
iOS sysdiagnose analysis
Repurposing an Apple feature for forensics

How do you analyse the integrity of an iOS
device WITHOUT jailbreaking it?

sysdiagnose
Profiles and logs which developers use
to provide bug-related information to
Apple. They contain interesting
information, reproducible test cases,
and other useful data for investigating
and diagnosing reported issues.

$whoarewe

Emilien Le Jamtel

🥖🍷 🇫🇷
DevSecOps Head of
Sector at CERT-EU

Aaron Kaplan

⛰🍷 🇦🇹
Likes communities and
genuinely cool ideas.

Works with →

David Durvaux

🍟🍺🇧🇪
Situation Awareness Head

of Sector at European
Commission

Agenda

• Problem statement

• Introduction to Apple Sysdiagnose

• Our framework

• Demo

• Future

Problem statement

Why perform device analysis?

Let’s zoom into the Amnesty report

• Relies on available artifacts

• Comes with a tool: Mobile
Verification Toolkit (MVT)

• MVT for iOS:
• Filesystem Dump: might have an

impact on artifacts

• iTunes Backup

Why this approach?

• Started before Pegasus

• Corporate policies forbid us to access personal user data

• Sysdiagnose is extensive, but relies on binaries from the device

• We want a generic approach (be IoC agnostic)

• We consider jailbreaking as the last resort option
• How much can you trust a device after a jailbreak?

• How much do you trust exploits provided by 3rd parties / a blackbox
on corporate devices?

Forensically sound?
• Is sysdiagnose forensically sound?

• Probably not …

• What about commercial tools?

• They usually rely on exploits…

• How much can you consider it to be forensically safe?

• How much do you trust the device afterwards?

• Note: we don’t take any position here!
We are merely posing questions. It’s up to you to decide - based on your
needs!
In our views, this is a complementary approach to commercial tools.

MVT vs this project

Mobile Verification Toolkit

• Supports Android & iOS

• Relies on backups for iOS

• Runs several modules to extract
information

• Can ingest STIX2 IOCs to identify
traces of compromise

• Has access to private user data

This project

• Only relies on Apple’s
sysdiagnose (gives an overview
of devices’ internals)

• Is IOC / detection rules agnostic

• Tries to mimic Volatility but for
sysdiagnose of iOS devices

• Very easy to extend

• Consider it a framework

Introduction to

Apple sysdiagnose

man sysdiagnose (on macOS)

Generating sysdiagnose logs

• Simultaneously press and release both
volume buttons + the Side (or Top) button
for 250 milliseconds.
• Holding too long (>1s) will lock the device

instead.

• Wait 10 mins

• Go to Settings.app > Privacy > Analytics &
Improvements > Analytics Data

• Locate the sysdiagnose file
sysdiagnose_{date}_{time}.tgz

See: https://download.developer.apple.com/iOS/iOS_Logs/sysdiagnose_Logging_Instructions.pdf

https://download.developer.apple.com/iOS/iOS_Logs/sysdiagnose_Logging_Instructions.pdf

Retrieving sysdiagnose logs

• Standard Apple mechanisms:
• AirDrop

• Save to “Files” (can be iCloud)

• …

• iTunes Sync (now: via Finder)

• libimobiledevice: idevicecrashreport command

• 3rd party tools
• Magnet Forensics

• Cellebrite

• Elcomsoft iOS forensic toolkit

• …

Sysdiagnose content

• Results of commands run on the device to create a status overview:
running processes, mounted partitions…

• Copy of key preferences files (plist)

• Network configuration & history

• Information on hardware health

• Log files

• Device diagnostic

• Usage overview

• …

Contents of sysdiagnose dumps
• Results are stored in many different formatse binary property list

• ASCII text

• CSV text

• GZIP files

• SQLite

• Unicode

• Plist (text and binary)

• Timestamps aren’t uniform
• Mac Epoc

• Unix Epoc

• …

Sysdiagnose structure

Results of commands

./logs : device logs including Power Logs

./Preferences: device preferences

./summaries: extract from Power Logs

./system_logs.logarchive: system logs

./WiFi: Network and Bluetooth informations

many other info :)

Let’s have a look…

Challenges with manual analysis

• Most files can be analysed with standard tools to read CSV, Plist,
SQLite files…

• But information is spread across many different files
• Analysts need to know all and not forget one

• The structure is relatively self-explanatory
• Analysts need to be familiar with iOS artifacts

• Manual analysis is a tedious process

Our framework,

Architecture

Our framework

• Feel free to

• Use it

• Extend it

• Propose changes

• …

• FOSS-licenced, under the European Union Public License (EUPL)
https://github.com/EC-DIGIT-CSIRC/sysdiagnose

https://github.com/EC-DIGIT-CSIRC/sysdiagnose

Our philosophy

• Keep every code block as simple as possible (KISS)

• Every analyser and parser can run independently from the others
• Can be used as standalone tools

• Some offer goodies

• A parser takes one artifact from the sysdiagnose directory and produces
JSON output
• A parser is not trying to provide any analysis at this stage

• An analyser relies on the JSON provided by parsers to create a relevant
output
• Analysers are independent of the sysdiagnose dump structure

• Typical analysers: export timestamps and build a timeline

Processing workflow

Sysdiagnose

file Initialization

Cases.json

Parsing

Specialized

parser

Specialized

parser

Specialized

parser

Specialized

parser

Parser result

(JSON)

Parser result

(JSON)

Parser result

(JSON)

Parser result

(JSON)

Analyser(s)

Current Developments– iOS16

Type of module Count

Parsers 25

Analysers

• Timeliner (→ goes to timesketch)
• Wifi Geolocation KML
• Wifi Geolocation GPX
• Application UUID

4

Usage
1. initialyze.py

• Extracts the archive and produces a per case JSON

• Feeds the information into cases.json

2. parsing.py

• Calls selected (or all) parsers

• Parsers’ results are stored in ./parsed_data/* JSON files

3. analyse.py

• Calls selected (or all) analysers

• Uses the results of parsers to produce an analysis output

Demo

Initialise Parse Analyse

Extracts the sysdiagnose

archive locally, updates

cases.json and db.json

Parses artifacts and

produces a JSON view

for later use

Ingests JSON and

produces an analysis

report

How to make your own parser?

→ Free text description

→ File to parse as defined into case JSON

→ Function to call and that returns a JSON

Parsers required variables:

• parser_input corresponds to an entry into ./data/<case
id>.json

• If required file not defined there, can be added into parsing.py

• Function defined in parser_call is expected to:
• Be given a path to a file to parse as 1st argument

• iOS version as an int (optional 2nd argument)

• Returns a valid JSON object

How to make your own analyser?

→ Free text description

→ Function to call to generate content

→ Output format

Analysers required variables:

• The function defined in the var `analyser_call` expects:
• a path directory with JSON generated by the parsers (argument #1)

• a path to a file to save result (argument #2)

• Outputs format depends on analyser goals

Demo

Demo

Demo: rogue Wi-Fi (easy)

Demo: Non-app store installation

Demo: strange processes

Challenges

• Artifacts can change a lot with each (major) release of iOS
• Formats change

• Log file contents may be completely different

• Can disappear « randomly »

• …

• Log formats are not properly documented by Apple

• Many differents formats and data encoding types

• Need to differentiate relevant vs non relevant data

Limitations

• Sysdiagnose is for diagnostic purpose
• Doesn’t contain user data

• For example, the Kaspersky Operation Triangulation detection
tool relies on artifacts that are only in a full device backup
• Check modification to SMS attachment database and its properties

• Check preferences that are not copied into a sysdiagnose file

• Detection via sysdiagnose is unknown

• You need to be aware of the difference between a sysdiagnose
and a full backup (via respective pros and cons)

Future

Future

We plan to…

• Extend the coverage and support future iOS versions

• Add support for more Apple devices (watchOS, tvOS, macOS…)

• Bring more analysers to support analysts

• Validate the effectiveness of this approach on as many use-cases as
possible (and share the results back with this community)

• Remember: this is an open source framework. It’s here for you, your
use-cases… feel free to adapt, rip, copy & mix

Validating effectiveness

• We are searching for sysdiagnose of
compromised devices
• Any version of iOS

• Can be shared under [TLP:RED]

Goals?

• Confirm effectiveness of this framework
with more samples

• Identify gaps / issues / improvements

• Make this tool more useful for our
community

References & acknowledgments

• Sarah Edwards for the discussion that triggered this

• Mattia Epifani, Heather Mahalik and Cheeky4n6monkey for the
iOS_sysdiagnose_forensic_scripts (GitHub)

• Johan Berggren (TimeSketch, google)

• Amnesty International Pegasus Report

One last word…

• Feel then free to

• Use it

• Extend it

• Propose changes

• …

• Again, this is a free, open source project
https://github.com/EC-DIGIT-CSIRC/sysdiagnose
• Using the European Union Public License (EUPL)

https://github.com/EC-DIGIT-CSIRC/sysdiagnose

Thank you

