
MISP 3 - Teaching an Old Dog New Tricks
Paving the way forward

Threat Sharing

Andras Iklody & Sami Mokaddem

MISP Project
https://www.misp-project.org/

https://www.misp-project.org/


$ whoarewe

1 35



Agenda

Why MISP 3?
The plan
Considerations

2 35



Why MISP 3?



> An outdated version of the framework

MISP is based on CakePHP 2.x
Ï End of Security Support in June 2021
Ï Maintained fork github.com:MISP/cakephp.git

CakePHP supports PHP version <=7.4
Ï End of Security Support in November 2022

3 35



> Tacked on mechanics

MISP supports a wide range of use
cases...
... meaning loads of feature-clutter the
interface
All options visible regardless of the user
profile
Lack of coherent page navigation

4 35



> Shortcomings due to initial design choices

To list a few..
Sub-optimal database structure
Start with something small, build it out has its
disadvantages

Ï Attribute type, value not a first-class citizen
Ï Logs all in one place
Ï Indexing rework (performance and moving validation to the

DB)
Confusing mess of multiple graphing interfaces
Files - Especially tricky with dockerised and load balanced
setups
Tagging

5 35



> The ongoing plan forward

Port of the codebase to a new stack
Ï CakePHP 2.x → CakePHP 5

Rework of old baggage
Ï Database updates
Ï Front-end libraries (Bootstrap, Graphing, ...)
Ï Background jobs & Scheduled tasks
Ï Purging old libraries

6 35



> Pruning unused / dead end functionalities

Populate using the templating system
Deprecated export functionalities
Discussion / Posts
· · ·

7 35



Step I - Preparing the grounds



Step I - Preparing the grounds

Refactoring the codebase for improved portability using
factories

Framework-agnostic
Reusable code for front and back-end
Extracting and encapsulating specialised functionalities into
libraries

8 35



Step I - Preparing the grounds

Setting the stage with Cerebrate
Dev started in May 2020, built on MISP3’s stack
Application built on top of ported MISP libraries
New UI laying the foundation for MISP 3
Streamlined integration of new features into MISP3Ï Tagging, Inbox system, Settings, · · ·

9 35



Step I - Identifying inter-dependencies

Migrate least connected part first

10 35



Step II - Porting the codebase



> Step II - Roadmap for a 3-wave porting

11 35



> Step II - Roadmap for a 3-wave porting

Wave 1 Least complex/inter-connected models
Ï E.g. Blocklist, Warninglist, Object-template, User

Wave 2 More glue relying on component already migrated
Ï E.g. Authkey, *-Tag, Taxonomy

Wave 3 The actual meat of the application
Ï E.g. Attribute, Event, Workflow

12 35



> Step II - Test driven development

Complementary to PyMISP test
In-framework Unit Tests and Endpoint Tests
Improved CI pipeline and enforced code standard

13 35



> Codebase Migration: Where We Stand I

Migration o�cially started in January 2023

Around 27 tables have been moved
Some partially, others completely

14 35



> Codebase Migration: Where We Stand II

Migration speed ramping up. The more we port, the faster
we go

Even while supporting and improving 2.4

15 35



Look and Feel



Codebase Migration: Look and Feel I

Most of the changes are invisible
Some user interfaces can still be displayed

16 35



Codebase Migration: Look and Feel II

17 35



Codebase Migration: Look and Feel II

18 35



Codebase Migration: Look and Feel II

19 35



Codebase Migration: Look and Feel II

20 35



Codebase Migration: Look and Feel II

Updating Bootstrap greatly
improves aesthetics
And allow us to integrate themes
seamlessly

21 35



Codebase Migration: Look and Feel II

22 35



Step III - The TODOs



> Redefine how we interact with data I

Indicator centric perspective
Ï Alternative to the Event centric view
Ï Unified view of everything we know about a given Indicator
Ï Allows us to take better decisions
Ï Enable users to manage their IoC working set
Ï Start an investigation more easily from a single indicator

23 35



> Redefine how we interact with data II

Unified search mechanics
Ï Code deduplication
Ï Streamlined way to search for data
Ï Opening up the full power of the API searches to UI users
Ï Translation layer for the deprecated endpoints

24 35



Redefine how we interact with data III

Refactor the Event view
Ï Key Elements at first glance
Ï Emphasis on the context (Insights, Taxonomies, Galaxies,

Correlation, ·)
Ï Massive performance gains by moving to the composition of

separate atomic endpoints
Ï Unified graph interface
Ï Sneak peak ? é

25 35



Sneak peak of the new Event view - WiP

26 35



Considerations



> MISP Core format

Created in 2012, O�cially became a standard in 2016
No breaking changes since its birth, And we’ll maintain this
streak
Format will keep evolving to support new functionalities

27 35



> API Compatibility

The aim is to achieve a near 100% compatibility with the old
API
"Near" only due to the functionalities removed as a result of
deprecation.
Strategy: Mapping with a translation layer

28 35



> Synchronisation compatibility

API Compatibility means Synchronisation compatibility
MISP 3 servers will be able to sync with MISP 2.4 and vice
versa

BUT

MISP 2.4 → 3
Ï Full support

MISP 3 → 2.4
Ï Lossy when sharing new types of datapoints
Ï E.g: Tags on Objects

29 35



> Support for MISP 2.4

MISP 2.4 will be supported for a limited time
6 months support post MISP 3 release

Ï Potential changes/improvements on 2.4 to better support
MISP 3 interactions

30 35



> Migration support for 2.4 → 3

No one-click update; manual script execution required
Migration tools will be included in MISP 3 to help you
This allows us to make underlaying changes such as

Ï Database changes
Ï Libraries changes (e.g supervisor in favour of cake-resque)

31 35



> Installation for new instances

Simplified installation based
on package managers
Upstream Docker installer
OS targerts: Ubuntu and
RHEL

32 35



33 35



> Key take-aways from the upcoming version

Reworked UX/UI
Alternative, Analyst centric in addition to the data centric
approach
Improved search and trend monitoring tools
Improved performance and resilience
Want to get involved?
Removal of the main painpoints of MISP 2.x’s limitations
across the board

34 35



> Our hopes and expectations for the FIRST
community

We will list features marked for culling
Ï If you’re using any of them, please let us know!

We will be lauching a beta phase in the future
Ï Feedback & improvements are more than welcome!

Want to get involved?
Ï 3-x branch - MISP/MISP/tree/3.x
Ï � Project for migration - github.com/orgs/MISP/projects/2

35 / 35


	Why MISP 3?
	Step I - Preparing the grounds
	Step II - Porting the codebase
	Look and Feel
	Step III - The TODOs
	Considerations

