

1 of 10

RELIABLY DETERMINING THE OUTCOME OF COMPUTER NETWORK ATTACKS

David J. Chaboya, Richard A. Raines, Rusty O. Baldwin, and Barry E. Mullins
Air Force Institute of Technology

Electrical and Computer Engineering (ENG)
2950 Hobson Way, Bldg 642

Wright-Patterson AFB, OH 45433-7765

ABSTRACT

Organizations frequently rely on the use of Network
Intrusion Detection Systems (NIDSs) to identify and
prevent intrusions into their computer networks.
While NIDSs have proven reasonably successful at
detecting attacks, they have fallen short in determin-
ing if attacks succeed or fail. This determination is
often left to the security analyst or system administra-
tor. Large-scale networks pose a particular chal-
lenge for IDS analysts. The process of manually
checking systems to determine if an attack is success-
ful becomes burdensome as the size and geographic
location of the network increases. Many analysts use
network data alone, in particular the server response,
to determine the outcome of the attack. Intuitively,
the server response is the packet or packets the target
computer returns after an attack. However, in the
case of buffer overflows, the attacker has the ability
to forge or modify this response.

This paper examines two key aspects of network de-
fense: the ability to circumvent detection devices and
how network analysts respond to evasion techniques.
We examine how social engineering can be used to
influence an analyst’s decisions and we recommend
ways to counter this threat. The intended audience
will be responsible for either developing IDS signa-
tures, or analyzing network IDS results. The techni-
cal detail is moderate, but does assume some expo-
sure to network traffic analysis, intrusion detection,
and exploits in general.

INTRODUCTION

In the early years of phone networks, attackers often
used social engineering techniques to gain unauthor-
ized access to computer systems. For example, an
intruder could pretend to be a telephone repairman or

a company executive out on the job that forgot the
password and needed it reset. With just a small
amount of preparatory work the intruder would con-
vince the help desk technician that the request was
legitimate and needed to be granted immediately.
Hacker groups in the late 80’s and early 90’s such as
“The Masters of Deception” found that it was often
easier to just ask for information instead of finding
and exploiting technical vulnerabilities. Kevin Mit-
nick, arguably the most famous social engineer,
conned employees of some of the largest corporations
by exploiting the human tendency to trust [1]. Social
engineering involves using human trusts to achieve a
desired goal. This goal might be to close an impor-
tant business deal, or to penetrate a network of crimi-
nals as an undercover agent. The goal for the com-
puter attacker is unauthorized access to the target
network or computer system. While increased train-
ing has reduced the threat of social engineering, it
continues to be a problem. For example, in a recent
Inspector General audit of the Internal Revenue Ser-
vice (IRS) 35 of 100 employees were convinced to
provide usernames and reset their passwords for
someone posing as a help desk technician [2].

There are two main types of social engineering:
computer-based and human-based. The previous ex-
ample highlighted a human-based approach. In a
computer-based attack the intruder does not directly
interact with another human. Instead, an email might
be sent containing a malicious file, or a fake website
could be used to harvest usernames and passwords.
So what does social engineering have to do with Net-
work Intrusion Detection Systems (NIDSs) and eva-
sion? To answer this question the method in which
intrusions are detected must first be examined. We
highlight in this paper that in most cases a NIDS con-
sist of both a computer and human component. While

the computer component of the NIDS may detect an
attack, the human (network security analyst) must de-
cide if the attack is a success or failure.

A review of both academic and commercial literature
shows significant research in evading the computer
component, but little with respect to the human ana-
lyst. We address this gap in research by examining
network analyst training and then creating evasion
techniques that use computer-based social engineer-
ing. The goal is to deceive the analyst into believing
that a successful attack has instead failed. The hy-
pothesis is that even if an attack is detected, the actual
intrusion will go unnoticed if the analyst can be con-
vinced to not follow-up. We focus the exploits tested
and the evasion techniques developed on the Win-
dows operating system because of its predominance
throughout industry.

However, the goal of this paper is to not show new
avenues of attack. Instead we point out that if net-
work traffic is to be analyzed it must be done cor-
rectly. This analysis can be fruitful since our experi-
ments suggest that even in the case of buffer
overflows the server response often indicates if the
attack succeeds or fails. We then propose several
methods for determining if the response can be
trusted. These defensive measures allow the NIDS or
analyst to immediately determine the attack outcome
and prevent “NIDS analyst evasion” from being suc-
cessful.

The first section below provides background informa-
tion on the topics covered in this paper. Next, we de-
scribe related work in the areas of alert verification
and IDS evasion. The next sections address how at-
tack outcomes are currently determined and include
the results of some of our recent server response ex-
periments. In the fifth section we introduce various
NIDS evasion techniques that focus on the analyst.
Next, several methods to determine server response
trusts are proposed. Finally, we conclude and present
ideas for future work.

BACKGROUND
We provide a brief overview of some important terms
in computer security in this section. Intrusion detec-
tion (ID) is the art and science of finding compro-
mises or the attempt to compromise the integrity of a
network or computer system. The term has been

broadened to include the detection of other forms of
attacks besides intrusions such as scanning, enumera-
tion, and denial-of-service. NIDSs and Host-Based
Intrusion Detection Systems (HIDSs) are the two
primary technical implementations that exist to detect
attacks. A NIDS monitors an entire network for ma-
licious activity, while a HIDS monitors the host it re-
sides on. In addition, Intrusion Prevention Systems
(IPSs) not only detect attacks, but also attempt to stop
them before any damage is done.

We focus on the NIDS, as it is most vulnerable to the
attacks mentioned in this paper and the one that most
analysts are responsible for monitoring. The two
well-recognized areas of detection are misuse and
anomaly-based. Misuse or signature-based detection
focuses on known attacks or known characteristics of
attacks by matching on a pre-defined byte sequence.
Snort [3] is one example of a well-known IDS that
makes extensive use of signatures. Anomaly-based
detection seeks to establish what is normal and then
search for traffic that differs from the baseline. There
are many models that can be applied to this form of
detection [4].

Alert verification is the process of determining the
outcome of an attack [5]. This includes both active
measures used after an attack (e.g., running vulner-
ability scans) and passive measures used before an
attack (e.g., collecting network configurations). The
server response is defined as the packet or packets the
target computer returns after an attack. For instance,
a malformed request for a web resource might return
a “HTTP/1.1 400 Bad Request” indicating that the
attack failed.

Even with the increased focus on good programming
practices, buffer overflows continue to be one of the
most widely exploited vulnerabilities. In fact, the
SANS 2004 Top 10 most exploited Windows vulner-
abilities, have buffer overflows in positions one, two,
four, and eight [6]. An exploit is the code that an in-
truder uses to take advantage of a known vulnerabil-
ity. Many of the early buffer overflow exploits were
customized for the UNIX operating system and other
variants. A common technique for an attacker was to
code the payload to execute a shell upon successful
exploitation of the victim. Shellcode now refers to a
wide range of payloads that setup backdoor ports, es-
tablish reverse-shells to the attacker, modify key op-
erating system files, or add new users. The art of

2 of 10

constructing more compact, complex, and functional
shellcode has advanced significantly [7].

Buffer overflows typically consist of four main sec-
tions: the decoder, NOP sled, shellcode, and return
addresses or jump to Instruction Pointer (IP). An ab-
breviated sample of these sections is shown in Figure
1. In most cases, the decoder is not visibly distin-
guishable from the rest of the shellcode. In addition,
Figure 1 illustrates the overwriting of the saved in-
struction pointer with the address of a jump ESP in-
struction. This is just one of the many Windows
overflow techniques that allow an attacker to cause
control flow to pass to the shellcode. The NOP sled
consists of a series of “No-operation” commands (i.e.
90 is the hexadecimal value for the default NOP in
the Intel x86 architecture) that pass execution to the
next command. This allows the attacker flexibility in
guessing the location of the shellcode in memory.

Figure 1. Buffer Overflow Sections

Polymorphic shellcode seeks to evade basic misuse
detection by borrowing techniques from computer
virus developers [8]. Polymorphism is added through
unobtrusive manipulations on spare CPU registers to
create unique yet functionally equivalent shellcode.
Advances in polymorphic shellcode generation have
made even anomaly-based detection methods such as
data-mining difficult in locating buffer overflow at-
tacks [9]. In addition, it may be difficult to tell where
one section of the shellcode ends and the next begins.
Many developers have instead focused on detecting
the exploit vector and not the shellcode for this rea-
son. The exploit vector is the method in which the

vulnerability will be triggered. For instance, the
Printer ISAPI buffer overflow required a URL that
included “.printer” and a long Host header field. Of
course, not all vulnerabilities have a single exploit
vector.

 RELATED WORK
In 1998, Ptacek and Newsham introduced the world
to the field of IDS evasion [10]. During the same
time, Paxson introduced the Bro IDS and several re-
lated evasion techniques [11]. Ever since, there has
been significant academic and commercial research in
IDS evasion. Recent work in mutating network ex-
ploits has shown that NIDSs such as Snort and ISS
Realsecure still have problems with evasion [12]. We
feel that there is little room to advance the state of the
art in the areas previously addressed. However, with
the exception of alert flooding techniques the ana-
lyst’s role in detection is untested [13]. Therefore we
focus our evasion attacks towards the NIDS analyst.

Each of the attack techniques developed in this paper
rely on disguising successful attacks as failures. Pre-
vious work in this area focused on HIDSs. For in-
stance, “Mimicry attacks” target HIDS by modifying
the exploit characteristics to mimic that of a legiti-
mate application [14,15]. The concept of mimicking
a legitimate application can be expanded to describe
the general case of hiding attacks by modifying the
exploit. This can involve hiding as normal activity, in
a spot undetectable to the HIDS, as a less serious at-
tack, and as an entirely new attack [16].

A good discussion of alert verification techniques is
provided in [5]. However, this paper omits the cate-
gory of network based verification (e.g., server re-
sponse detection). The usefulness of the server re-
sponse has been discussed in previous works,
although the focus has not been on buffer overflows.
For instance, Sommer and Paxson discuss the benefit
of “request/reply” signatures in improving the quality
of alerts [17]. A recent paper parallels our work in
describing how response signatures can be used to
determine attack outcomes [18]. However, the au-
thors do not address the validity of the response be-
sides saying that it is theoretical possible for a clever
intruder to manipulate it. Other methods to determine
the success and failure of attacks are based on under-
standing the layout of the network [17]. The closely
related method, commonly used by IDS analysts, of

3 of 10

determining the target operating system and matching
it to the exploit also gives an indication if the attack
will succeed or fail [19].

DETERMINING ATTACK OUTCOME

While NIDSs have proven reasonably successful at
detecting attacks, they have fallen short in determin-
ing if attacks succeed or fail. Often analysts and sys-
tem administrators must review network traffic, ana-
lyze system and firewall logs, or run vulnerability
scans. With the exception of a few active techniques
[5], almost all verification methods require human
involvement. The process of determining the attack
outcome can either be immediate or delayed. The
immediate methods include: attacker makes it obvi-
ous, server response, network layout or system
knowledge, and active vulnerability scanning. The
delayed methods include: manual checks of logs or
patches, backdoor traffic, and anomaly detection.

The first immediate technique is by far the most
common method that analysts use to determine if the
attack succeeded or failed. The assumption is that if
an attack is successful then the intruder will immedi-
ately take action against the target system. The prob-
lem with this assumption is that it has no technical
foundation. The server response is a proven method
to determine success or failure. In the next section we
extend this method to common buffer overflows.
However, we will also show a possibly overlooked
vulnerability in server response analysis. While the
use of passive or active network mapping is beneficial
it often only provides relevance to an alert. For ex-
ample, an Apache web attack against an Internet In-
formation Services (IIS) web server will obviously
fail. However, if an attacker uses an IIS exploit
against an IIS computer then more information is
needed. Active verification using vulnerability scans
is a way to obtain this information. For example, the
target system can be scanned after attack to determine
if the vulnerability is present. A weakness is that
there is potentially a small window where an attacker
could modify the target system to appear patched.

There are also many methods to determine that an in-
trusion occurred several hours, days, or even weeks
after an attack. Analysts or system administrators of-
ten manually check logs or patches if they are suspi-
cious that an attack may have succeeded. Unfortu-
nately, this approach is vulnerable to system

tampering and can be very time consuming particu-
larly in large networks. Backdoor detection methods
can be very effective in catching comprises even
though the original attack goes unseen. Finally,
anomaly-based detection methods are particularly ef-
fective in recognizing unauthorized network traffic or
suspicious user activities.

SERVER RESPONSE ANALYSIS
For large organizations the manual verification of at-
tack outcomes is burdensome. In addition, the dis-
tributed architecture presents certain problems for ac-
tive verification methods. For example, if there are
multiple paths into a network then the verification
system may not have the same visibility as the in-
truder. In addition, extra costs would be involved to
add this capability to regional sites. As a complement
to active verification, server response review allows
determining the outcome immediately after the attack.
In this section we show that server response analysis
also applies to buffer overflow vulnerabilities.

Windows 2000 Server and XP Professional were se-
lected for target operating systems and configured
with VMware [20], virtual machine software that al-
lows for multiple operating systems on a single
physical computer. Windows 2000 Service Pack (SP)
0 through Windows XP SP 1 were tested to insure
consistency of results. A testing and development
framework, the Metasploit Framework [21], was se-
lected as it is open source and has a wide range of ro-
bust Windows buffer overflow exploits. The eight
exploits chosen, shown in Table 1, represent some of
the most serious and commonly exploited vulnerabili-
ties in the past few years. For example, the WebDav
vulnerability was used in 0-day attacks and the
LSASS and RPC DCOM vulnerabilities were ex-
ploited by the Sasser and MSBlaster worms respec-
tively. In addition, there is a particular focus on IIS
attacks as HTTP requests are often the most likely to
be allowed through perimeter firewalls. Additional
details on the vulnerabilities and exploits listed in Ta-
ble 1 are available on the Microsoft Security website
[22] and the Metasploit website.

Ethereal [23] was used to capture the response since,
in a lab environment, it has the same traffic collection
capabilities of most NIDS. For a response character-
istic to be of significant value it must be consistent
(reduces false positives or false negatives) and distin-

4 of 10

guishable (determines success from failure). It is im-
portant to note that we define a “successful” attack as
one where attacker code is executed. Unless the
shellcode causes obvious network activity (e.g., re-
verse shell) there is no way to determine (based on
the response) if the executed code actually did any-
thing useful. Often shellcode will not be completely
universal or reliable resulting in failures. Next, we
used a minimum of three repetitions for both patched
and unpatched computers in each configuration to ob-
tain the appropriate responses (there was not signifi-
cant variance observed). In addition, the VMware
target host was reset to its default setting (i.e. using
the snapshot feature) after each repetition to insure
the accuracy of the tests. When possible, we also
used publicly available exploits to improve the vari-
ability in the tests.

The results of our experiments indicate that unpatched
servers do not return a distinguishable response. We
can partially attribute this to the control the attacker
has when exiting the shellcode. On the contrary,
patched servers had very consistent responses as ex-
pected. The exploit tested, corresponding Microsoft
bulletin, patched and unpatched server responses, and
size of the default response is shown in Table 1. The
size of the error message can be used in determining
the legitimacy of the response as seen later in the pa-
per.

Table 1: Experimental Server Response Results

The results demonstrate that the server response can
give clear evidence of the configuration of the target
system. The consistency of response (especially for

HTTP overflows) makes it ideal for both misuse and
anomaly-based detection applications. For example,
specific signatures could be created that match the
exploit attempt with the associated expected response
(i.e., using Snort’s flowbits plug-in) [18]. If this re-
sponse is not seen, then an alert for a successful attack
could be generated.

A somewhat surprising result from the above tests
was that the exploit vector did not impact the patched
server response. However, past experience and the
fact that the operating system on the LSASS exploit
did influence the response led us to investigate the
impact of the exploit vector on additional samples.
While not as rigorous as those listed in Table 1, all of
the tests (SQL_Hello, Workstation Service (Wksrvc)
WINS, NetDDE) reinforced the validity of determin-
ing outcome via patched server response. The
Wksrvc (MS-03-49) test confirmed that there are
limitations to matching on responses. In particular,
the two different exploit vectors (NetrValidateName2
and NetrAddAlternateComputerName) resulted in two
different patched responses on a Win2k server. In
addition, the response on the Win2K and WinXP sys-
tems differed. While there is little issue with creating
accurate signatures, the limitations of signature detec-
tion and the varying OS and exploit vector result in a
potential scaling problem. A more sophisticated post-
processing engine using protocol analysis may be a
solution for those vulnerabilities with no obvious dif-
ference between patched and unpatched responses.

When implementing response checking methods in
real world environments one must keep in mind the
possibility of custom error messages. For instance,
the patched response for the WebDAV exploit might
be a 200 OK initially before redirecting to the error
page. In addition, it may be another error entirely.
However, unless system administrators start getting
really creative there should still be clear distinguish-
able differences that can be programmed in the NIDS.
The effort required to determine a reliable and valid
response characteristics should not be trivialized. It
would be a serious error to write a signature based
solely on tests with one public exploit. Instead, de-
velopers must be careful to recognize the difference
between a response caused by specific exploit charac-
teristics and the responses that may be caused by the
various ways to exploit the vulnerability.

5 of 10

NIDS ANALYST EVASION

While it is desirable for the attacker to evade attack
detection, the ultimate goal is to conceal the intrusion.
Furthermore, the intruder may be unsure if the attack
will be detected by the NIDS, despite evasion at-
tempts. It is then logical to assume that the intruder
will, in addition, wish to attack the last link in the
chain, the analyst. We argue that if the intruder can
convince the analyst that a successful attack has failed
then the intrusion will go undetected. Then after suf-
ficient time has passed the intruder would either con-
nect back to the victim, presumably using a different
Internet Protocol (IP) address, or wait for the shell-
code to initiate an outbound connection. In this case,
it is almost as if the attack had never been detected in
the first place.

Three social engineering techniques are developed in
this section. The first method attempts to deceive the
analyst into believing an intruder is unable to connect
to a backdoor port. The second uses decoy shellcode
that makes the attack appear to target another operat-
ing system. The third technique requires that the at-
tacker manipulate or forge the server response on un-
patched systems. Each of these methods either
attacks training, common practices, or trusts that ana-
lysts use.

The first method is a simple attempt to deceive the
analyst into believing an intruder is unable to connect
to his/her backdoor port. IDS analysts are trained to
look for signs an exploit failed such as the inability to
connect to a backdoor the port. Figure 2 illustrates
how this would appear to an analyst.

Figure 2. Fake Backdoor Evasion

In the example, the intruder attempts to initiate a con-
nection to port 4444 (a known backdoor port associ-
ated with several exploits). The target server re-
sponds with a RST ACK indicating that the port is not
open. An attacker would implement this second tech-

nique by using a payload that does not setup a back-
door (i.e., instead adding a new user) and then by
sending SYN packets to a backdoor port associated
with the exploit.

The second evasion method involves using decoy
shellcode that makes the attack appear to target an-
other operating system. IDS analysts are trained to
identify the operating system the exploit targets by
reviewing the shellcode to look for common indica-
tors [19]. Shellcode that executes the UNIX com-
mand shell (e.g. /bin/sh) is frequently seen on the
internet. In addition, code that sets up a backdoor on
Linux x86 systems is also common in shellcode. The
below command sets up a temporary backdoor (on
port 1524) in inetd.conf, the internet daemon on
Linux:
/bin/sh –c echo 'ingreslock stream tcp nowait root
/bin/bash bash -i'> /tmp/.inetd.conf; /usr/sbin/inetd
/tmp/.inetd.conf

If commands similar to the ones above are present in
shellcode, it is typically assumed that the shellcode is
developed for a UNIX environment. This is used to
develop Windows payloads that include non-
functional UNIX-based shellcode at the end. To im-
plement this technique in the Metasploit Framework,
the real Windows payload is encoded using the
msfencode command line tool. The tool is modified
to insure that the bad characters for the exploit are not
present and the final decoy shellcode is created. Fi-
nally, the default encoding behavior of the framework
is adapted to use an encoder that returns the payload
unmodified. This method plays to the “dumb” at-
tacker concept and encourages the analyst to believe
that the intruder has no clue about what the target is
and how to construct an exploit.

The final evasion technique is the most complex and
involves modifying or forging the server response.
While it is true that the server response can be trusted
in association with simple exploits (i.e., password
guessing or directory traversals), buffer overflows and
other attacks that give the intruder either administra-
tor or root access are exceptions. In order to forge a
realistic packet, a server socket handle or equivalent
is required for the connection in question. This han-
dle can either be created through the use of raw sock-
ets or can be located if still available.

6 of 10

A limitation of both the findsock and findtag methods
is that in many cases (i.e., Internet Information Server
(IIS)) the socket owner is not the process that is ex-
ploited. Code that attempts to find or use valid socket
descriptors, then, will loop until the thread is exter-
nally closed. For these attacks to be successful, the
findsock or findtag code must be injected into the cor-
rect process and then executed in the context of that
process [24]. This requires, at the minimum, the fol-
lowing API calls: OpenProcess, VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread. In
addition, the correct process must be located through
either enumerating open processes (EnumProcesses,
EnumProcessModules, GetModule) or by stepping
through a snapshot of current processes (CreateTool-
help32Snapshot, Process32First, Process32Next).
The minimum size required for process injection is at
least 255 bytes.

The first case is when the attacker creates the forged
packet. To do this the IP and TCP headers must be
manually constructed and the false response data in-
serted. While the IP header is easily constructed,
creation of a reliable TCP header is not straightfor-
ward. The attacker must capture the initial sequence
numbers and then calculate the checksum and ac-
knowledgment sequence number. While difficult,
this is possible since the attacker is part of the session
and usually has prior knowledge of the size of the at-
tack. The final part of sending a raw packet is gener-
ating and including the application layer data. For
instance, an IIS buffer overflow response might be a
HTTP/1.1 400 Bad Request. This method is limited
because raw socket forging or rawsock requires Win-
dows 2000 or greater due to the required use of
IP_HDRINCL. In addition, another limitation is the
size to create the packet is at least 350 bytes including
the Application Programming Interface (API) calls
required (socket, setsockopt, and sendto). However,
in the cases where a socket is no longer available or
requires too much size to locate, rawsock would be
the obvious choice.

In certain overflows it is also possible to use the de-
fault constructs of the target application to forge the
response. This is the ideal case for the attacker since
it does not require the extra size of including the error
message. For example, in several Internet Server Ap-
plication Program Interface (ISAPI) overflows it is
possible to instead locate the connection ID and use
ISAPI functions to forge a message. An attacker us-
ing the forging technique would exploit the target sys-
tem, fake a failed response to trick the analyst, and
then execute a delayed backdoor. Figure 3 shows
how this attack might appear to an analyst. Packets 1-
3 are the TCP handshake. Packet 4 contains the
buffer overflow. It then appears that the target issues
a bad request error in packet 5 and then resets the
connection. In fact, packet 5 is forged by the intruder.

The second case requires that the attacker locate the
socket handle associated with the exploit connection.
Two compact methods to achieve this involve locat-
ing the peer or source port (findsock) or sending and
recognizing a hardcoded tag (findtag). In the find-
sock option, the attacker uses the getpeername call to
“determine the endpoint associated with a given
socket” [7]. If the source port matches that of the at-
tacker then a response packet can be forged by plac-
ing the required data on the stack and calling send.
When optimized and hardcoded to a specific service
pack this process requires only 40 bytes. In the find-
tag option, socket descriptors are enumerated by us-
ing ioctlsocket to determine the amount of data pend-
ing in the network's input buffer that can be read from
the socket. If data is pending, recv is called to com-
pare the hard-coded tag with the one the attacker sent.
While findtag does require an additional packet, it
also works through Network Address Translation
(NAT) devices, unlike findsock. The benefit of using
findtag or findsock is in the minimal case the required
shellcode size is small. All that is required is the code
to find the socket handle (40 bytes), the added size of
the error message (shown in Table 1), and a secon-
dary backdoor payload to execute.

Figure 3. Forged Server Response

DETERMINING RESPONSE TRUST

While network traffic analysis saves time and has
been shown to confirm attack outcomes it is not as
straightforward as once thought. Analysts that

7 of 10

The first step in using the payload comparison
method is to construct a database of known shellcode.
To do this we analyzed the public exploits on “Securi-
tyfocus.com” and “Securiteam.com” to extract just
the payload component. While this captures the ma-
jority of the relevant shellcode (for our tests), it is as-
sumed that many more would need to be added in an
operational environment. The next examples show
the three most likely situations encountered when at-
tempting to extract the relevant payload. First, the
easiest case is when the shellcode is almost entirely
standalone as in the “oc192-dcom” exploit. This ex-
ploit uses a bindshell payload where the only option is
the port the shell will bind to. In addition, all bad
characters have already been removed from the pay-
load so with the exception of a few of bytes of port
information there should be an exact match. The
“wbr_c” WebDAV exploit is an example of a payload
with nulls and a static XOR key. Slightly more work
is involved because each byte of the shellcode must
be XORed against the key of 0x95. However, once
that work is accomplished it becomes a similar prob-
lem as in the first case. The worst case scenario is
when the key is calculated during runtime. For in-
stance, the “Webdav-reloaded” exploit determines the
key based on a fairly simple for loop that checks for
nulls, carriage returns, and line feeds.

blindly trust the response might incorrectly character-
ize a successful intrusion. Even worse, is the case
when the NIDS is programmed to disregard attacks
based solely on the response, resulting in complete
evasion. Therefore, a method is needed to determine
when the server response can be trusted. We provide
a brief overview of three such methods in this section.
Note that these methods are not intended to be a
100% solution, as an attacker using advanced poly-
morphic techniques can force the analyst to resort to
other means (e.g., active verification) of confirming
the outcome. Instead, we focus on the majority of
attacks that will not likely be completely polymorphic
in nature. Also, all three methods are likely to be
processor intensive so post-processing or offline
analysis would be ideal.

One solution stems from current methods analysts use
to determine the function of the shellcode. The ana-
lyst first determines the encoding technique and then
decodes the shellcode. The shellcode is then reverse-
engineered to determine its functionality. While pos-
sible, it is difficult and time consuming. Neverthe-
less, this method is useful when only the decoder can
be located due to a polymorphic NOP sled. One ap-
proach is to use emulation and heuristics to speed up
the determination of the shellcode function [25]. A
similar method is commonly used in the anti-virus
community to analyze potentially malicious code
without executing it. However, the NIDS has several
disadvantages primarily the fact that it does not reside
on the attacked host and must be capable of multi-OS
and instruction set emulation. In addition, attacker
shellcode can be designed specifically to resist auto-
matic analysis through emulation [26].

The next step, and one required in all the methods of
determining trust, is to program the NIDS to locate
the shellcode. In the common case of public exploits,
this can be done by locating the decoder or by follow-
ing the NOP sled until the shellcode is encountered.
Then the end of the shellcode is determined through
simple heuristics. Finally, a differential analysis is
performed between the intruder’s shellcode and those
in the database (starting with shellcode associated
with the particular exploit). If a match is not found
then the system could either default to generating an
alert or proceed to the next method of determining
trust. If a match is found then the variability between
the two payloads is analyzed. Some flexibility is re-
quired to account for differences due to attacker
modifiable options like ports, IP address, and user
name/password.

The next method requires that public shellcode be
stored in a database and matched against the at-
tacker’s payload. If the payload matches then the re-
sponse can be trusted (i.e., assuming forging payloads
are not made public). While this method does require
extra work to maintain the database, once it is created,
the upkeep should be minimal. This method is par-
ticularly effective against static public exploits (i.e.,
they are usually compiled and executed with no
changes). It is important that the payload comparison
algorithm check for the existence of other payloads to
prevent an attacker inserting a known shellcode in
addition to the real payload.

There is an increasing trend towards small, dynami-
cally encoded payloads which makes payload com-
parison obsolete. In this case, we recommend using
the size of the payload to determine if forging is pos-

8 of 10

sible. For example, the latest release of the Metas-
ploit Framework has an average encoded Windows
payload size of 246 bytes. Based on payload size,
only 1 of the 19 payloads would be large enough to
forge responses for the exploits tested. In “payload
size analysis” we use knowledge of the attacks devel-
oped earlier in the paper to estimate the minimum
forging size. Factors considered are the size of the
backdoor, error message size (e.g., shown in Table 1),
process injection code size, and forging and/or socket
location code size. It is important to note that this is
the most risky approach of the three as it requires that
the IDS developer or analyst be aware of the most
optimum methods of forging. For example, we ear-
lier addressed the fact that the intruder does not al-
ways have to include the error message in the shell-
code. While more research is required to make any
definitive statements about size required to forge re-
sponses and install a reliable backdoor we feel in
most cases at least 350 bytes are required.

 The size of the payload is determined by using the
NOP sled and any padding to separate the payload
from the rest of the exploit. Also, if the NOP sled is
polymorphic then the decoder could be located and
the size of the payload determined through reverse-
engineering. An intruder could split a larger payload
either within or between packets in an attempt to de-
feat the payload size analysis method. However, this
attack is defeated by inspecting all packets and re-
assembling the payload before analysis. Whichever
method is used it should be apparent that it takes a
more methodical approach to determine the outcome
instead of using network characteristics to “guess” at
the outcome of the attack.

CONCLUSION
The results of this study highlight the dangers of im-
proper traffic analysis and why the network security
analyst can also be vulnerable to evasion attacks.
Since the manual evaluation of NIDS alerts is time
consuming, error prone, and requires expert knowl-
edge more efficient methods are needed to determine
attack outcomes. Hopefully, we have shown that in
many cases this process can be automated. However,
the presented methods are certainly not a silver bullet
approach and often the NIDS will be required to re-
sort to a more active method of alert verification. It is
no surprise to us why many people are turned off by
the magnitude of effort involved in resolving IDS

alerts and why some unfortunately choose to instead
just block attacks and forget about what might be get-
ting through. We expect that organizations will wish
to block traffic that can be identified, with high confi-
dence, as malicious. However, not all malicious traf-
fic can be blocked and some may wish to not drop
attacks but instead only alert on them for whatever
reason. It is in those cases that we feel there is sig-
nificant room for improving how IDS alerts are han-
dled. As a follow-on to this research we expect to
implement the response checking methods and further
investigate response detection and forging on addi-
tional platforms such as Linux.

ACKNOWLEDGMENTS
We would like to thank Sean OHara, Matt Miller and
H.D. Moore for their many suggestions and ideas dur-
ing the development of this research. Finally, we
would like to thank the reviewers whose suggestions
were incorporated into the paper/presentation and the
Air Force Research Laboratory’s Anti-Tamper Soft-
ware Protection Initiative Technology Office for sup-
porting this work.

 REFERENCES
[1] K. Mitnick, W. Simon, S. Wozniak, The Art of
Deception: Controlling the Human Element of Secu-
rity, Wiley Publishing Inc., Indiana, Oct 2002, pp. 41-
55.

[2] IRS Audit Report 200420035, http://www.lawpro-
fessorblogs.com/taxprof/linkdocs/2005-5545-1.pdf,
Mar 2005, pp. 1-13.

[3] Snort Documentation, http://www.snort.org/docs,
2004.

[4] P. Ning, S. Jajodia, “Intrusion Detection Tech-
niques,” In H. Bidgoli (Ed.), The Internet Encyclope-
dia. John Wiley & Sons, Dec 2003, pp. 2-6.

[5] C. Kruegel, W. Robertson, “Alert Verification:
Determining the Success of Intrusion Attempts,” 1st
Workshop on the Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA), Jul
2004, pp. 1-14.

[6] SANS Top 20 Internet Security Vulnerabilities,
http://www.sans.org/top20, 2004.

[7] M. Miller, “Understanding Windows Shellcode”,
White Paper http://www.hick.org/code/skape/papers/
win32 -shellcode.pdf, Dec 2003.

9 of 10

10 of 10

[8] K2, ADMmutate Documentation,
http://www.ktwo .ca/readme.html, 2001.

[9] T. Detristan, T. Ulenspiegel, Y. Malcom, and M.
Underduk, Polymorphic Shellcode Engine Using
Spectrum Analysis, Phrack Issue 0x3d, Aug 2003.

[10] T. Ptacek, T. Newsham, “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detec-
tion,” Secure Networks, Inc., Jan. 1998, pp. 11-14.

[11] V. Paxson, “Bro: A System for Detecting Net-
work Intruders in Real-Time,” 7th Annual USENIX
Security Symposium, Jan 1998, pp. 12-15.

[12] G. Vigna, W. Robertson, D. Balzarotti, “Testing
Network-based Intrusion Detection Signatures Using
Mutant Exploits,” 11th ACM Conference on Com-
puter Security and Communications Security, Oct
2004, pp. 1-10.

[13] D. Mutz, G. Vigna, R. Kemmerer, “An Experi-
ence Developing an IDS Stimulator for the Black-Box
Testing of Network Intrusion Detection Systems,”
19th Annual IEEE Computer Security Applications
Conference, Dec 2003, pp. 2-7.

[14] D. Wagner, D. Dean, “Intrusion Detection via
Static Analysis,” 2001 IEEE Symposium on Security
& Privacy, May 2001, pp. 9-11.

[15] D. Wagner, P. Soto, “Mimicry Attacks on Host-
Based Intrusion Detection Systems,” 9th ACM Con-
ference on Computer Security, Nov 2002, pp.1-4.

[16] K. Tan, J. McHugh, K. Killourhy, “Hiding Intru-
sions: From the Abnormal to the Normal and Be-
yond,” 5th International Workshop on Information
Hiding, Volume 2578 of Lecture Notes in Computer
Science (LNCS), Springer Verlag, Oct 2002, pp. 10-
16.

[17] R. Sommer, V. Paxon, “Enhancing Byte-Level
Network Intrusion Detection Signatures with Con-
text,” 10th ACM Conference on Computer and
Communications Security, Oct 2003, pp. 5-6.

[18] J. Zhou, A. Carlson, M. Bishop, “Verify Results
of Network Intrusion Alerts Using Lightweight Pro-
tocol Analysis”, 2006 Annual Computer Security Ap-
plications Conference (ACSAC), Dec 2006, pp. 1-10.

[19] S. Northcutt, M. Cooper, M. Fearnow, K. Freder-
ick, Intrusion Signatures and Analysis, New Riders
Publishing, Indiana, Jan 2001, pp. 269-297.

[20] VMware Documentation,
http://www.vmware.com/s- upport/pubs, 2004.

[21] H.D. Moore, Metasploit Framework Documenta-
tion,
http://www.metasploit.com, 2004.

[22] Microsoft Security Bulletin Website,
http://www.
microsoft.com/security/bulletins/default.mspx, 2004.

[23] Ethereal Documentation,
http://www.ethereal.com, 2004.

[24] R. Kuster, “Three Ways to Inject Your Code into
Another Process”, http://www.codeproject.com/threads/
winspy, Jul 2003.

[25] M. Polychronakis, K. Anagnostakis, E. Marka-
tos, “Network-Level Polymorphic Shellcode Detec-
tion Using Emulation”, 3rd Conference on the Detec-
tion of Intrusions and Malware & Vulnerability
Assessment (DIMVA), Jul 2006, pp. 11-20.

[26] A. Czarnowski, “Code Emulation in Network
Intrusion Detection/Prevention Systems”, Virus Bul-
letin 2005 Article,
http://www.virusbtn.com/virusbulletin/ar-
chive/2005/08/vb200508-code-emulation.dkb, Aug
005 2

