

Paul D. Hood & Kristian Kocher OxCERT

SAVANT

OXFORD

Paul D. Hood Security Operations Lead

Kristian Kocher UNIX Security Systems Administrator

paul.hood@it.ox.ac.uk kristian.kocher@it.ox.ac.uk

Security PERSON

What my friends think I do.

What my mum thinks I do.

What society thinks I do.

What the user thinks I do

No. I am the one who knocks.

What I think I do.

What I actually do.

SAVANT The Elastic SIEM

As network speeds increase, NSM data balloons to multi-GB per day

2.5Gbps 10Gbps 40Gbps 2002 2008 2018 (?)

We are at 40GB+ NetFlow per day

Traditional logging methods aggregate data into large compressed archive files

Traditional search techniques rely on decompression on the CLI (ie, **zgrep**)

2016-03-01	19:09:10	Ness	6	192.230.65.4	443	?>	163.1.4.198	65409	2	135	INT
2016-03-01	19:09:10	Ne	6	163.1.4.198	65409	?>	192.230.65.4	443	2	139	INT
2016-03-01	19:09:13	Ne	6	163.1.4.198	51225	?>	31.13.90.2	443	7	600	INT
2016-03-01	19:09:13	Ne	6	31.13.90.2	443	?>	163.1.4.198	51225	6	597	INT
2016-03-01	19:09:14	Ne	6	163.1.4.198	57187	?>	108.160.169.178	443	2	465	INT
2016-03-01	19:09:14	Ne	6	108.160.169.178	443	?>	163.1.4.198	57187	2	438	INT
2016-03-01	19:09:15	Ne	6	216.58.214.5	443	?>	163.1.4.198	57373	1	52	INT
2016-03-01	19:09:15	Ne	6	163.1.4.198	57373	?>	216.58.214.5	443	1	46	INT
2016-03-01	19:09:16	Ne	17	64.233.167.189	443	->	163.1.4.198	55824	2	132	REQ
2016-03-01	19:09:25	Ne	17	216.58.214.14	443	->	163.1.4.198	53596	3	245	REQ
2016-03-01	19:09:25	Ne	17	163.1.4.198	53596	->	216.58.214.14	443	3	699	REQ
2016-03-01	19:09:27	Ne	17	163.1.4.198	55824	->	64.233.167.189	443	2	121	REQ
2016-03-01	19:09:30	Ne	6	192.230.65.4	443	?>	163.1.4.198	65409	2	135	INT
2016-03-01	19:09:30	Ne	6	163.1.4.198	65409	?>	192.230.65.4	443	2	139	INT
2016-03-01	19:09:32	Ne	6	163.1.4.198	57556	?>	40.76.12.162	443	2	104	INT
2016-03-01	19:09:32	Ne	6	40.76.12.162	443	?>	163.1.4.198	57556	1	52	INT
2016-03-01	19:09:34	Ne	6	163.1.4.198	59924	?>	17.143.162.156	5223	2	205	INT
2016-03-01	19:09:34	Ne	6	17.143.162.156	5223	?>	163.1.4.198	59924	1	105	INT
2016-03-01	19:09:42	Ne	17	64.233.167.189	443	->	163.1.4.198	55824	2	132	REQ
2016-03-01	19:09:46	Ne	17	163.1.4.198	53596	->	216.58.214.14	443	3	699	REQ
2016-03-01	19:09:46	Ne	17	216.58.214.14	443	->	163.1.4.198	53596	3	245	REQ
2016-03-01	19:09:47	Ne	6	163.1.4.198	58993	?>	152.78.189.53	6667	1	113	INT
2016-03-01	19:09:47	Ne	6	152.78.189.53	6667	?>	163.1.4.198	58993	1	52	INT
2016-03-01	19:09:48	Ne	6	163.1.4.198	57187	?>	108.160.169.178	443	2	465	INT
2016-03-01	19:09:48	Ne	6	108.160.169.178	443	?>	163.1.4.198	57187	2	438	INT
2016-03-01	19:09:48	Ne	6	163.1.4.198	56841	?>	130.239.18.119	6697	1	107	INT
2016-03-01	19:09:48	Ne	6	130.239.18.119	6697	?>	163.1.4.198	56841	1	52	INT
2016-03-01	19:09:50	Ne	6	192.230.65.4	443	?>	163.1.4.198	65409	2	135	INT
2016-03-01	19:09:50	Ne	6	163.1.4.198	65409	?>	192.230.65.4	443	2	139	INT
2016-03-01	19:09:53	Ne	17	163.1.4.198	55824	->	64.233.167.189	443	2	121	REQ
2016-03-01	19:09:58	Ne	6	31.13.90.36	443	?>	163.1.4.198	57624	18	3559	INT
2016-03-01	19:09:58	Ne	6	163.1.4.198	57624	?>	31.13.90.36	443	31	4575	INT
2016-03-01	19:10:00	Ne	6	163.1.4.198	57373	?>	216.58.214.5	443	4	202	INT
2016-03-01	19:10:00	Ne	6	216.58.214.5	443	?>	163.1.4.198	57373	4	271	INT
2016-03-01	19:10:03	Ne	6	163.1.4.198	51225	?>	31.13.90.2	443	7	816	INT
2016-03-01	19:10:03	Ne	6	31.13.90.2	443	?>	163.1.4.198	51225	7	3151	INT
2016-03-01	19:10:07	Ne	17	163.1.4.198	53596	->	216.58.214.14	443	4	761	REQ
2016-03-01	19:10:07	Ne	17	216.58.214.14	443	->	163.1.4.198	53596	3	245	REQ
2016-03-01	19:10:08	Ne	6	163.1.4.198	57635	?>	31.13.90.6	443	14	1601	INT
2016-03-01	19:10:08	Ne	6	31.13.90.6	443	?>	163.1.4.198	57635	11	5706	INT

This method scales very poorly as data size continues to increase

Individual analyses are taking longer

Number of sources are expanding

Analyst time is a precious resource

We are losing this war

Aggregated and parallelised search has emerged as the only viable option

Our solution

SAVANT The Stack SAVANT is built on a stack of interlocking software components ElasticSearch Logstash Kibana Each performs a vital function

SAVANT The Stack

ELASTICSEARCH is a high-speed indexing engine, able to store and retrieve data as JSON objects

elastic

Anything can be indexed

SAVANT The Stack

LOGSTASH is a flexible log shipping and storage application.

Logstash translates log entries from **near-any source** into a JSON object for storage in ElasticSearch

SAVANT The Stack

KIBANA is the front-end, forming the user interface and **search** functionality

Kibana can **visualize** huge quantities of data at extreme speed, thanks to Python Lucene

SAVANT

The Stack

The three components allow:

- JSON data objects
- Resilient storage
- Search, retrieval, analytics

Proof of Concept

SAVANT PoC

Hardware is required to handle each major functional stage;

Tool Server / Appliance

Data Node

Replica Node

Search Node

SAVANT PoC

	<u>د</u> م	↓AZ	•	logstash-netflow-2015.11.12 shards: 6 * 2 docs: 104,417,190 size: 20.47GB	logstash-netflow-2015.11.13 shards: 6 * 2 docs: 192,018,540 size: 37.44GB
bucky buckybal heap	l disk	сри	load	4 0	1 5
bucky buckybal heap	-0 I disk	сри	load	1 5	2
elephant.	netsec disk	сри	Voad	3	3
elephant.	netsec disk	сри	-	2	0 4
Gilly fullerene heap	disk	сри	▼ load	3 1 5	0 1 5
fully-0 fullerene	disk	cpu	▼ load	4 0 2	2 3 4

SAVANT PoC Insights

In general, when building a cluster of this magnitude it will require;

- Data nodes: High I/O, multiple cores, **32GB+ of RAM**, RAID-1
- Search nodes: maximum CPU and RAM, system on SSD storage
- Replica nodes: can be practically anything, but better hardware contributes more to search metrics

SAVANT PoC Insights

There are a few 'gotchas' which persist when building these clusters: Each ElasticSearch node can have a maximum of 31GB RAM due to JVM pointer compression limitations

BUT...

Assigning the full 31GB causes huge 'stop the world' **garbage collection**

SAVANT PoC Insights

o.3Tbit/sec NetFlow is a big ask... **Build your own Logstash codec** Snapshotting takes time and resource... **Schedule for low-usage hours** GeoIP is not terribly performant.... Only enable it for logs/alerts, not NetFlow...

SAVANT **Design Metrics Online, searchable data** 30-60 days **Snapshotted archives** 6-12 months Search performance target <60 secs

Scaling

4 fibre taps

40Gb/s line rate

~320Gb/s total

Very few (FLOSS/cheap) analysis tools can handle **4oG+ line rates**

The best we can do is ~10G...

We have a **theoretical o.3TBit/sec** to fully monitor and analyse... 🛞

40Gb + 40Gb + 40Gb + 40Gb

10Gbps output streams

40Gb + 40Gb + 40Gb + 40Gb

Tool Servers/Appliances

40Gb + 40Gb + 40Gb + 40Gb

NetFlow NSM Protocols

Effectively we can compartmentalise capability into ~10G units (Rx/Tx)

A **4oG-capable** cluster is composed of the same fundamentals as a **1oG**

Following this scaling principle, we can scale this tech to **100G line rates**

The SIEM

SAVANT The SIEM Single unified interface Fully aggregated Multi-TB index search capacity

SAVANT The SIEM

External intelligence

Internal investigations

Arbitrary loC sources

SAVANT The SIEM

Case Studies

 March 17th 2016, 14:03:24.234
 @version: 1 @timestamp: March 17th 2016, 14:03:24.234 beat.hostname: london.netsec beat.name: snort-alerts count: 1 offset: 63,070 type: snort alert: SNORT TEST FIRE RULE - DONT PANIC ipv4_src_addr: 163.1.4.196 l4_src_port: 1234 5 ipv4_dst_addr: 80.68.93.207 l4_dst_port: 54321 _id: AV0E42oGjdJDeRPdipNu _type: snort _index: logstash-snort-201 6.03.17 _score:

<u>Table</u>	<u>JSON</u>	<u>N</u>	ink to /logstash-snort-2016.03.17/snort/AVOE42oGjdJDeRPdipNu
⊘ @timest	tamp	Q Q II March 17th 2016, 14:03:24.234	
t @versid	on	QQ 1 1	
t_id		🗨 🗨 🎞 AVOE42oGjdJDeRPdipNu	
t _index		🔍 🔍 🔟 logstash-snort-2016.03.17	
# _score		$a \in \Box$	
t_type		🔍 🔍 🔟 snort	
t alert		🔍 🔍 🔟 SNORT TEST FIRE RULE - DONT PANIC	
t beat.ho	ostname	e 🝳 🔾 🔲 london.netsec	
t beat.na	ame	🔍 🔍 🖽 snort-alerts	
# count		Q Q [] 1	
t ipv4_ds	st_addr	n Q Q III 80.68.93.207	
t ipv4_sr	rc_addr	r 🝳 🗨 🔟 163.1.4.196	
t l4_dst_	port	Q Q 🔲 54321	
t l4_src_	_port	Q Q 🔲 12345	
# offset		Q Q 🔲 63,070	
t type		QQ II snort	

netflow.ipv4_dst_addr: 80.68.93.207 netflow.in_pkts: 3 netflow.in_bytes: 288 netflow.first_switched: March 17th
2016, 12:24:09.999 netflow.l4_src_port: 0 netflow.l4_dst_port: 0 netflow.tcp_flags: 0 netflow.protocol: 1
netflow.src_as: 786 netflow.dst_as: 35,425 @version: 1 type: netflow host: 129.67.224.102 _id: AVOEiwGOjdJDeRPdIM
ab type: netflow index: logstash-netflow-2016.03.17 score:

<u>Table</u>	JSON		Link to /logstash-netflow-2016.03.17/netflow/AVOEiwGOjdJDeRPdIMqb
⊘ @times†	tamp	Q Q [] March 17th 2016, 12:25:08.000	
🔺 @versio	on	ଭ୍ର୍ 🔟 1	
t_id		🗨 🗨 🔟 AVOEiwGOjdJDeRPdIMqb	
t _index		© ⊂ 🔲 logstash-netflow-2016.03.17	
# _score		ଷ୍ ର୍ Ⅲ	
t_type		© ⊂ Ⅲ netflow	
t host		Q Q I 129.67.224.102	
# netflow	v.dst_as	Q Q II 35,425	
⊘ netflow	v.first_switched	🔍 🔍 🔟 March 17th 2016, 12:24:09.999	
# netflow	.in_bytes	Q Q II 288	
# netflow	.in_pkts	Q, Q, II 3	
🗆 netflow	v.ipv4_dst_addr	Q Q 🔲 80.68.93.207	
🗆 netflow	v.ipv4_src_addr	Q Q II 129.67.2.15	
# netflow	/.l4_dst_port	Q Q II 0	
# netflow	/.l4_src_port	Q Q II 0	
# netflow	v.protocol	Q Q 🔟 1	
# netflow	v.src_as	Q Q II 786	
# netflow	v.tcp_flags	Q Q II 0	
# netflow	v.version	Q Q II 5	
t type		🔍 🗨 🔟 netflow	

+ nearow.ipv+_ust_a	uun: 00.00.00.201	Actions	
logstash-netflow*			<
Data Options		► ×	
metrics			
Slice Size		Count	
buckets			
Split Slices Aggregation		×	
Terms		•	
Field		Analyzed Field	
netflow.ipv4_src_a	addr	•	
Order By			
metric: Count		v	
Order	Size		
Descending 🔻	5		
		Advanced	
ų	Add sub-buckets		

1-4 - 44- 100 00 00 0071

Total Investigation time: 3 minutes

Use Case 2 – Host Identification

Demo 1

netflow.ipv4 dst addr:129.67.242.155

•

Q

Use Case 2 – Host Identification

Demo 1

netflow.ipv4_dst_addr:8.8.8.8

Q

ø

Use Case 2 – Host Identification

Demo 1

netflow.ipv4_dst_addr:104.209.134.106

۵

■ TopTalkers By Source	ø ×	🕒 Top15 Destination Ports	Ø ×
netflow.ipv4_src_addr.raw: Descending ≑ Q	Sum of netflow.in_bytes \$	→ 123 ● 0	
129.67.16.1	304		
163.1.175.28	304		
163.1.89.238	304		

Use Case 3 – Strategic NSM

Use Case 4 – Deep Analysis

Use Case 4 – Deep Analysis

Use Case 4 – Deep Analysis

Oslo Stockholm Estonia St. Petersburg
 North
 Estonia
 St. Petersburg

 United
 Sea
 Denmark
 Riga

 United
 Sea
 Denmark
 Moskva

 Kingdom
 Lithuania
 U

 Ireland
 Manchester
 Berlin
 Warsaw

 London
 Neth
 Germany
 Poland

 Kiev
 Kharkov
 Volgograd

 Paris
 EUROPE
 Ukraine
 Volgograd

 Bay of
 France
 Munchen
 Hungary
 Odessa

 Biscay
 Torino
 Milano
 Romania
 Perm' 21 Ufa Samara

Tombouctou, A Khartoum Fritrea R Guinea Faso Nigeria Burkina Chad Sudan Adis Abeba. Somalia Central African Ethiopia Liberia Accra Cameroon

ASI Yekaterinburg Omsk Novosibirsk

Kazakhstan Ulaanbaatar Qigihar Almaty Urumqi Mongolia Changchung Jilin

 Bay of France Mundeen Hungary
 Odessa Donets'k
 Aral
 Mongolia

 Biscay
 Torino, Milano
 Bosta
 Bordeaux
 Italy Herz
 Buigaria
 Elbrus
 Sea
 Almaty
 Urumqr
 Changchung

 Portugal Spain
 Barcelona
 Greece
 Ankara
 Turkey
 Beinut
 Torsheot
 Go b i
 Beijing

 Algeria
 Algeria
 Tripoli
 Greece
 Ankara
 Turkey
 Tehran
 Mashhad
 Lanzhou
 Jinan

 Algeria
 Tunisia
 Tripoli
 Beinut
 Syria
 Baghdad Iran
 Afghanistan
 Lanzhou
 Jinan

 Algeria
 Libya
 Beinut
 Arabian
 Kuwait
 Pakistan
 Chongqing
 Wuhan

 ara
 S a h a r a
 Jidah
 Saudi U.A.E
 Masqat
 Ahmadabad
 Kolkata
 Dhaka
 Guangzhou
 Hangz

 Mauritania
 Mali
 Niger
 Jidah
 Saudi U.A.E
 Masqat
 Ahmadabad
 Kolkata
 Dhaka
 Guangzhou
 Hangz

 Algeria
 Libya
 Egypt
 Peninsula
 Gatar
 Karachi
 Jaipur
 Patha
 < Korea Seo South Korea. Shangha Hangzhou Taipei

Vientiane Konğ Arabian ^eHyderabad Bay of Vientiane Sea Bengal Thailand Vietnam Bangalore ^eChennai Bangkok ^eCambodia Phnom^e-ue Chi Bengal Thailand Vietnam Manila Philippines Phnom Ho Chi Minh City Bandar Seri Brunei Begawan Colombo Sri Lanka Medan Kuala Lumpur Pala Sincapore

Total Investigation time: 2 minutes

Use Case 5 – All of the above

1,000,000,000

2016-04-14 02:00

2016-04-15 02:00

016-04-15 02:00 2016-04-16 02:00 netflow.first_switched per 3 hours 2016-04-17 02:00

2016-04-18 02:00

UNIVERSITY OF OXFORD

GUIDANCE & POLICY

I WANT TO...

SERVICES

WHAT WE DO

https://www.infosec.ox.ac.uk/