_USER

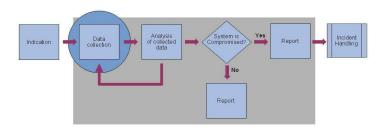
HKEY_LOCAL_MACHINE

Windows Registry - System Wide Hives on Disk

- HKEY_LOCAL_MACHINE\SYSTEM
- HKEY_LOCAL_MACHINE\SAM
- HKEY_LOCAL_MACHINE\SECURITY
- HKEY_LOCAL_MACHINE\SOFTWARE
- HKEY_USERS\.DEFAULT
 - All located under %windir%\System32\Config\

Windows Registry - System Wide Hives in Memory

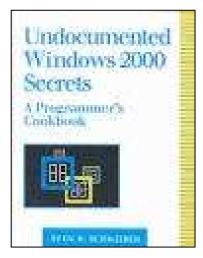
- HKEY_LOCAL_MACHINE\HARDWARE
- HKEY_LOCAL_MACHINE\SYSTEM\Clone (Windows 2000)


Data Collection Windows Registry

Per User Hives on Disk

- HKEY_USERS\<SID>
 - Located under %USERPROFILE%\Ntuser.dat
- HKEY_USERS\<SID>_Classes
 - Located under %USERPROFILE%\Local Settings\Application Data\Microsoft\Windows\Usrclass.dat

Data Collection


Windows Internal Objects

Data Collection Windows Internal Objects

Windows Internal Objects (1)

"There is hardly anything more fascinating in the internals of Windows 2000 than the world of its objects. If the memory space of an operating system is viewed as the surface of a planet, the objects are the creatures living on it. Several types of objects exist – small and large ones, simple and complex ones – and they interact in various ways."

Data Collection Windows Internal Objects

Windows Internal Objects (2)

Process
Environment of a loaded binary.

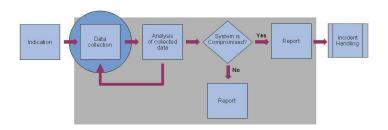
Thread
Execution of a loaded binary.

Section

File

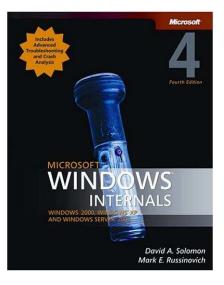
Instance of an opened file or device.

Access token Access privileges of a process or thread. Key
Pointer into the Windows registry.


Driver
Extends the kernel.

Device

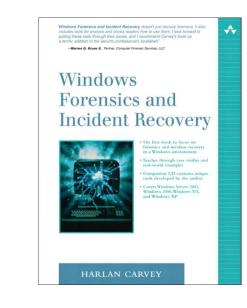
Symbolic link makes objects accessible under a new identifier


Data Collection

Process Information

Processes (1)

process The virtual address space and control information necessary for the execution of a set of thread objects.



Data Collection

Collecting Process Information

Processes (2)

- What its executable image is
- What command line was used to initiate it
- How long the process has been running
- The security context that it runs in
- Which modules or libraries (DLLs) it accesses
- What memory the process uses

Processes - Tools to use (1)

tlist.exe (Debugging Tools for Windows) <u>http://www.microsoft.com/whdc/devtools/debugging/default.mspx</u>

pslist.exe (Sysinternals)

http://www.microsoft.com/technet/sysinternals/utilities/pslist.mspx

Memory & Thread information

tasklist.exe (WinXP & Win2003 Native)

Security Context

Processes - Tools to use (2)

cmdline.exe (DiamondCS)

http://www.diamondcs.com.au/index.php?page=console-cmdline

⇒ Full path to the executable

Full Command line for the process

pulist.exe (Win2000 Resource Kit)

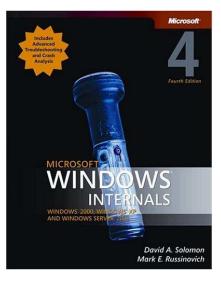
Security Context

Add all Running processes to the list of files to collect

Processes - Tools to dump Process Memory

Tools to use:

Userdump - Microsoft OEM Support Tools <u>http://support.microsoft.com/kb/253066</u>


X-Ways Capture

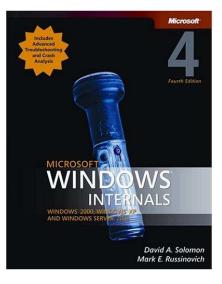
http://www.x-ways.net/capture/

Process Dumper by Tobias Klein <u>http://www.trapkit.de/research/forensic/pd/index.html</u>

Services

Server Processes User processes that are Windows services, such as the Event Log and Schedule services. Many add-on server applications, such as Microsoft SQL Server and Microsoft Exchange Server, also include components that run as Windows services.

Services


Tools to use:

GSD (Get Service Dacl) (Arne Vidström) <u>http://ntsecurity.nu/toolbox/gsd/</u>

tasklist.exe Native in Windows XP and above

DLL files

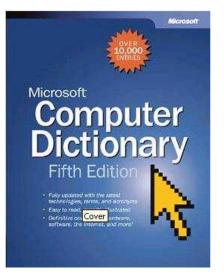
Dynamic-link library (DLL) A set of callable subroutines linked as a binary image that can be dynamically loaded by applications that use them.

DLL files

Tools to use:

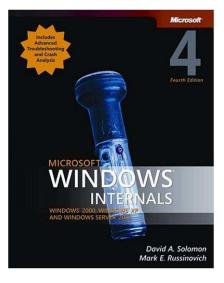
tlist.exe (Debugging Tools for Windows) <u>http://www.microsoft.com/whdc/devtools/debugging/</u>

listmodules.exe by Arne Vidström <u>http://ntsecurity.nu/toolbox/listmodules/</u>


listdll.exe (Sysinternals)

http://www.microsoft.com/technet/sysinternals/utilities/listdlls.mspx

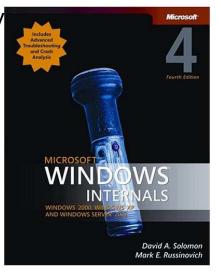
- Full path to DLL
- Changes 'LastAccessed'
- Add all DLL files to the list of files to collect


Handle (1)

handle n. Any token that a program can use to identify and access an object such as a device, a file, a window, or a dialog box.

Handle (2)

Only the executive and drivers are allowed to directly access kernel objects. Processes in user-mode have to acquire a handle prior to any operation on an object.



Handle - Tools to use

- handle.exe (Sysinternals) <u>http://www.microsoft.com/technet/sysinternals/utilities/Handle.mspx</u>
- Add all files with open handles to the list of files to collect

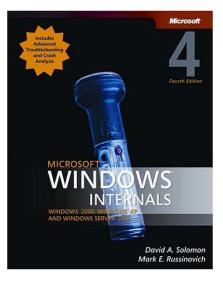
Device Drivers

"Device Drivers Loadable kernel-mode modules (typically ending in .sys) that interface between the I/O system and the relevant hardware. Device drivers on Windows don't manipulate hardware devices directly, but rather they call parts of the hardware application layer (HAL) to interface with the hardware."

Device Drivers

Tools to use:

listdrivers.exe (Arne Vidström) <u>http://ntsecurity.nu/toolbox/listdrivers/</u>


Device Console from DDK - Windows Driver Development Kit <u>http://www.microsoft.com/whdc/devtools/ddk/default.mspx</u>

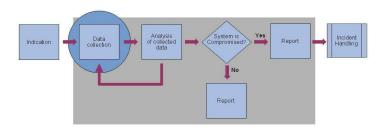
ListObj (Arne Vidström) - prints the entire Windows object space <u>http://vidstrom.net/otools/listobj/</u>

Add all Device Drivers to the list of files to collect

Device Objects

"Device Objects A data structure that represents a physical, logical, or virtual device on the system and describes its characteristics, such as the alignment it requires for buffers and the location of its device queue to hold incoming I/O request packets."

Device Objects

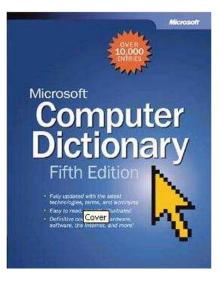

Tools to use:

IListObj (Arne Vidström) - prints the entire Windows object space <u>http://vidstrom.net/otools/listobj/</u>

Add all Device Objects to the list of files to collect

Data Collection

Network Information

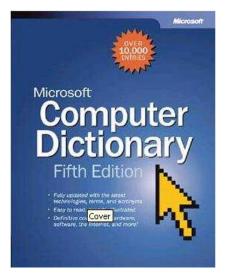

Network Interface Cards

Tools to use:

⇒ipconfig.exe (Native System Command)

ARP

ARP n. Acronym for Address Resolution Protocol. A TCP/IP protocol for determining the hardware address (or physical address) of a node on a local area network connected to the Internet, when only the IP address (or logical address) is known. An ARP request is sent to the network, and the node that has the IP address responds with its hardware address. Although ARP technically refers only to finding the hardware address, and RARP (for Reverse ARP) refers to the reverse procedure, ARP is commonly used for both senses.


ARP

Tools to use:

arp.exe (Native System Command)

Active Network Connections

socket n. 1. An identifier for a particular service on a particular node on a network. The socket consists of a node address and a port number, which identifies the service. For example, port 80 on an Internet node indicates a Web server.

Active Network Connections

Tools to use:

netstat.exe (Native system command)

fport.exe (Foundstone) <u>http://www.foundstone.com/resources/proddesc/fport.htm</u>

openports.exe (DiamondCS) <u>http://www.diamondcs.com.au/openports/</u>

NetBIOS over TCP/IP

Tools to use:

nbtstat.exe (Native system command)

Files opened remotely

Tools to use:

⇒psfile.exe (Sysinternals)

http://www.microsoft.com/technet/sysinternals/Networking/PsFile.mspx

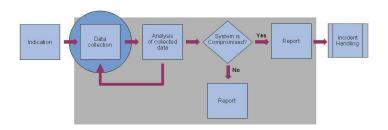
net.exe (Native System Command)

Logged on remote users

Tools to use:

psloggedon.exe (Sysinternals)

http://www.microsoft.com/technet/sysinternals/Networking/PsFile.mspx


net.exe sessions (Native System Command)

netusers.exe (Sommarsoft)

loggonsessions.exe (Sysinternals)

Data Collection

Non Volatile data

System information

Tools to use:

psinfo.exe (Sysinternals) <u>http://www.microsoft.com/technet/sysinternals/SystemInformation/PsIn</u> <u>fo.mspx</u>

- Installed Applications & Hotfixes
- systeminfo.exe (Windows Native)
- psservice.exe (Sysinternals)
- cpuid.exe (Arne Vidström)

NTFS

Directory Listing from Usermode

Tools to use

⇒ dir (built-in command)

⇒ find.exe (windows port of unix command)

Windows registry

- Listing from Usermode
- Tools to use
 - → reg.exe (Resource Kit)
 - accesschk.exe (sysinternals)
 - ⇒ subinacl.exe
 - regdump.exe (Win2K Resource Kit)
 - Regtool (Cygwin)

Log files - OS specific

System, Application and Security

Located under %windir%\System32\Config\

Log files - Per application

Exchange, IIS, Apache,

Location highly dependent of application

Interesting files (1)

Everything running

⇒ Processes

Drivers

⇒DLLs

Interesting files (2)

Everything being started

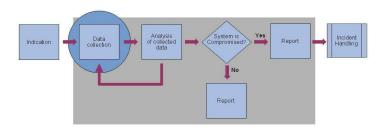
Autorunsc (Sysinternals) <u>http://www.sysinternals.com</u>

Interesting files (3)

- Per user (%USERPROFILE%)
 - ⇒NTUSER.DAT
 - Application Data
 - Cookies
 - ⇒ Recent

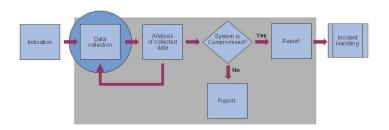
Checksums of files

Algorithms

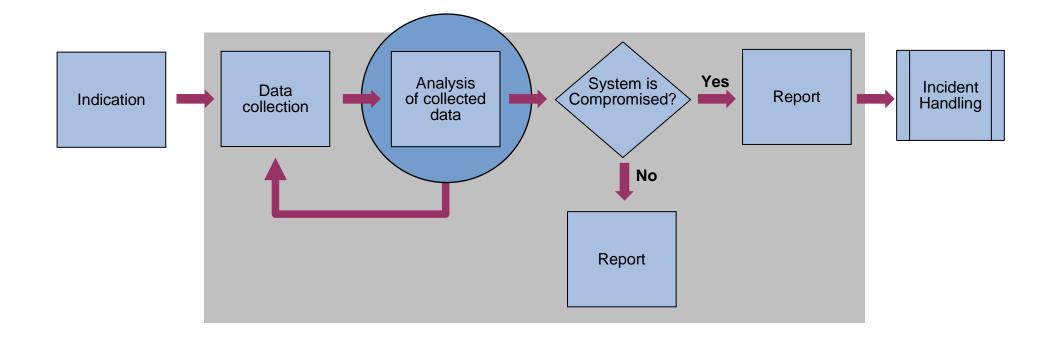

⇒MD5

⇒SHA-1

Tools change 'LastAccessed'

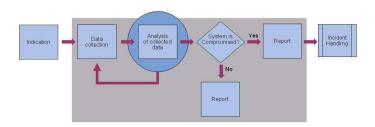

Data Collection

Putting it all together



Data Collection

Question and Answers



Incident Flowchart

Data Analysis

Analysis Method

Windows vs. Linux as the choice of the analysis platform (1)

- Script based tools (perl, python)
 - → Works in general just as fine on Windows as on Linux
 - Win32 perl modules works natively on Windows
- Analyzing Crash Dumps
 - Windows Debugger works only on the Windows platform

Windows vs. Linux as the choice of the analysis platform (2)

- Conclusion
 - Use the Windows platform when analyzing a suspected Windows intrusions!

Analysis Methodology - What are we looking for

- Malware that do not try to hide itself
 - No rootkit technology being used
- Malware that try to hide itself
 - The malware is using rootkit technology to hide its presence
- Traces of system activity in order to build a timeline of the incident

Analysis Methodology - Malware that do not try to hide itself (1)

- Log files
 - Signs of intrusions
- NTFS Meta data
 - Known suspicious file names
 - Files that the Local Administrator do not have access to
 - Files added at the suspected time of the intrusion

Analysis Methodology - Malware that do not try to hide itself (2)

- Windows Registry
 - Known registry keys used by Malware
 - Registry keys added at the suspected time of the intrusion

Analysis Methodology - Malware that do not try to hide itself (3)

- Files Collected during the data acquisition
 - Known checksums
 - Static Analysis
- Network Information
 - Listening ports
 - Established connections

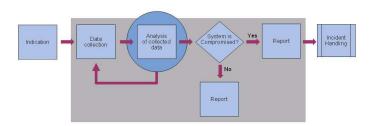
Analysis Methodology - Malware that try to hide itself (1)

- NTFS Meta data
 - ➔ Files hidden from user mode
- Windows Registry
 - → Keys hidden from user mode

Analysis Methodology - Malware that try to hide itself (2)

- Memory Dump
 - Objects hidden from user mode
 - Inspection of system tables
 - Integrity checking of binaries loaded in memory

Analysis Methodology - Traces of system activity (1)


- NTFS Meta data
 - Added files
 - Changed files
 - Deleted files
- Collected files
 - INFO2 Records (Recycle Bin)
 - Cookies

Analysis Methodology - Traces of system activity (2)

- Memory dump
 - Processes and Threads
 - Network Activity

Data Analysis

Log Files

Windows Event Logs (1)

Data of interest

Signs of intrusions

Time stamps to add to our time line analysis

Online resources

Loganalysis.org

- Event ID mapping
 - EventID.Net
 - <u>Microsoft Events and Errors Message Center</u>

Windows Event Logs (2)

Format of the log file

Windows Event Logs (1)

Tools to use

GrokEVT by Timothy Morgan (Sentinel Chicken Networks) <u>http://projects.sentinelchicken.org/grokevt/</u>

FCCU evtreader.pl (d-fence.be)

http://www.d-fence.be/loadcd?target=fccu.evtreader.1.1.tar.gz

Windows Vista – Event logging

XML Schema

Other types of text based Log Files (1)

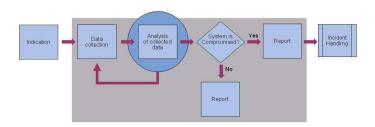
Data of interest

Signs of intrusions

Time stamps to add to our time line analysis

Firewall log

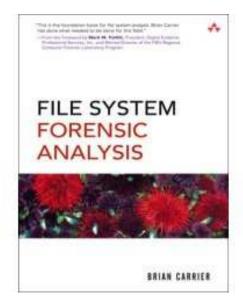
→MS Firewall


Other types of text based Log Files (2)

Tools to use

- ⇒grep, sed, perl
- ⇒PyFLAG

Data Analysis


NTFS Meta Data

Data Analysis NTFS Metadata

\$MFT

MFT Concepts: The Master File Table (MFT) is the heart of NTFS because it contains the information about all files and directories. Every file and directory has at least one entry in the table, and the entries by themselves are very simple. They are 1 KB in size, but only the first 42 bytes have a defined purpose. The remaining bytes store attributes, which are small data structures that have a very specific purpose. For example, one attribute is used to store the file's name, and another is used to store the file's content.

Data Analysis NTFS Metadata

\$MFT- Data of interest

Time stamps to add to our time line analysis

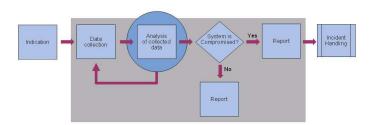
Modified

Accesed

Created

Entry updated

- Known suspicious filenames
- Deviation between directory listening and \$MFT (cross-view diff)



\$MFT- Tools to use

No publicly available tools to do our analysis with!

Excursus

Analysis of a \$MFT entry

0000: 4649 4c45 3000 0300 37ec 2517 0000 0000 FILE0...7.%.... 0010: 0300 0100 3800 0100 7001 0000 0004 00008...p..... 0020: 0000 0000 0000 0000 0400 0000 7c33 0000 0030: 0600 0000 0000 0000 1000 0000 6000 0000 ` . . . 0040: 0000 0000 0000 4800 0000 1800 0000H.... 0050: 70ec 468d 43cf c601 a053 909c 43cf c601 p.F.C....S..C... 0060: a053 909c 43cf c601 a053 909c 43cf c601 .S..C...S..C... 0090: 0000 0000 0000 3000 0000 7000 0000 ...q...0..... 00a0: 0000 0000 0200 5200 0000 1800 0100R..... 00b0: 7b33 0000 0000 0300 70ec 468d 43cf c601 {3....p.F.C... 00c0: 70ec 468d 43cf c601 70ec 468d 43cf c601 p.F.C...p.F.C... 00d0: 70ec 468d 43cf c601 0000 0000 0000 0000 p.F.C..... 00f0: 0803 7400 6500 7300 7400 2e00 7400 7800 ..t.e.s.t...t.x. 0100: 7400 0000 0000 0000 8000 0000 2800 0000 t....(... 0110: 0000 1800 0000 0100 0e00 0000 1800 0000 0120: 7468 6973 2069 7320 6120 7465 7374 0000 this is a test.. 0130: 8000 0000 3800 0000 0007 1800 0000 0300 8 0140: 0d00 0000 2800 0000 6100 6400 7300 2e00(...a.d.s... 0150: 7400 7800 7400 0000 7468 6973 2069 7320 t.x.t...this is 0160: 6120 6164 7300 0000 ffff ffff 8279 4711 a ads.....yG.

Offset to first attribute

Attribute Type Identifier 0x10 \$STANDARD_INFORMATION

Length of Attribute

0000:	4649	4c45	3000	0300	37ec	2517	0000	0000	FILE07.%
0010:	0300	0100	3800	0100	7001	0000	0004	0000	8p
0020:	0000	0000	0000	0000	0400	0000	7c33	0000	
0030:	0600	0000	0000	0000	1000	0000	6000	0000	·····``
0040:	0000	0000	0000	0000	4800	0000	1800	0000	н
0050:	70ec	468d	43cf	c601	a053	909c	43cf	c601	p.F.CSC
0060:	a053	909c	43cf	c601	a053	909c	43cf	c601	.scsc
0070:	2000	0000	0000	0000	0000	0000	0000	0000	
0080:	0000	0000	8301	0000	0000	0000	0000	0000	
0090:	0000	0000	0000	0000	3000	0000	7000	0000	0p
00a0:	0000	0000	0000	0200	5200	0000	1800	0100	R
00b0:	7b33	0000	0000	0300	70ec	468d	43cf	c601	{3p.F.C
00c0:	70ec	468d	43cf	c601	70ec	468d	43cf	c601	p.F.Cp.F.C
00d0:	70ec	468d	43cf	c601	0000	0000	0000	0000	p.F.C
00e0:	0000	0000	0000	0000	2000	0000	0000	0000	
00f0:	0803	7400	6500	7300	7400	2e00	7400	7800	t.e.s.tt.x.
0100:	7400	0000	0000	0000	8000	0000	2800	0000	t(
0110:	0000	1800	0000	0100	0e00	0000	1800	0000	
0120:	7468	6973	2069	7320	6120	7465	7374	0000	this is a test
0130:	8000	0000	3800	0000	0007	1800	0000	0300	8
0140:	0d00	0000	2800	0000	6100	6400	7300	2e00	(a.d.s
0150:	7400	7800	7400	0000	7468	6973	2069	7320	t.x.tthis is
0160:	6120	6164	7300	0000	ffff	ffff	8279	4711	a adsyG.

\$STANDARD_INFORMATION (0x10)

Offset	Size	OS	Description
~	1		Standard Attribute Header
0x00	8		C Time - File Creation
0x08	8		A Time - File Altered
0x10	8		M Time - MFT Changed
0x18	8		R Time - File Read
0x20	4		DOS File Permissions
0x24	4		Maximum Number of Versions
0x28	4		Version Number
0x2C	4		Class Id
0x30	4	2K	Owner Id
0x34	4	2K	Security Id
0x38	8	2K	Quota Charged
0x40	8	2K	Update Sequence Number (USN)

211

0000:	4649	4c45	3000	0300	37ec	2517	0000	0000	FILE07.%
0010:	0300	0100	3800	0100	7001	0000	0004	0000	8p
0020:	0000	0000	0000	0000	0400	0000	7c33	0000	3
0030:	0600	0000	0000	0000	1000	0000	6000	0000	·····``
0040:	0000	0000	0000	0000	4800	0000	1800	0000	H
0050:	70ec	468d	43cf	c601	a053	909c	43cf	c601	p.F.CSC
0060:	a053	909c	43cf	c601	a053	909c	43cf	c601	.SCSC
0070:	2000	0000	0000	0000	0000	0000	0000	0000	
0080:	0000	0000	8301	0000	0000	0000	0000	0000	
0090:	0000	0000	0000	0000	3000	0000	7000	0000	p
00a0:	0000	0000	0000	0200	5200	0000	1800	0100	R
00b0:	7b33	0000	0000	0300	70ec	468d	43cf	c601	{3p.F.C
00c0:	70ec	468d	43cf	c601	70ec	468d	43cf	c601	p.F.Cp.F.C
00d0:	70ec	468d	43cf	c601	0000	0000	0000	0000	p.F.C
00e0:	0000	0000	0000	0000	2000	0000	0000	0000	
00f0:	0803	7400	6500	7300	7400	2e00	7400	7800	t.e.s.tt.x.
0100:	7400	0000	0000	0000	8000	0000	2800	0000	t(
0110:	0000	1800	0000	0100	0e00	0000	1800	0000	
0120:	7468	6973	2069	7320	6120	7465	7374	0000	this is a test
0130:	8000	0000	3800	0000	0007	1800	0000	0300	8
0140:	0d00	0000	2800	0000	6100	6400	7300	2e00	(a.d.s
0150:	7400	7800	7400	0000	7468	6973	2069	7320	t.x.tthis is
0160:	6120	6164	7300	0000	ffff	ffff	8279	4711	a adsyG.

\$FILE_NAME(0x30)

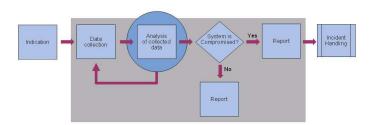
Offset	Size	Description			
~	ł	Standard Attribute Header			
0x00	8	File reference to the parent directory.			
0x08	8	C Time - File Creation			
0x10	8	A Time - File Altered			
0x18	8	M Time - MFT Changed			
0x20	8	R Time - File Read			
0x28	8	Allocated size of the file			
0x30	8	Real size of the file			
0x38	4	Flags, e.g. Directory, compressed, hidden			
0x3c	4	Used by EAs and Reparse			
0x40	1	Filename length in characters (L)			
0x41	1	Filename namespace 0x42 2L Filename in Unicode (not null terminated)			

212

0000:	4649	4c45	3000	0300	37ec	2517	0000	0000	FILE07.%
0010:	0300	0100	3800	0100	7001	0000	0004	0000	8p
0020:	0000	0000	0000	0000	0400	0000	7c33	0000	3
0030:	0600	0000	0000	0000	1000	0000	6000	0000	·····``
0040:	0000	0000	0000	0000	4800	0000	1800	0000	H
0050:	70ec	468d	43cf	c601	a053	909c	43cf	c601	p.F.CSC
0060:	a053	909c	43cf	c601	a053	909c	43cf	c601	.SCSC
0070:	2000	0000	0000	0000	0000	0000	0000	0000	
0080:	0000	0000	8301	0000	0000	0000	0000	0000	
0090:	0000	0000	0000	0000	3000	0000	7000	0000	p
00a0:	0000	0000	0000	0200	5200	0000	1800	0100	R
00b0:	7b33	0000	0000	0300	70ec	468d	43cf	c601	{3p.F.C
00c0:	70ec	468d	43cf	c601	70ec	468d	43cf	c601	p.F.Cp.F.C
00d0:	70ec	468d	43cf	c601	0000	0000	0000	0000	p.F.C
00e0:	0000	0000	0000	0000	2000	0000	0000	0000	
00£0:	0803	7400	6500	7300	7400	2e00	7400	7800	t.e.s.tt.x.
0100:	7400	0000	0000	0000	8000	0000	2800	0000	t(
0110:	0000	1800	0000	0100	0e00	0000	1800	0000	
0120:	7468	6973	2069	7320	6120	7465	7374	0000	this is a test
0130:	8000	0000	3800	0000	0007	1800	0000	0300	8
0140:	0d00	0000	2800	0000	6100	6400	7300	2e00	(a.d.s
0150:	7400	7800	7400	0000	7468	6973	2069	7320	t.x.tthis is
0160:	6120	6164	7300	0000	ffff	ffff	8279	4711	a adsyG.

\$DATA(0x80)

Offset	Size	Description
~	2	Standard Attribute Header
0x00		Any data


0000:	4649	4c45	3000	0300	37ec	2517	0000	0000	FILE07.%
0010:	0300	0100	3800	0100	7001	0000	0004	0000	8p
0020:	0000	0000	0000	0000	0400	0000	7c33	0000	3
0030:	0600	0000	0000	0000	1000	0000	6000	0000	·····``
0040:	0000	0000	0000	0000	4800	0000	1800	0000	H
0050:	70ec	468d	43cf	c601	a053	909c	43cf	c601	p.F.CSC
0060:	a053	909c	43cf	c601	a053	909c	43cf	c601	.scsc
0070:	2000	0000	0000	0000	0000	0000	0000	0000	
0080:	0000	0000	8301	0000	0000	0000	0000	0000	
0090:	0000	0000	0000	0000	3000	0000	7000	0000	q0p
00a0:	0000	0000	0000	0200	5200	0000	1800	0100	R
00b0:	7b33	0000	0000	0300	70ec	468d	43cf	c601	{3p.F.C
00c0:	70ec	468d	43cf	c601	70ec	468d	43cf	c601	p.F.Cp.F.C
:0000	70ec	468d	43cf	c601	0000	0000	0000	0000	p.F.C
00e0:	0000	0000	0000	0000	2000	0000	0000	0000	
00f0:	0803	7400	6500	7300	7400	2e00	7400	7800	t.e.s.tt.x.
0100:	7400	0000	0000	0000	8000	0000	2800	0000	t(
0110:	0000	1800	0000	0100	0e00	0000	1800	0000	
0120:	7468	6973	2069	7320	6120	7465	7374	0000	this is a test
0130:	8000	0000	3800	0000	0007	1800	0000	0300	8
0140:	0d00	0000	2800	0000	6100	6400	7300	2e00	(a.d.s
0150:	7400	7800	7400	0000	7468	6973	2069	7320	t.x.tthis is
0160:	6120	6164	7300	0000	ffff	ffff	8279	4711	a adsyG.

\$DATA(0x80)

Offset	Size	Description
~	~	Standard Attribute Header
0x00		Any data

Data Analysis

NTFS Meta Data (continued)

Data Analysis NTFS Metadata

\$MFT - Cross-view diff

### fi	les missing from user mode
4	/\$AttrDef
8	/\$BadClus
6	∕\$Bitmap
?	/\$Boot
	/\$Extend
25	/\$Extend/\$0bjId
11 25 24 26 2	/\$Extend/\$Quota
20	/\$Extend/\$Reparse
2 0	/\$LogFile /\$MFT
1	/\$MFTMirr
ģ	/\$Secure
10	/\$UpCase
3	/\$Volume
22429	/Documents and Settings/All Users/Documents/My Pictures/Sample Pictures/Thumbs.db:encryptable
14548	/Documents and Settings/user/Desktop/Att_fanga_en_DDoS_kiddie.pdf:Zone.Identifier
33234	/Documents and Settings/user/Desktop/SP28809.exe:Zone.Identifier
23253	/Documents and Settings/user/Desktop/SP28849.exe:Zone.Identifier
24595	/Documents and Settings/user/Desktop/verafigueiredo.mov:Zone.Identifier
45327	/Documents and Settings/user/Local Settings/History/History.IE5/MSHist012005112820051205
47806	/Documents and Settings/user/Local Settings/History/History.IE5/MSHist012005120720051208
46122	/Documents and Settings/user/Local Settings/History/History.IE5/MSHist012005121020051211

Data Analysis NTFS Metadata

\$MFT - Known suspicious file names

Viruslist.com

Counter Spy (Sunbelt-Software)

http://research.sunbelt-software.com/WhatYouShouldKnow.aspx

Threat Details

Copyright @ 2007 Sunbett-Software. Reproduction in whole or in part without permission is prohibited.

Adrenaline Worm

Туре	Worm		
Level	High		
Level Description	High risks are typically installed without user interaction through security exploits, and can severely compromise system security. Such risks may open illicit network connections, use polymorphic tactics to self-mutate, disable security software, modify system files, and install additional malware. These risks may also collect and transmit personally identifiable information (PII) without your consent and severely degrade the performance and stability of your computer.		
Advice Type	Remove		
Alias	IRC-Worm.Adrenaline, W32/Scrambler		
File Traces			
	cygnus.exe dupripper.07.exe irc-worm.adrenaline.exe		

littleio.07.exe

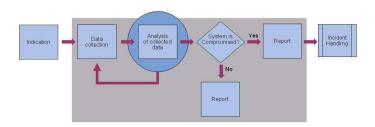
\$BadClus

Used for not letting the OS use clusters marked as bad. Modern hard disks usually handle bad sectors themself.

Data of interest

\$Bad attribute - Check for excessive use

Anti-forensic attacks


Metasploit Anti-forensics (Vincent Liu and Patrick Stach) <u>http://www.metasploit.com/</u>

⇒Slacker

⇒Timestomp

Data Analysis

Windows Registry

Windows Registry - Data of interest

Data of interest

→Time Line

Known obfuscation techniques

Deviation between user mode listening and raw file - cross-view diff

Interesting registry keys

Windows Registry - Tools to use

- reglookup (Sentinel Chicken Networks) <u>http://projects.sentinelchicken.org/reglookup/</u>
- Offline Registry Parser by Harlan Carvey <u>http://downloads.sourceforge.net/windowsir/regp_1_1.zip</u>

Parse::Win32Registry

Windows Registry - Obfuscation techniques (1)

Keys with built-in "Null" characters

Windows Registry - Obfuscation techniques (2)

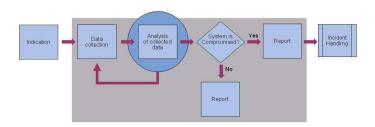
Values that are of 256-259 characters in length

Windows Registry Edit	Contact Securia	
Secunia Advisory: Release Date: Last Update: Critical:	SA16560 2005-08-24 2006-02-06	for a customised vulnerability solution
u	Not critical	Secunia
Impact: Where:	Spoofing	
Solution Status:	Local system Unpatched	Stay Secure
0S:	Microsoft Windows 2000 Advanced Server Microsoft Windows 2000 Datacenter Server	Secunia Poll
	<u>Microsoft Windows 2000 Professional</u> <u>Microsoft Windows 2000 Server</u> <u>Microsoft Windows XP Home Edition</u> <u>Microsoft Windows XP Professional</u>	What is your primary protection against being hacked? O Antivirus technology Firewall technology O My operating
Description: Igor Franchuk has discov Microsoft Windows, which hide certain information.	system Use uncommon software Patching Careful behaviour	
The weakness is caused Registry Editor Utility (re- handling long string name	ŏ Other	
exploited to hide strings i creating a string with a lo	See Results Vote!	
causes this string and an strings in the key to be h	Most Popular Advisories	
Successful exploitation e for malware to hide strin- key. However, these hido after the string with the o still be executed when th	gs in the "Run" registry den strings created overly long name will	1. Adobe Reader / Acrobat Multiple Vulnerabilities

Windows Registry - Cross-view diff

Deviation between usermode and the raw registry file

C:\WINDOWS\system32\cmd.exe


keys hidden from user mode /SYSTEM/ControlSet001/Services/MRxDAV/EncryptedDirectories/(null) SZ,, /SYSTEM/ControlSet003/Services/MRxDAV/EncryptedDirectories/(null) SZ,, ### keys with no read permissions /SAM/SAM /SECURITY /SYSTEM/ControlSet001/Control/Class/{4D36E965-E325-11CE-BFC1-08002BE10318}/Properties KEY,,2004-08-20 19:22:29 /SYSTEM/ControlSet001/Control/Class/{4D36E967-E325-11CE-BFC1-08002BE10318}/Properties KEY,,2004-08-20 19:22:29 /SYSTEM/ControlSet001/Control/Class/{4D36E968-E325-11CE-BFC1-08002BE10318}/Properties KEY,,2004-08-20 19:22:29 /SYSTEM/ControlSet001/Control/Class/{4D36E968-E325-11CE-BFC1-08002BE10318}/Properties KEY,,2004-08-20 19:22:29

/SYSTEM/ControlSet001/Control/Class/4D36E96/=E325-11CE=BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:20 /SYSTEM/ControlSet001/Control/Class/4D36E968-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet001/Control/Class/4D36E96A-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:32 /SYSTEM/ControlSet001/Control/Class/4D36E96A-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:32 /SYSTEM/ControlSet001/Control/Class/4D36E97B-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:35 /SYSTEM/ControlSet001/Control/Class/4D36E980-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet001/Control/Class/4D36E980-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet003/Control/Class/4D36E965-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:29 /SYSTEM/ControlSet003/Control/Class/4D36E967-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:29 /SYSTEM/ControlSet003/Control/Class/4D36E967-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:29 /SYSTEM/ControlSet003/Control/Class/4D36E967-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:29 /SYSTEM/ControlSet003/Control/Class/4D36E968-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:29 /SYSTEM/ControlSet003/Control/Class/4D36E968-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet003/Control/Class/4D36E969-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet003/Control/Class/4D36E96A-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet003/Control/Class/4D36E96A-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:30 /SYSTEM/ControlSet003/Control/Class/4D36E968-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:32 /SYSTEM/ControlSet003/Control/Class/4D36E968-E325-11CE-BFC1-08002BE10318//Froperties KEY,.2004-08-20 19:22:32

D:\response\server>

Data Analysis

Collected Files

Files Collected during the data acquisition

- Everything running and accessed
 - ⇒ Running processes
 - Loaded DLLs and drivers
 - Handles that resolves to a file
- Everything being started
 - Registry keys
 - ⇒ Startup files

Cryptographic hashes - Algorithms

MD5

http://en.wikipedia.org/wiki/MD5

- Hash collisions
- MD5 Collision Generation by Patrick Stach and Vincent Liu <u>http://www.stachliu.com/research_collisions.html</u>

SHA-1

http://en.wikipedia.org/wiki/SHA1

Hash collisions

Cryptographic hashes - Conclusion

Use both algorithms! At least when identifying know good files

Cryptographic hashes - Tools to use

hfind.exe (The Sleuthkit)

http://www.sleuthkit.org/

Creates index files for the hash database and use that index file to look up a hash value. Described in "The Sleuth Kit Informer" nr 6 and 7.

md5deep and sha1deep by Jesse Kornblum <u>http://md5deep.sourceforge.net/</u>

- md5.exe (cygwin)
- sha1.exe (cygwin)

Cryptographic hashes – Resources (1)

Online databases

NIST - National Software Reference Library

Hashkeeper (only available for Law Enforcement and CERT organizations)

Some of the web sites that list Malware hashes

CastleCops <u>http://hashes.castlecops.com/</u>

Avira

→ HijackThis

Spyware Browser AntiSpyware

Cryptographic hashes – Resources (2)

Generate your own databases of known good files

newfind.pl – NIST <u>http://www.nsrl.nist.gov/perl/</u>

md5deep and sha1deep by Jesse Kornblum <u>http://md5deep.sourceforge.net/</u>

Cryptographic hashes – Anti-forensic Attacks

Attacks against MD5 hashes

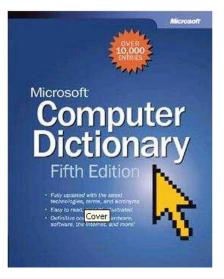
MD5 and MD4 Collision Generators (Vincent Liu and Patrick Stach) <u>http://www.stachliu.com/research_collisions.html</u>

Attacks against SHA-1 hashes

Methods for determining File Type

Check files for data in particular fixed formats

⇒file.exe


• uses 'magic' database

Look at the file extension

Portable Executable

portable executable file n. The file format used for -executable programs as well as for files that are linked together to form executable programs.

Portable Executable - Header information

Tools to use

periscope.exe by Arne Vidström <u>http://ntsecurity.nu/toolbox/periscope/</u>

⇒ PE-Header

⇒Win32::File::VersionInfo

Portable Executable - Packed files

Tools to use

→PEid <u>http://peid.has.it/</u>

Sigbuster by Toni Koivunen – F-Secure

• Available to Law enforcement and CERT-organizations

Online Anti-Virus resources

- Virustotal (Hispasec Sistemas)
- Jotti's malware scan
- File Scanner (Kaspersky Lab)

STATUS: FINISHED

Virustotal

Complete scanning result of "ipv6monl.dll", received in VirusTotal at 11.06.2006, 11:46:09 (CET).

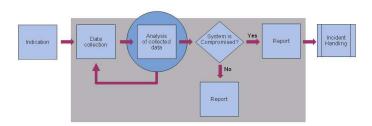
Antivirus Result Version Update AntiVir 7.2.0.37 11.06.2006 TR/Spy.BZub.EC.2 4.93.8 Authentium 11.05.2006 W32/Goldun.gen1 4.7.892.0 11.03.2006 no virus found Avast AVG 11.04.2006 PSW.Generic2.OPF 386 BitDefender 7.2 11.06.2006 Trojan.Proxy.Cimuz.AO CAT-QuickHeal 8.00 11.04.2006 no virus found ClamAV devel-20060426 11.06.2006 Trojan.Bzub-38 DrWeb 4.33 11.06.2006 Trojan.PWS.Tanspy eTrust-InoculateIT 23.73.47 11.06.2006 no virus found eTrust-Vet 30.3.3178 11.06.2006 Win32/Brospy.CT Ewido 4.0 11.05.2006 Logger.BZub.ey Fortinet 2.82.0.0 11.06.2006 suspicious F-Prot 3.16f 11.04.2006 W32/Goldun.gen1 F-Prot4 4.2.1.29 11.04.2006 W32/Goldun.gen1 Ikarus 0.2.65.0 11.05.2006 no virus found Kaspersky 4.0.2.24 11.06.2006 Trojan-Spy.Win32.BZub.ey McAfee 4888 11.03.2006 Generic PWS.q Microsoft 1.1609 11.06.2006 PWS:Win32/Cimuz.gen probably a variant of Win32/Spy.BZub NOD32v2 1.1854 11.06.2006 Norman 11.06.2006 W32/Goldun.gen1 5.80.02 Panda 9.0.0.4 11.06.2006 Suspicious file Sophos 4.10.0 10.26.2006 Troj/Cimuz-Gen TheHacker 6.0.1.112 11.03.2006 Trojan/Spy.BZub.ey UNA 1.83 11.03.2006 Trojan.Spy.Win32.BZub.59D1 VBA32 3.11.1 11.06.2006 suspected of Malware Agent.4 VirusBuster 4.3.15:9 11.05.2006 TrojanSpy.Agent.BD.Gen

Aditional Information	
File size: 67288 bytes	
MD5: 290bac6046976d2d5b76e90dcace4cba	
SHA1: 09279679f2d9032d02bf020da25c7f14e9dd5bcc	
packers: UPX	

Online sandbox tools

Norman's Sandbox

CWSandbox (Carsten Willems)


Sunbelt Sandbox

Analysis methodology for the collected files

- Use a white list and throw all the files that have a matching hash away
- Determine the file type and use appropriate tools
- Use online resources like Virus Total and CWSandbox
- Do a dynamic analysis of the file

System is compromised?

Example 1

Data Analysis System is Compromised?

Analyzing auto started processes

Looking for good matching hashes:

290bac6046976d2d5b76e90dcace4cba Hash Not Found C\WINDOWS\system32\ipv6monl.dll

ipv6monl.dll - PE-Header

File Version : 5.1.2600.2180 Product Version : 5.1.2600.2180 OS : Unknown/Win32 Type : DLL CompanyName : Microsoft Corporation FileDescription : Software Installation Extenstion FileVersion : 5.1.2600.2190 (xpsp_sp2_rtm.041803-2198) InternalName : Software Installation Snapin Extenstion Copyright : Trademarks : OrigFileName : ipv6.dll ProductName : Microsoft « Windows « Operating System ProductVersion : 5.1.2600.2190 PrivateBuild :

SpecialBuild :

ipv6monl.dll - Google

Google Nätet <u>Bilder</u> <u>Grupper Kategori</u> ipv6monl.dll spyware OR spy OR malware OF <u>Sök</u> <u>Avancerad sökning</u> Inställningar Sök: ③ webben ○ sidor på svenska ○ sidor från Sverige

Nätet

Resultat 1 - 10 av ungefär 298 vid sökning efter ipv6monl.dll spyware OR spy OR malware

Tips: Sök endast efter svenska resultat. Du kan ställa in sökspråk i Inställningar

<u>Troj/Cimuz-AX</u> - <u>Spyware Trojan</u> - <u>Sophos threat analysis</u> Analysis of the Troj/Cimuz-AX <u>Spyware Trojan</u>, with information on its ... BZub; <u>Trojan-Spy</u>.Win32.BZub.dt. Protection. Download <u>virus</u> identity (IDE) file ... www.sophos.com/security/analyses/trojcimuzax.html - 16k - <u>Cachad</u> - <u>Liknande sidor</u>

<u>Troj/Cimuz-AW - Spyware Trojan</u> - Sophos threat analysis Analysis of the Troj/Cimuz-AW Spyware Trojan, with information on its behaviour and recovery ... The file **ipv6monl.dll** is detected as Troj/Cimuz-Gen. ... www.sophos.com/security/analyses/trojcimuzaw.html - 16k - <u>Cachad</u> - <u>Liknande sidor</u> [Fler resultat från www.sophos.com]

IDG.se Eforum - Virus problem igen!

O23 - Service: AVG Anti-**Spyware** Guard - Anti-**Malware** Development a.s. - C:\Program ... 2006-10-09 23:20 64216 --a----- C:\WINDOWS\system32\ipv6monl.dll ... eforum.idg.se/viewmsg.asp?entriesid=875617 - 164k - <u>Cachad</u> - <u>Liknande sidor</u>

AusCERT - AL-2006.0097 -- [Win] -- Flickr site spoofed by trojan email

IMPACT: The **trojan malware** intercepts web browser form data to capture online banking ... The **malware** is installed as C:\windows\system32**ipv6monl.dll** and ... www.auscert.org.au/render.html?it=6907 - 19k - <u>Cachad</u> - <u>Liknande sidor</u>

ipv6monl.dll - Dangerous - Greatis Software

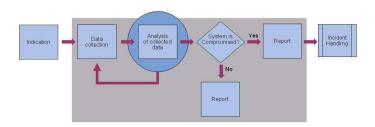
UnHackMe - ROOTKIT KILLER! It is a time to check your computer. ... Need help ? Get rid of a Virus / Trojan / Adware / Spyware ? RegRun - User's Choice ... www.greatis.com/appdata/d/i/ipv6monl.dll.htm - 22k - Kompletterande resultat - Cachad - Liknande sidor

STATUS: FINISHED

ipv6monl.dll - VirusTotal

Complete scanning result of "ipv6monl.dll", received in VirusTotal at 11.06.2006, 11:46:09 (CET).

Antivirus Update Result Version AntiVir 7.2.0.37 TR/Spy.BZub.EC.2 11.06.2006 Authentium W32/Goldun.gen1 4.93.8 11.05.2006 Avast 4.7.892.0 11.03.2006 no virus found PSW.Generic2.OPF AVG 386 11.04.2006 BitDefender 7.2 11.06.2006 Trojan.Proxy.Cimuz.AO CAT-QuickHeal 8.00 11.04.2006 no virus found ClamAV devel-20060426 11.06.2006 Trojan.Bzub-38 DrWeb Trojan.PWS.Tanspy 4.33 11.06.2006 eTrust-InoculateIT no virus found 23.73.47 11.06.2006 Win32/Brospy.CT 30.3.3178 eTrust-Vet 11.06.2006 Ewido 4.0 11.05.2006 Logger.BZub.ey 2.82.0.0 Fortinet 11.06.2006 suspicious F-Prot 11.04.2006 W32/Goldun.gen1 3.16f F-Prot4 4.2.1.29 11.04.2006 W32/Goldun.gen1 Ikarus 0.2.65.0 11.05.2006 no virus found Kaspersky 4.0.2.24 11.06.2006 Trojan-Spy.Win32.BZub.ey McAfee 4888 11.03.2006 Generic PWS.a Microsoft 11.06.2006 PWS:Win32/Cimuz.gen 1.1609 NOD32v2 1.1854 11.06.2006 probably a variant of Win32/Spy.BZub Norman 5.80.02 11.06.2006 W32/Goldun.aen1 Panda 9.0.0.4 Suspicious file 11.06.2006 Troj/Cimuz-Gen Sophos 4.10.0 10.26.2006 TheHacker 6.0.1.112 11.03.2006 Trojan/Spy.BZub.ey Trojan.Spy.Win32.BZub.59D1 UNA 1.83 11.03.2006 VBA32 3.11.1 11.06.2006 suspected of Malware.Agent.4 VirusBuster 4.3.15:9 11.05.2006 TrojanSpy.Agent.BD.Gen


Aditional Information	
File size: 67288 bytes	
MD5: 290bac6046976d2d5b76e90dcace4cba	
SHA1: 09279679f2d9032d02bf020da25c7f14e9dd5bcc	
packers: UPX	

Recorded network traffic

Stream Content GET /flickr.html HTTP/1.1 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash. */* Accept-Language: en-us Accept-Encoding: gzip, deflate User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) Host: Connection: Keep-Alive HTTP/1.1 200 OK Date: wed, 25 oct 2006 15:05:51 GMT server: Apache/2.0.54 (Debian GNU/Linux) mod_jk/1.2.6 DAV/2 mod_python/3.1.3 Python/2.3.5 PHP/4.3.10-16 mod_ss]/2.0.54 OpenSSL/0.9.7e mod_per1/1.999.21 Per1/v5.8.4 Last-Modified: Fri, 20 oct 2006 00:02:33 GMT ETag: "d01636ca-31a7-d225f840" Accept-Ranges: bytes Vary: Accept-Encoding Content-Encoding: gzip Content-Length: 3856 Connection: close Content-Type: text/htmlk2...0..&.mH<.k .T>....^..F.....}.[...g.*.V....t>.....t>......%..?..8#F....Y...\.h....y..G].._...t.h..oF....D<rY...nt.....LD..g4...C.R [.h."JfQ.....tb../b^T.-}f.[.:1"..Yx.1..M.....v`.X<:g'.#[>...3.>.> .??[...oyd].[.../..B.k...x.o.?R\$z.-.>...K.....4....T..H=...?..p.s....?..s..U`.a..p....%.)..u."....r.].h.....\.1E . EyN(wN... M...+..c....>..<....iT[......Iy.....4..p.....8".c.NO..\./..M.F]>...P.....8 ...sj.pEpD.'.....)N.H/...!_...".+..\...o.bc.z....w.o....w..\....Y.j...J.b~..b.....hvD..\$...z \$...x\.YtD."...&..2js....L..R.`=.^.6.h...D....#.h.n....).<&o`...Ŵ/.#..].U.1...."1?"....Q.....5T._q......q-...O.`.!..5iJG.<....".w.-. r..UGUXI... U..v>~.r.7......1.)?o=F....1..<./..5..dK..&....m.c4.D.Gu..e8<.....G.w....p. .[.;.k.#..U.....B...+.. ..d>./g.. 10.1'..^M;..{.d...\$F.....n..I.?..{....=....R.z{.....P +..S....=q (....m...g......7.p ?..*..i1C.D.U..b..Ss.....uA.Ea.....U..' `eY1 ..D.c....J.....n}%.....D6.,Jd"?...gdq...&d.z.-....o%.b...... ...(.m.9..q.`.0...[P..s.<>L+.s...7.'.U..+...?DL)..\$+jr[vK.;\$.....\$...ECNIa }..5<:.s]v.YA...c..'D.i..<d..-eiOWS..5-.R..a.../...R".d..nf.h=.9....T'.M.../I...B.q.m7....U@..a(..7..67.mnw.F+6.U.a=...Mz,...*\$..k.X.J`....p.....w*.s.".P.q..`":vY.1.*.z...J...f (\..m.*.o.J..[....*&.mx.....Y...q.*K....._..d.....v\$..1..3..(d.>.aH.]...I1'?jM...z...2r.K:f.n@..UN.c.: +z.*.L*....0.^.....=..>"`:...8...6..H..R}.y.K;..q...s.q....r.3.u+.6Pu..5..+.J 251....(...>k. .eJ....,d.YM.g.I.....A}P..j.=KM7v._...xl..%w.X....a..O.mi<....@sa...o.....R.#.w...m..#.. ...6..M.)er.}..vw..... .P3qh0.pk.. .)K.^.!...].Q.....wD..@.(7.1..ER..onp.0.Q`A}.^r75&...~..Q..y&......B..........*...={....C9...^v.s...v6..<...T.n.v(x..s...v.w..n4c. +jg....*?"i..@.d.3..∖.A.+.......!e8......<..U.t...T..z.....~...s..>f.o.?...axb...A..∖.'f.V...B.m. \o....H.y.;..@....GoMg.j....H.N.b.U.4...P.FW...C....VYx.....:E.9%6..\...M,.6!?G\$.H. ..Go....;...691....e...[..=...\x.v7.1.@.\|."[.....J.u#..s{C....w.... M.r..,K...4.wb×j.e.9.f. .,R..`.}...R#n.....LX..>5.e..N..A.....C.......0~.wq..F6. .y.

Data Analysis

Memory Dump

Data Analysis Memory Dump

Memory dump – Data of interest

- Processes (running and terminated)
- Drivers (create threads running in the context of the system process)
- Threads (running and terminated)
- Network activity (listening, active and closed sockets)
- Timestamps of all sort

Data Analysis Memory Dump

Memory dump – Different types of dumps

- Physical Memory Dump
- Microsoft Crash dump
- Pagefile
- Hiberfile

Data Analysis Physical Memory Dump

Physical Memory dump

- 1:1 mapping of the physical address space
- Does not have conceptual information about processes

Methods to enumerate information

- 1. Look for a printable string
- 2. Reconstruct internal data structures
- 3. Search for static signatures of kernel data structures

Method 1: Search for sequences of printable characters.

- Some implementations:
 - UNIX strings(1) generally only catches ASCII text GNU: mind the option "–e" to catch Unicode strings
 - Sysinternals strings defaults to Unicode and ASCII, minimum length 3 characters <u>http://www.microsoft.com/technet/sysinternals/utilities/strings.mspx</u>

Foundstone BinText by <u>Robin Keir</u> / <u>Foundstone</u>

File to scan	D:\Projekte	Wind	ows Speicher\Sammlung\dfrws2005-physical-memory1.ddmp <u>Browse</u>
Advanced y	liew		Time taken : 14.265 secs Text size: 7781641 bytes (7599.
File pos	Mem pos	ID	Text
A 0004D 99A	0004D99A	0	(0) NULLENC: BO2K NULL Encryption
A 0004D9C8	0004D9C8	0	me, Remote Share Path[Username:Password]
A 0004DA9A		0	(1) AES: BO2K AES Strong Encryption
A 0004DAC3		0	Value Name
A 0004DB9A		0	> End Encryption Handlers
A 0004DBBC		0	Path/New Key Name
A 0004DC9A		0	> Auth Handlers:
A 0004DCB2		0	ue Full Key Path\\Value Name New Value Name
A 0004DCEC		0	ROWSE
A 0004DD9A		0	(0) NULLAUTH: Single User / Encrypt Only
A 0004DDCC	0004DDCC	0	crosoft
A 0004DD	0004DDDD	0	ments
A 0004DE9A		0	> End Auth Handlers:
A 0004DEB7		0	s Full Key Path
A 0004DECE		0	IP Address:Port
A 0004DF9F		0	File/Directory\List Directory Pathname
A 0004DFCD		0	nd linel
A 0004E09A		0	(56) File/Directory\Find File Root path Filename Spec
A 0004E0DE		Ô	Str]
A 0004E19A		0	File emit started from: 192.168.0.2:1069,STCPI0,NULL,NULLAUTH
A 0004E29A		0	SEMAPH~1.PDF 98629 -A 05-30-05 12:47 Semaphores Using Stochastic Configurations.pdf
A 0004E366		0	"6\$CT
A 0004E39A		0	(59) File/Directory\Move/Rename File Pathname New Pathname
A 0004E3DC		0	struments.gtx
A 0004E49A		0	P2PMOD~1.PDF 58374 -A 05-30-05 12:49 P2P Model Checking.pdf
A 0004E59A	0004E59A	0	3 matches found.
4 0004EED0	00045500	ñ	I Disexed ID-Massed
<			

Method 1: Search for sequences of printable characters.

Drawbacks:

⇒No context, difficult to interpret.

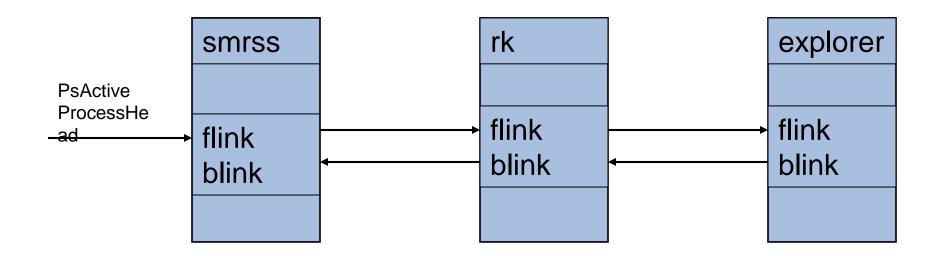
⇒A lot of interesting information is not in a printable format:

- Timestamps (FILETIME, uint32)
- IP addresses

And how can we find that?

- 1. Look for printable text.
- 2. Reconstruct internal data structures.
- 3. Search for static signatures of kernel data structures.
- 4. Look for deviations between the results from different levels and from usermode (cross-view detection).
- 5. Look for "bad" structures.

Method 2: Reconstruct internal data structures.


- Most data is kept in Lists and Trees.
- From a known starting point reconstruct and follow the list/tree and enumerate the objects found (aka "list-walking").
- The most important structure is: _LIST_ENTRY, a double-linked list element.

kd> dt _LIST_ENTRY +0x000 Flink : Ptr32 _LIST_ENTRY +0x004 Blink : Ptr32 _LIST_ENTRY

258

Enumerating the list of processes

Method 3: Search for signatures of kernel data structures.

- Simple, brute-force searching.
- Largely independent from the dump file format.
- Fast, low memory requirements.
- Problems:
 - Assuring a sufficient selectivity.
 - Signature should be based on essential data, otherwise it can be easily defeated.

Method 3: Search for static signatures of kernel data structures.

Memory management – POOL_HEADER

Object management – OBJECT_HEADER

Object – EPROCESS in this example

	Ó	1	2	3	4	5	Ģ	- 7	8	9	Ą	B	Ç	D	Ę	F	0123456789ABCDEF
E1:FB30h:	2C	СВ	1C	FF	00	00	00	00	00	00	00	00	00	00	00	00	,
E1:FB40h:	04	80	01	16	50	72	6F	EЗ	02	00	00	00	01	00	00	00	Pro. <mark></mark>
E1:FB50h:	60	51	E2	FC	00	00	00	20	20	В6	46	80	78	0C	00	E 1	`QF.x
E1:FB60h:	03	00	1B	00	01	00	00	00	68	CB	1C	FF	68	СВ	10	$\mathbf{F}\mathbf{F}$	hh
E1:FB70h:	70	CB	1C	FF	70	CB	1C	$\mathbf{F} \mathbf{F}$	00	80	С9	06	00	90	05	07	pp
E1:FB80h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	_																
E1:FD3Oh:	04	80	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
E1:FD40h:	E8	07	ΕO	FC	00	00	00	00	48	CD	1C	FF	48	CD	1C	$\mathbf{F} \mathbf{F}$	
E1:FD50h:	(00)	00	00	00	00	00	00	00	00	00	00	00	64	66	72	77	(.)dfrw
E1:FD60h:	73	32	30	30	35	2 E	65	78	65	00	00	00	00	00	00	00	s2005.exe
E1:FD70h:	00	02	00	04	00	00	00	00	00	00	00	00	00	00	00	00	
E1:FD80h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
E1:FD90h:	00	00	00	00	00	00	00	00	0A	00	00	00	00	00	00	00	
E1:FDAOh:	03	00	00	00	00	00	00	00	26	00	00	00	00	00	00	00	

Method 3, Memory Management Layer.

- Memory is managed through the CPU's Memory Management Unit (MMU).
- Allocation granularity is a whole page (usually 4 kiB).
- Concept of "pools": several pages are preallocated to form a pool of memory.
- Small allocations from pool, granularity 8 Bytes (Windows 2000: 32 Bytes).
- Mostly2 Pools:
 - non-paged pool (frequently used information like Processes, Threads)

⇒ paged-pool (allocations also can be found in page file)

Set of Allocators:

- nt!ExAllocatePool deprecated
- nt!ExAllocatePoolWithTag most common
- nt!ExAllocatePoolWithQuotaTag charges current process
- nt!ExAllocatePoolWithTagPriority specifies importance of request

• • •

Matching set of Deallocators:

nt!ExFreePoolnt!ExFreePoolWithTag

. . .

Some subsystems provide their own set of (de)allocators.

_POOL_HEADER structure

>dt nt!_]	POOL_HEADER					
+0x000	PreviousSize	:	Pos	0,	9	Bits
+0x000	PoolIndex	:	Pos	9,	7	Bits
+0x002	BlockSize	:	Pos	0,	9	Bits
						_
+0x002	PoolType	:	Pos	9,	7	Bits
	PoolType PoolTag		Pos Uint	_	7	Bits
+0x004		:	Uint	:4B	7	Bits
+0x004 +0x004	PoolTag	:	Uint	2 B	7	Bits

BlockSize:

size of this allocationpointer to next allocation

PreviousSize:

- size of the previous allocation
- pointer to previous allocation
- 0 for the first allocation in a page

Both:

measured in units of 8 bytes (Windows 2000: 32 bytes).

includes the _POOL_HEADER (8 bytes), so must be 1 at least.

Pool type:

- Declared in Windows Development Kit, file wdm.h.
- values used in memory increased by 1.

Distinction:

•

- 0 = block is free (deallocated)
 odd = non-paged pool
- even = paged pool

PoolTag:

According to documentation of ExAllocatePoolWithTag in MSDN:

- ⇒up to 4 character literals
- ASCII values between 0 and 127
- stored in little-endian (reverse) byte-order '1234' stored as '4321'
- every allocation code path should use a unique pool tag
- "protection" bit for kernel objects

There is no registry for pool tags.

Every application is free to use any pool tag!

Method 3, Object Management Layer.

struct _	OBJECT_HEADER, 12	ele	ements, 0x20 bytes
+0x000	PointerCount	:	Int4B
+0x004	HandleCount	:	Int4B
+0x004	SEntry	:	Ptr32
+0x008	Туре	:	Ptr32 to struct _OBJECT_TYPE
+0x00c	NameInfoOffset	:	UChar
+0x00d	HandleInfoOffset	:	UChar
+0x00e	QuotaInfoOffset	:	UChar
+0x00f	Flags	:	UChar
+0x010	ObjectCreateInfo	:	Ptr32
+0x010	QuotaBlockCharged	:	Ptr32
+0x014	SecurityDescriptor	:	Ptr32
+0x018	Body		

struct _OBJECT_TYPE, 12 elements, 0x190 bytes

+0x000	Mutex	:	struct _ERESOURCE
+0x038	TypeList	:	struct _LIST_ENTRY
+0x040	Name	:	struct _UNICODE_STRING
+0x048	DefaultObject	:	Ptr32 to Void
+0x04c	Index	:	Uint4B
+0x050	TotalNumberOfObje	ect	ts : Uint4B
+0x054	TotalNumberOfHand	lle	es : Uint4B
+0x058	HighWaterNumberOf	EOł	ojects : Uint4B
+0x05c	HighWaterNumberOf	ΞHa	andles : Uint4B
+0x060	TypeInfo	:	struct _OBJECT_TYPE_INITIALIZER
+0x0ac	Key	:	Uint4B
+0x0b0	ObjectLocks	:	[4] struct _ERESOURCE

PoolTags to look for - nt!ObpAllocateObject

004D7BD4	CheckForTag:
004D7BD4	cmp edi, esi ; null object?
004D7BD6	<pre>mov eax, 'TjbO' ; default pool tag</pre>
004D7BDB	jz short AllocateMemory
004D7BDD	<pre>mov eax, [edi+_OBJECT_TYPE.Key]</pre>
004D7BE3	AllocateMemory:
004D7BE3	or eax, 8000000h ; set protection bit
004D7BE8	push eax ; Tag
004D7BE9	mov eax, [ebp+arg_10]
004D7BEC	add ecx, eax
	auu ecx, eax
004D7BEC	

TypePointers

Type pointer depends on:

OS version

amount of main memory

other factors?

Values to scan for:

- →PsJobType
- ⇒PsProcessType

PsThreadType

magic numer 0xbad0b0b0, indicates a defunct object (not necessarily a process or thread)

The object layer is not suitable to generate static signatures.

Method 3, Object Specifics – Processes and Threads.

struct _EPROCESS, 94 ele	ements, 0x290 bytes
+0x000 Pcb	: struct _KPROCESS
+0x000 Header	: struct _DISPATCHER_HEADER
+0x000 Type	: 0x3
+0x001 Absolute	: 0
+0x002 Size	: 0x1b
+0x003 Inserted	: 0
+0x004 SignalState	: 0
+0x008 WaitListHead	: struct _LIST_ENTRY
•••	
+0x070 LockEvent	: struct _KEVENT
+0x000 Header	: struct _DISPATCHER_HEADER
•••	
+0x130 WorkingSetLock	: struct _FAST_MUTEX
+0x000 Header	: struct _DISPATCHER_HEADER

272

Method 3, Object Specifics – Drivers.

struct _DRIVER_OB	JECT, 15 element	s, 0xa8 bytes
+0x000 Type	: Int2	В
+0x002 Size	: Int2	В
+0x004 DeviceO	bject : Ptr3	2 to struct _DEVICE_OBJECT
+0x008 Flags	: Uint	4B
+0x00c DriverS	tart : Ptr3	2 to Void
+0x010 DriverS	ize : Uint	4B
+0x014 DriverSe	ection : Ptr3	2 to Void
+0x018 DriverE	xtension : Ptr3	2 to struct _DRIVER_EXTENSION
+0x01c DriverNa	ame : stru	ct _UNICODE_STRING
+0x024 Hardwar	eDatabase : Ptr3	2 to struct _UNICODE_STRING
+0x028 FastIoD	ispatch : Ptr3	2 to struct _FAST_IO_DISPATCH
+0x02c DriverI	nit : Ptr3	2 to long
+0x030 DriverS	tartIo : Ptr3	2 to void
+0x034 DriverU	nload : Ptr3	2 to void
+0x038 MajorFu	nction : [28]	Ptr32 to long

Microsoft's Debugging Tools

ile	Edit	View	De	ebug	V	Vinde	w	Help																					
B	淅	喕	R	10	1	C	1	٤n	7)	01	(}	-*{}	đ	9	2	50	a.e	öx		」庭	9 6		 2	10	1	8	A _A		
om	mand																					 							2_
d>	dt	EF	RO	ES:	5					823	2000		104																- 1
	$+0 \times 0$				000 0404	2 -023/3	100		9			CES																	
	+0x0								1	_E	K_P	USH	LO	CK															
	+0x0								35	- <u>L</u>	ARG	E_I E I	NIE	GEI	<u>د</u>														
	+0x0						+	1																					
	+0x0 +0x0	100	IIn		⇒P·	roo	Lec	TA		P+-	n_72	UND Vo	id.		56														
	+0.20	188	Act	1 176	=P	nor	000	Tir	1ke	864	TT	ST	FNT	ΡV															
	+flxf	190	Our	ntal	Isi	age	0.50			13	ĪĪ	int	4R																
	+0x0	9c	Ôuc	otal	Pea	ak				ΪĴ	ែប	int	4B																
	+0x0 +0x0 +0x0 +0x0	a8	Cor	mi	tCI	har	qe			Ūi	nt4	В																	
	+0x0)ac	Pea	akV:	ir	tua	ĪSi	ze																					
	+0x0									Uiı																			
	+0x0						ces	sLi	nk	s :	_L	IST	_EN	TRY	Ζ														
	+0x0)bc	Del	bugl	Po:	rt						٧o																	
	+0x0	JC0	Exc	cep.	tic	onP	ort		13	Pt:	r32	Vo	id		-		• - 2												
	+0x0					abl	e		1	Pt:	r32	_H AST	AND.	LF-	IA.	BTF	<u>i</u>												
	+0x0 +0x0					-22	n	203	8	Ui:	K_F	ASI. D	_RE	E .															
	+0x0	DCC DAO	voj vaz	-KII Imer	ng	Set.	rac sti	e		011	nt4 V	CIIA	DDE	ം	our:	CV.													
	+0x0												RDE	D_1	101.	EA													
	+0x0)f 4	For	· b Ti	nP-	roa	res		12	Pt-	n32	ਸ਼ੋ	THP	F۵I	n i														
	+0x0	if8	Hai	dw	are	=Tr	iac	er.		Ilii	nt.4	B	1 1117.		10														
	+0x0	fc	Phy	si	ca.	IVa	dRo	ot	8	Pt:	r32	М	ΜÀ	VL	TA	BLE	8												
	$+0 \times 1$											Vo					002												
	+0x1	.04	Nur	be:	rO:	fPr																							
	+0x1	.08	Nur	ibe:	rO:	fLo	cke	edPa	qe	s :	Ui	nt4	в																
	+0x1				Pro	oce	SS					Vo																	
	$+0 \times 1$.10	Jol)								_E																	
	+0x1													10															
	+0x1	.18	Sec	ti		Bas	eAc	idre	888	: 1	Ptr	32	VOI	d	0	OTTO	T 1	DT	0.07	22									
	+0x1	.1C	Que	tal	BI		II - 1	2.120	8	Pt:	r32	- <u>E</u>	ACE	CES		QUC	ALC	BL	UCF	92 1									
	+0x1 + 0x1	24	WOI	221	ug:	oet ode	wat	cn	-	FU:	C 3 2	22	AGE.	r Al A	1-1.	1	510	JRY											
_							wat	au	.on	es. 3	. ur	52	201	u -												_		 	
	d	+	EPH	ROCI	ES	3																							

Display Commands

- db display BYTEs and ASCII values
- dw display WORDs
- dd display DWORDs
- da display ASCII characters
- du display UNICODE characters
- there are some more
- d display the next block of data in the same format

Display Commands

d* commands default to virtual addresses

mind the proper process context!

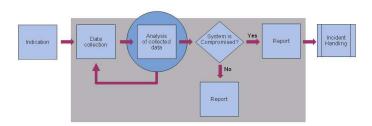
set context with .process

for physical addresses use:

⇒d* /p

→ !db, !dw, !dd, !du (there's no !da)

Display Commands


- dt display type definition
- Syntax: dt options module ! structure field address
- Options:
 - $\rightarrow -v v$ verbosely report size and element count of a structure
 - ⇒-b recurse
 - $\rightarrow -p$ apply to physical address
 - -r recursively display substructure
 - $\rightarrow -rn$ recursively display substructure, limited to *n* (1-9) levels

Resolve Symbols

- A symbol is a named address.
- To resolve a symbol: ? symbol
- **To dereference a symbol as a pointer:** poi(symbol)

Data Analysis

Memory Dump (continued)

Tools to use – Crash Dumps (DMP)

- Microsoft Debugger
- Microsoft Kernel Memory Space Analyzer
- Both are powerful tools, but not intended for forensic purposes.

Tools to use – Raw Dumps (dd)

- kern.pl by Harlan Carvey
 - searches for kernel image at several fixed physical addresses (M. Burdach 2005)
 - when found, evaluates VERSION resource

os.pl by Harlan Carvey

Fingerprinting based on physical addresses, PID of system/idle process etc.

Both are available from

http://downloads.sourceforge.net/windowsir/ostest.zip

Tools to use – Raw Dumps (dd)

PoolFinder

http://computer.forensikblog.de/files/poolfinder/poolfinder-current.zip

Searches for structures on the memory allocation layer.

Also works on crash dumps, though results are harder to interpret.

Tools to use – Raw Dumps (dd)

PTFinder

http://computer.forensikblog.de/files/ptfinder/ptfinder-current.zip

Searches for processes and threads on the object layer.

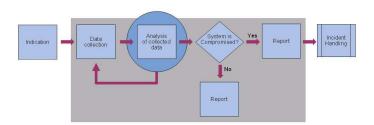
- Also works on crash dumps, though parts of the results are harder to interpret.
- Display of process/thread tree requires GraphViz, ZGRviewer is recommended.

Front end by Richard F.McQuown <u>http://www.forensiczone.com/ptfinderfe/PTFinderFE.htm</u>

Tools to use – Raw Dumps (dd)

- Volatility by Aaron Walters and Nick L. Petroni <u>https://www.volatilesystems.com/default/volatility</u>
- Lists DLLs, open files, sockets, TCP connections.
- Volatility employs both list-walking amnd scanning routines

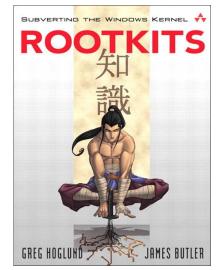
Tools to use – Raw Dumps (dd)


- KnTLIst by GMG Systems, Inc. <u>http://www.gmgsystemsinc.com/knttools/</u>
- Runs in batch-mode.
- Gives you an enormous amount of information (more than 2 MB of text, depending on the case).
- Commercial, limited distribution.

Methodology

- Determine dump file type.
- Determine OS version.
- Chose suitable tools.
- Identify processes, threads, drivers and other objects depending on the case.
- Look for unusual data structures and hidden objects.
 - Cross-view detection
 - → "Exploit the rootkit paradox" (J. Kornblum).
- Build timeline of events.

Excursus


Rootkit

Excursus Rootkits

Rootkit

The term rootkit has been around for more than 10 years. A rootkit is a "kit" consisting of small and useful programs that allow an attacker to maintain access to "root," the most powerful user on a computer. In other words, a rootkit is a set of programs and code that allows a permanent or consistent, undetectable presence on a computer.

Different types of rootkit

- User Mode (Ring3)
- Kernel Mode (Ring0)
- Virtualized
- Hardware/Firmware

Rootkit classification

- Type 0
- Type 1
- Type 2
- Type 3

Excursus Rootkits

Hardware/Firmware rootkits

ACPI

John Heasman - Implementing and Detecting Implementing and Detecting an ACPI BIOS Rootkit <u>https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf</u>

PCI

John Heasman - Implementing and Detecting a PCI Rootkit <u>http://www.ngssoftware.com/research/papers/Implementing_And_Detec</u> <u>ting_A_PCI_Rootkit.pdf</u>

Not covered in this course

Excursus Rootkits

Virtualization rootkits

Subvirt

Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang and Jacob R. Lorch

www.eecs.umich.edu/~pmchen/papers/king06.pdf

Blue Pill

Joanna Rutkowska http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html

Not covered in this course

Kernel Mode rootkits (Ring0)

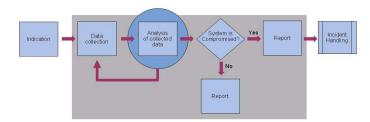
- Executes with the same privileges as the operating system
- Usually works by hooking OS System tables

User Mode rootkits (Ring3)

Executes with the same privileges as the existing application

Excursus Rootkits

Persistant rootkits vs. Memory-based rootkits (1)

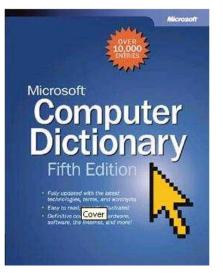

- Persistent Rootkits wants to survive a reboot, hence the rootkit must be initiated from some ware
 - Registry keys (run keys, file extensions)
 - Startup files (win.ini, system.ini, config.nt, autoexec.nt)
 - Patching binaries on disk (Boot Loader, Kernel, Drivers)
 - using non-existing SafeDIISearchMode
 - Add-on to an existing application (BHO, Firefox/Thunderbird extensions)
 - Master Boot Record (MBR)

Persistent rootkits vs. Memory-based rootkits (2)

- Memory-based Rootkits (stealth by design) exist only in memory and does care about surviving a reboot
 - Most traces of this types of rootkits disappears when the system is rebooted.

Different rootkit techniques and how we detect it

Different rootkit techniques and how we detect it


Patching the binary on disk

- Usually old-school user mode rootkits
- Ways to detect the infection
 - Checksums
 - Static analysis of binaries
 - Online resources

Different rootkit techniques and how we detect it

Hooking

hook n. A location in a routine or program in which the programmer can connect or insert other routines for the purpose of debugging or enhancing functionality.

Different rootkit techniques and how we detect it

Function hooking – Classification

- Hooking of a single program (API hooking)
- Hooking of system tables or exported functions
- Hooking unexported functions

Different rootkit techniques and how we detect it

Patching the binary in memory (Hot Patching)

- Ways to detect the infection
 - Ichkimg detects corruption in the images of executable files by comparing them to the image on disk
 - Ichksym detects corruption in the images of executable files by comparing them to the copy on a symbol store or other file repository
 - Inspect system tables and functions

Different rootkit techniques and how we detect it

Hooking descriptor tables

- GDT (Global Descriptor Table)
- LDT (Local Descriptor Table)
- IDT (interrupt Descriptor Table)

Different rootkit techniques and how we detect it

Hooking descriptor tables

IDT (Interrupt Descriptor Table) - Each CPU has its own interrupt table

kd> !idt -a (Windows XP and later versions)

Different rootkit techniques and how we detect it

Function hooking - Hooking a single program (API hooking)

- Hooking IAT (Import Address Table)
- Hooking Window Messages
- False positives (DLL forwarding)

Different rootkit techniques and how we detect it

Function Hooking - IDT

- IRP (I/O Request Packets) Tables
- IDT (Interrupt Descriptor Table) Each CPU has its own interrupt table
 - kd> !idt -a (Windows XP and later versions)

Different rootkit techniques and how we detect it

Function Hooking - SSDT (1)

- SSDT (System Service Dispatch Table)
 - nt!KeServiceDescriptorTableShadow
 - nt!KeServiceDescriptorTable
 - win32k!W32pServiceTable

Different rootkit techniques and how we detect it

Function Hooking - SSDT (2)

- SSDT (System Service Dispatch Table)
 - kd> dps poi (nt!KeServiceDescriptorTableShadow) I dwo (nt!KeServiceDescriptorTableShadow + 0n8)

Different rootkit techniques and how we detect it

Function Hooking - System wide hook (2)

Affects every process in the system

⇒ IAT

→ EAT

→ SDT

→ SST

- KiServiceTable
- Ways to detect the infection

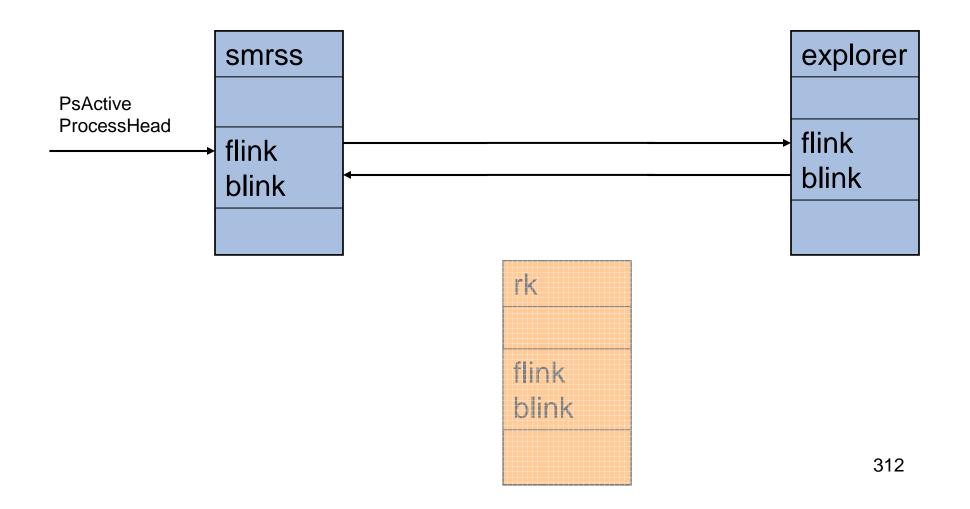
Different rootkit techniques and how we detect it

Function Hooking - Inline function hooking (Hot Patching)

- Replaces code inside the original function
- Ways to detect the infection
 - → !chkimg
 - enumerate all exported functions
 - kd> x *!*
 - kd> u address Compare with a list of known instructions

Different rootkit techniques and how we detect it

Function Hooking – Hooking unexported functions


- Replaces code in the original function
- Ways to detect the infection

⇒ kd> u

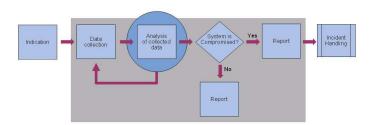
Compare with a list of known instructions

Different rootkit techniques and how we detect it

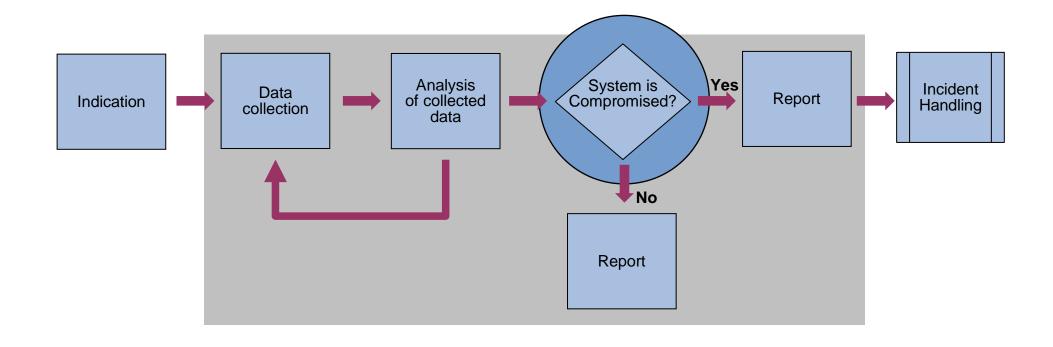
DKOM - Direct Kernel Object Manipulation (1)

Different rootkit techniques and how we detect it

DKOM - Direct Kernel Object Manipulation (2)

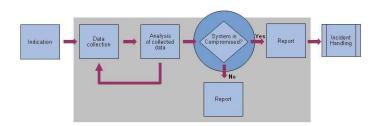

- Works by unlinking doubly linked lists
- Ways to detect the infection
 - Cross view detection
 - List all loaded objects (processes, threads and drivers) by following the memory pool allocations
 - List all threads that are waiting for processor cycles
 - Compare with list enumerated from doubly linked lists

Different rootkit techniques and how we detect it


Injecting threads in running processes

- Leaching the process
- Ways to detect the infection

Questions & Answers



Incident Flowchart

Exercise

Is the system compromised?

Exercise Is the system compromised?

Exercise 1

- Leaching the process
- Ways to detect the infection

Questions & Answers

Thank you for your attention!

Pär Österberg Medina

Sveriges IT-Incident Centrum par.osterberg@sitic.se