Carnegie Mellon University Software Engineering Institute

Practical Information Security Risk Management

Understanding the Big Picture to Focus on the Right Priorities

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Document Markings

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM23-0062

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Agenda

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

In-Class Discussion: What is your current risk evaluation process?

What is your current risk evaluation process?

- Is it consistent and repeatable?
- What information do you need to evaluate risk?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Practical Information Security Risk Management

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Why is Understanding Risk Important?

Knowing what and where your risks are help you decide where to spend your time and money.

A successful protection strategy is based on a solid understanding of risk and a comprehensive risk management program.

Critical decisions should not be based on best guess, or uninformed, generic external factors.

Not understanding risk may lead to errors in allocating protection mechanism and lead to exposures that might have been prevented.

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Equation

Risk is the result of a *threat* successfully exploiting a *vulnerability* and causing an *impact* on an *asset*.

*(threat x vulnerability) represents the likelihood or probability that "bad things" might happen.

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Analysis Example 1

Scenario

- This is your car
- It is parked on the street in front of your home.
- Car thefts in the area are at an all time high.
- Vandalism is also very common.

Is there a risk here?

- What threats should you consider?
- What mitigating factors can be applied?
- How do you determine impact?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Analysis Example 2

Scenario

- This is your car
- It is parked on the street in front of your home.
- Car thefts in the area are at an all time high.
- Vandalism is also very common.

Is there a risk here?

- What changes in your evaluation of risk?
- Did the threats or vulnerabilities change?
- How do you determine impact?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

In-Class Discussion: What has higher risk?

Is the risk higher for the older car or the new car?

- Why is that one higher risk? What factors did you consider?
- What additional information do you need?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Analysis Example 3

You have a database of personal consumer information

- It has failed twice in the last year.
- There is no redundancy and the last back up was four months ago.
- The administrators do not want to patch in case it causes another failure (no patches for 4 years).
- The database vendor has announced the fifth security vulnerability for the production version.

Is there a risk here?

- How much should be spent to address this?
- What other information is necessary?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Practical Information Security Risk Management

Risk Context

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Risk is Defined by the Surrounding Context

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Identifying Risk

Keys to determining risk level

Impact (or consequences)

- What type of data does the asset contain?
- How much of that type of information?
- Where is that information located (region of the world)?

Likelihood (or probability)

- Is there an existing, viable threat?
- Is the asset vulnerable to that threat?

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Δ

Ļт

Both impact and likelihood can be ranked based on levels of significance.

Each organization may have different opinions on these levels.

Documenting the levels and criteria for each is essential.

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Plotting Risk Level

- Each risk can be plotted according to its likelihood and impact
- Plotting risks on the same chart shows their relative importance
- Higher risks can be targeted for mitigation
- Monitoring risks over time can improve risk
 posture

Examples	Likelihood	Impact
A	Possible	Major
В	Unlikely	Moderate
С	Rare	Catastrophic

	5	Almost Certain	Medium	Medium	High	Extreme	Extreme	
	4	Likely	Low	Medium	High	High	Extreme	
DOD	З	Possible	Low	Medium	Medium	н	High	
-IKELIH	2	Unlikely	Low	Low	MBim	Medium	Medium	
		Rare	Low	Low	Low	Medium	MCm	
			Insignificant	Minor	Moderate	Major	Catastrophic	
			1	2	3	4	5	
				IN	1PACT			

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Analysis Revisited

- Has your risk ranking changed?
- What would mitigate current risk?

		5	Almost Certain	Medium	Medium	High	Extreme	Extreme	
		4	Likely	Low	Medium	High	High	Extreme	
	QOO	3	Possible	Low	Medium	Medium	High	High	
IKELIH	0 Unlikely		Low	Low Medium		Medium	Medium		
		1 Rare		Low	Low	Low	Medium	Medium	
				Insignificant	Minor	Moderate	Major	Catastrophic	
				1	2	3	4	5	
					IN	1PACT			

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Reducing Risk

Risk can be reduced by reducing or eliminating

- Threats
 - Improving detection
 - Situational awareness
- Vulnerabilities
 - Patching
 - Managing access
- Impact
 - Reducing data volume stored
 - Eliminating unneeded sensitive information

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Practical Information Security Risk Management

How Risk fits with Governance & Compliance

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Setting the Context

Security Governance

- The means by which *you* control and direct *your* organisation's approach to security. When done well, security governance will effectively coordinate the security activities of your organisation. It enables the flow of security information and decisions around your organisation.
- Just as security is the responsibility of everyone within an organisation, security decision making can happen at *all levels*. To achieve this, an organisation's senior leadership should **use security governance** to set out the kinds of **security risks** they are prepared for staff to take, and those they are not.

Risk Management

Uses the governance building blocks and management's stated risk appetite to build a picture of the organization's risk
posture and inventory of risks. Continuous management of risks helps inform management's view of risk appetite. Risk
management also provides insight on what is working well and what is not so that management knows where they
might take more business risk to grow the business.

Compliance

• Meeting all of the requirements applicable to the organization and being able to provide evidence. Requirements may come from many sources. The organization is responsible for knowing where to look for applicable requirements and how to apply protections to ensure requirements are addressed sufficiently.

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Governance

Policies - define high-level requirements also known as **controls**

Standards – provide instruction for implementing requirements

Guidelines – provide additional best practices or considerations

Procedures – hands-on, how to for implementing standards

Policies & Standards may come from external sources. Internally developed policies & standards are also very important.

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Governance & Risk

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Compliance

- · Requirements come from many sources
- Some are mandatory
- · Some are self-imposed
- Compliance assessments help determine what controls are effectively in place
- · Controls that are not operating well reveal gaps
- Gaps must be assessed for risk

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Example Control Inventory

Control ID	Control Name	Control	Discussion	Related Controls
AC-1	Policy and Procedures	a. Develop, document, and disseminate to [Assignment: organization-defined personnel or roles]	Access control policy and procedures address the controls in the AC family that are implemented within systems and organizations.	IA-1, PM-9, PM-24, PS-8, SI-12.
AC-3	Access Enforcement	Enforce approved authorizations for logical access to information and system resources in accordance with applicable access control policies.	Access control policies control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (i.e., devices, files, records, domains) in organizational systems.	AC-2, AC-4, AC-20, AC-21, AC-22,, IA-2, IA-5, IA-6, IA-11, MA-5, MP-4, PM-2, SC-12, SC-13, SC-28, SC-31, SI-4, SI-8.
AC-6	Least Privilege	Employ the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) that are necessary to accomplish assigned organizational tasks.	Organizations employ least privilege for specific duties and systems. The principle of least privilege is also applied to system processes, ensuring that the processes have access to systems and operate at privilege levels no higher than necessary to accomplish organizational missions or business functions.	AC-2, AC-3, AC-5, AC-16, CM-5, CM-11, PL-2, PM-12, SA-8, SA-15, SA-17, SC-38.
AT-2	Literacy Training and Awareness	 a. Provide security and privacy literacy training to system users (including managers, senior executives, and contractors): 	Organizations provide basic and advanced levels of literacy training to system users, including measures to test the knowledge level of users.	AC-3, AC-17, AC-22, AT-3, AT-4, CP-3, IA-4, IR-2, IR-7, IR-9, PL-4, PM-13, PM-21, PS-7, PT-2, SA-8, SA-16.
AU-2	Event Logging	 a. Identify the types of events that the system is capable of logging in support of the audit function: [Assignment: organization-defined event types that the system is capable of logging]; 	An event is an observable occurrence in a system. The types of events that require logging are those events that are significant and relevant to the security of systems and the privacy of individuals.	AC-2, AC-3, AC-6, AC-7, AC-8, AC- 16, AC-17, AU-3, SI-3, SI-4, SI-7, SI- 10, SI-11.

https://csrc.nist.gov/Projects/risk-management/sp800-53-controls/downloads - 1189 controls listed

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

GOVERNANCE EXAMPLE

Policy	Standard	Tech Standard	Guideline	Procedure
 Unique user IDs assigned Periodic review Disable IDs upon departure 	 ID pattern First letter of first name First 7 letters of last name If redundant replace last letter with number Example Sjohnson Smudd123 IDs reviewed annually for redundancy and active use Disable upon resignation 	 Windows Active Directory Standard UserID specific settings Linux Standard UserID specific settings MacOS Standard UserID specific settings 	 User ID management may be centralized in a single LDAP for ease of management Windows AD can act as an LDAP for MacOS and Linux systems Systems used for testing should be kept off the production user network and use separate user database 	 Configure Windows AD user settings ~~~ Configure MacOS user settings ~~~ Configure Linux user settings ~~~ Annual Review Steps ~~~ Disable user

User registration and de-registration

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Practical Information Security Risk Management

Putting it All Together

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Critical Elements for Determining Impact

Data Classification
• 1-Public
 2-Internal Only
• 3-Confidential
• 4-Restricted
Asset Inventory
People
 Technology
Information
Facilities
Business Criticality
• 1-Business Critical
• 2-Severe Impact
 3-Divisional Impact
• 4-Minimal Impact

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Example Impact Guidance

Impact Rank	Description	Operational Impact Downtime	Operational Impact Incidents	Operational Impact Scale	Financial Impact by annual revenue	Reputational Impact	Data Exposure by type	Data Exposure by volume
1	Insignificant	0-4 hours	Minimal business criticality, minor site/service degradation	<2% users affected	<2%	Local City Customers / Consumers / Partners	Public Internal Only	<50 Records
2	Minor	4-8 hours	Minimal business criticality, increasing site/service degraded	2-4% users affected	2-4%	Regional Customers / Consumers / Partners	Internal Only	50-250 Records
3	Moderate	8-24 hours	Divisional Impact or business critical system, significant site/service degradation or local outages	5-15% users affected	5-15%	In-Country Customers / Consumers / Partners	Internal Only Confidential	250-750 Records
4	Major	1-3 days	Severe Impact to business-critical system, site/service availability questionable	16-20% users affected	16-20%	Global Consumers / Partners	Confidential	750-1000 Records
5	Critical	>3 days	Business critical Impact, Critical systems, site, service unavailable	20% users affected	20%	Global Customers	Restricted	>1000 Records

Controls are less effective for altering Impact

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Example Likelihood Guidance

Impact Rank	Description	Inherent Probability	Previous Control Prevention	Frequency of Occurrence	Control Effectiveness	Threat Environment		
1	Rare	Has not occurred and most likely will not occur	Very Effective	>1 per 5 years	No identified improvements needed	Minor or no current threats		
2	Unlikely	Not likely to occur	Effective	1-3 per year	Minor improvements needed	Threats exist but no reported concerns		
3	Possible	Likely to occur periodically	Moderate	1 per month	Obvious improvements needed	Reported concerns for potential occurrences		
4	Likely	Highly likely to occur in given risk posture	Ineffective	Weekly	Significant improvements needed	Ongoing occurrences in industry peers		
5	Almost Certain	Expected to occur in given risk posture or may be presently occurring	Non-Existent / Highly Ineffective	Daily	Critical improvements needed	Ongoing major occurrences		

Controls are most effective in altering Likelihood

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Putting it All Together

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Asset Inventory – Risk

ID	Asset	Sc	ope	•			Criticality	Criticality		Classification		Likelihood		Impact	Risk Level
1	Email Services	Org-Wid	e			2-Severe Impact			2-Intern	2-Internal Only		3-Possible		ajor	High
2	Customer Portal	Cust Svc External	/ ly fa	cin	g	3-E Im	3-Divisional Impact		3-Confidential		3-Possible	3-Possible		oderate	Medium
3	Corporate Web Server	IT Web S External	F Web Svc / xternally Facing				Minimal		1-Public	1-Public		4-Likely		oderate	High
_			5	Almost Certain		Medium	М	edium	High	Extreme	Extre	eme			
				4	Likely		Low	М	edium	High	High	Extre	eme		
		OOD		3	Possible		Low	М	edium	Medium	High	Hig	h		
			LIKELIH	2	Unlikely		Low		Low	Medium	Medium	Medi	um		
				1	Rare		Low		Low	Low	Medium	Medi	um		
							Insignificant N		Minor	Moderate	Major	Catastr	ophic		
						1 2 3 4 5									
									IN	1PACT					

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Risk Treatment & Trending

ID		Ass	et		Likelihood Impact Initia		tial	6m (Check	Trenc	ł					
1	Em Ser	ail vice	es		3 Possible 2-Unlikely			4 Major 3-Moderate		High		Medium		₽		
2	Cus Por	tor tal	ne	er	3 Possible 2-Unlikely			3-Moderate N		Medium		Medium		•		
3	Cor We	poi b S	rat er	te ver	4 3	-Likely -Possible		3 Moderate High 2-Minor				Med	ium	ţ		
	2 Almost				Medium		Medium	Hi	gh	Extr	eme	Extre	ne	Ī		
			4	Possible Likely		Low		Medium	3	gh	High		Extre	ne		
		dool	3			Possible		Low		Med.3 h	M ² 2	Jum	um 🥂		gh High	
		LIKELIF	2	Unlikely		Low		Low	KŽdiu 1		Medium		Mediu	ım		
		1 gaine			Low		Low	Lo	W	Med	lium	Mediu	ım			
						Insignificant		Minor	Mod	erate	Ma	ajor	Catastro	phic		
						1		2		3		4	5			
								IN	1PACT							

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University

Questions?

Carnegie Mellon University Software Engineering Institute

Practical Information Security Risk Management © 2021 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

If You Want to Know More

- NIST guidance on prioritizing systems https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8179.pdf
- NIST Cyber Risk Management Framework <u>https://www.nist.gov/cyberframework/risk-management-framework</u>
- <u>UK National Cyber Security Centre</u> <u>https://www.ncsc.gov.uk/section/advice</u>guidance/all-topics?allTopics=true&topics=risk%20management&sort=date%2Bdesc
- Secure Controls Framework <u>https://www.securecontrolsframework.com/</u>

Carnegie Mellon University Software Engineering Institute Practical Information Security Risk Management © 2021 Carnegie Mellon University