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ABSTRACT 

Organizations frequently rely on the use of Network 
Intrusion Detection Systems (NIDSs) to identify and 
prevent intrusions into their computer networks.   
While NIDSs have proven reasonably successful at 
detecting attacks, they have fallen short in determin-
ing if attacks succeed or fail.  This determination is 
often left to the security analyst or system administra-
tor.  Large-scale networks pose a particular chal-
lenge for IDS analysts.  The process of manually 
checking systems to determine if an attack is success-
ful becomes burdensome as the size and geographic 
location of the network increases.  Many analysts use 
network data alone, in particular the server response, 
to determine the outcome of the attack.  Intuitively, 
the server response is the packet or packets the target 
computer returns after an attack.  However, in the 
case of buffer overflows, the attacker has the ability 
to forge or modify this response.  

This paper examines two key aspects of network de-
fense:  the ability to circumvent detection devices and 
how network analysts respond to evasion techniques.  
We examine how social engineering can be used to 
influence an analyst’s decisions and we recommend 
ways to counter this threat.  The intended audience 
will be responsible for either developing IDS signa-
tures, or analyzing network IDS results.  The techni-
cal detail is moderate, but does assume some expo-
sure to network traffic analysis, intrusion detection, 
and exploits in general.         

 
INTRODUCTION 

In the early years of phone networks, attackers often 
used social engineering techniques to gain unauthor-
ized access to computer systems.  For example, an 
intruder could pretend to be a telephone repairman or 

a company executive out on the job that forgot the 
password and needed it reset.  With just a small 
amount of preparatory work the intruder would con-
vince the help desk technician that the request was 
legitimate and needed to be granted immediately.  
Hacker groups in the late 80’s and early 90’s such as 
“The Masters of Deception” found that it was often 
easier to just ask for information instead of finding 
and exploiting technical vulnerabilities.  Kevin Mit-
nick, arguably the most famous social engineer, 
conned employees of some of the largest corporations 
by exploiting the human tendency to trust [1].  Social 
engineering involves using human trusts to achieve a 
desired goal.  This goal might be to close an impor-
tant business deal, or to penetrate a network of crimi-
nals as an undercover agent.  The goal for the com-
puter attacker is unauthorized access to the target 
network or computer system.  While increased train-
ing has reduced the threat of social engineering, it 
continues to be a problem.  For example, in a recent 
Inspector General audit of the Internal Revenue Ser-
vice (IRS) 35 of 100 employees were convinced to 
provide usernames and reset their passwords for 
someone posing as a help desk technician [2]. 

There are two main types of social engineering:  
computer-based and human-based.  The previous ex-
ample highlighted a human-based approach.  In a 
computer-based attack the intruder does not directly 
interact with another human.  Instead, an email might 
be sent containing a malicious file, or a fake website 
could be used to harvest usernames and passwords.  
So what does social engineering have to do with Net-
work Intrusion Detection Systems (NIDSs) and eva-
sion?  To answer this question the method in which 
intrusions are detected must first be examined.  We 
highlight in this paper that in most cases a NIDS con-
sist of both a computer and human component.  While 



 
the computer component of the NIDS may detect an 
attack, the human (network security analyst) must de-
cide if the attack is a success or failure.   

A review of both academic and commercial literature 
shows significant research in evading the computer 
component, but little with respect to the human ana-
lyst.  We address this gap in research by examining 
network analyst training and then creating evasion 
techniques that use computer-based social engineer-
ing.  The goal is to deceive the analyst into believing 
that a successful attack has instead failed.  The hy-
pothesis is that even if an attack is detected, the actual 
intrusion will go unnoticed if the analyst can be con-
vinced to not follow-up.  We focus the exploits tested 
and the evasion techniques developed on the Win-
dows operating system because of its predominance 
throughout industry.     

However, the goal of this paper is to not show new 
avenues of attack.  Instead we point out that if net-
work traffic is to be analyzed it must be done cor-
rectly.  This analysis can be fruitful since our experi-
ments suggest that even in the case of buffer 
overflows the server response often indicates if the 
attack succeeds or fails.  We then propose several 
methods for determining if the response can be 
trusted.  These defensive measures allow the NIDS or 
analyst to immediately determine the attack outcome 
and prevent “NIDS analyst evasion” from being suc-
cessful.  

The first section below provides background informa-
tion on the topics covered in this paper.  Next, we de-
scribe related work in the areas of alert verification 
and IDS evasion.  The next sections address how at-
tack outcomes are currently determined and include 
the results of some of our recent server response ex-
periments.  In the fifth section we introduce various 
NIDS evasion techniques that focus on the analyst.  
Next, several methods to determine server response 
trusts are proposed.  Finally, we conclude and present 
ideas for future work. 
 

BACKGROUND 
We provide a brief overview of some important terms 
in computer security in this section.  Intrusion detec-
tion (ID) is the art and science of finding compro-
mises or the attempt to compromise the integrity of a 
network or computer system.  The term has been 

broadened to include the detection of other forms of 
attacks besides intrusions such as scanning, enumera-
tion, and denial-of-service.  NIDSs and Host-Based 
Intrusion Detection Systems (HIDSs) are the two 
primary technical implementations that exist to detect 
attacks.  A NIDS monitors an entire network for ma-
licious activity, while a HIDS monitors the host it re-
sides on. In addition, Intrusion Prevention Systems 
(IPSs) not only detect attacks, but also attempt to stop 
them before any damage is done.   

We focus on the NIDS, as it is most vulnerable to the 
attacks mentioned in this paper and the one that most 
analysts are responsible for monitoring.  The two 
well-recognized areas of detection are misuse and 
anomaly-based.  Misuse or signature-based detection 
focuses on known attacks or known characteristics of 
attacks by matching on a pre-defined byte sequence.  
Snort [3] is one example of a well-known IDS that 
makes extensive use of signatures.  Anomaly-based 
detection seeks to establish what is normal and then 
search for traffic that differs from the baseline.  There 
are many models that can be applied to this form of 
detection [4].  

Alert verification is the process of determining the 
outcome of an attack [5].  This includes both active 
measures used after an attack (e.g., running vulner-
ability scans) and passive measures used before an 
attack (e.g., collecting network configurations).  The 
server response is defined as the packet or packets the 
target computer returns after an attack.  For instance, 
a malformed request for a web resource might return 
a “HTTP/1.1 400 Bad Request” indicating that the 
attack failed. 

Even with the increased focus on good programming 
practices, buffer overflows continue to be one of the 
most widely exploited vulnerabilities.  In fact, the 
SANS 2004 Top 10 most exploited Windows vulner-
abilities, have buffer overflows in positions one, two, 
four, and eight [6].  An exploit is the code that an in-
truder uses to take advantage of a known vulnerabil-
ity.  Many of the early buffer overflow exploits were 
customized for the UNIX operating system and other 
variants.  A common technique for an attacker was to 
code the payload to execute a shell upon successful 
exploitation of the victim.  Shellcode now refers to a 
wide range of payloads that setup backdoor ports, es-
tablish reverse-shells to the attacker, modify key op-
erating system files, or add new users.  The art of 
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constructing more compact, complex, and functional 
shellcode has advanced significantly [7].   

Buffer overflows typically consist of four main sec-
tions: the decoder, NOP sled, shellcode, and return 
addresses or jump to Instruction Pointer (IP). An ab-
breviated sample of these sections is shown in Figure 
1.  In most cases, the decoder is not visibly distin-
guishable from the rest of the shellcode.  In addition, 
Figure 1 illustrates the overwriting of the saved in-
struction pointer with the address of a jump ESP in-
struction.  This is just one of the many Windows 
overflow techniques that allow an attacker to cause 
control flow to pass to the shellcode.  The NOP sled 
consists of a series of “No-operation” commands (i.e. 
90 is the hexadecimal value for the default NOP in 
the Intel x86 architecture) that pass execution to the 
next command.  This allows the attacker flexibility in 
guessing the location of the shellcode in memory. 

 

 

Figure 1.  Buffer Overflow Sections 

 

Polymorphic shellcode seeks to evade basic misuse 
detection by borrowing techniques from computer 
virus developers [8].  Polymorphism is added through 
unobtrusive manipulations on spare CPU registers to 
create unique yet functionally equivalent shellcode.  
Advances in polymorphic shellcode generation have 
made even anomaly-based detection methods such as 
data-mining difficult in locating buffer overflow at-
tacks [9].  In addition, it may be difficult to tell where 
one section of the shellcode ends and the next begins.  
Many developers have instead focused on detecting 
the exploit vector and not the shellcode for this rea-
son.  The exploit vector is the method in which the 

vulnerability will be triggered.  For instance, the 
Printer ISAPI buffer overflow required a URL that 
included “.printer” and a long Host header field.  Of 
course, not all vulnerabilities have a single exploit 
vector. 
 

  RELATED WORK 
In 1998, Ptacek and Newsham introduced the world 
to the field of IDS evasion [10].  During the same 
time, Paxson introduced the Bro IDS and several re-
lated evasion techniques [11].  Ever since, there has 
been significant academic and commercial research in 
IDS evasion.  Recent work in mutating network ex-
ploits has shown that NIDSs such as Snort and ISS 
Realsecure still have problems with evasion [12].  We 
feel that there is little room to advance the state of the 
art in the areas previously addressed.  However, with 
the exception of alert flooding techniques the ana-
lyst’s role in detection is untested [13].  Therefore we 
focus our evasion attacks towards the NIDS analyst. 

Each of the attack techniques developed in this paper 
rely on disguising successful attacks as failures.  Pre-
vious work in this area focused on HIDSs.  For in-
stance, “Mimicry attacks” target HIDS by modifying 
the exploit characteristics to mimic that of a legiti-
mate application [14,15].  The concept of mimicking 
a legitimate application can be expanded to describe 
the general case of hiding attacks by modifying the 
exploit.  This can involve hiding as normal activity, in 
a spot undetectable to the HIDS, as a less serious at-
tack, and as an entirely new attack [16]. 

A good discussion of alert verification techniques is 
provided in [5].  However, this paper omits the cate-
gory of network based verification (e.g., server re-
sponse detection).  The usefulness of the server re-
sponse has been discussed in previous works, 
although the focus has not been on buffer overflows.  
For instance, Sommer and Paxson discuss the benefit 
of “request/reply” signatures in improving the quality 
of alerts [17].  A recent paper parallels our work in 
describing how response signatures can be used to 
determine attack outcomes [18].  However, the au-
thors do not address the validity of the response be-
sides saying that it is theoretical possible for a clever 
intruder to manipulate it.  Other methods to determine 
the success and failure of attacks are based on under-
standing the layout of the network [17].  The closely 
related method, commonly used by IDS analysts, of 
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determining the target operating system and matching 
it to the exploit also gives an indication if the attack 
will succeed or fail [19].  
 

DETERMINING ATTACK OUTCOME 

While NIDSs have proven reasonably successful at 
detecting attacks, they have fallen short in determin-
ing if attacks succeed or fail.  Often analysts and sys-
tem administrators must review network traffic, ana-
lyze system and firewall logs, or run vulnerability 
scans.  With the exception of a few active techniques 
[5], almost all verification methods require human 
involvement.  The process of determining the attack 
outcome can either be immediate or delayed.  The 
immediate methods include: attacker makes it obvi-
ous, server response, network layout or system 
knowledge, and active vulnerability scanning.  The 
delayed methods include: manual checks of logs or 
patches, backdoor traffic, and anomaly detection.    

The first immediate technique is by far the most 
common method that analysts use to determine if the 
attack succeeded or failed.  The assumption is that if 
an attack is successful then the intruder will immedi-
ately take action against the target system.  The prob-
lem with this assumption is that it has no technical 
foundation.  The server response is a proven method 
to determine success or failure.  In the next section we 
extend this method to common buffer overflows.  
However, we will also show a possibly overlooked 
vulnerability in server response analysis.  While the 
use of passive or active network mapping is beneficial 
it often only provides relevance to an alert.  For ex-
ample, an Apache web attack against an Internet In-
formation Services (IIS) web server will obviously 
fail.  However, if an attacker uses an IIS exploit 
against an IIS computer then more information is 
needed.  Active verification using vulnerability scans 
is a way to obtain this information.  For example, the 
target system can be scanned after attack to determine 
if the vulnerability is present.  A weakness is that 
there is potentially a small window where an attacker 
could modify the target system to appear patched.  

There are also many methods to determine that an in-
trusion occurred several hours, days, or even weeks 
after an attack.  Analysts or system administrators of-
ten manually check logs or patches if they are suspi-
cious that an attack may have succeeded.  Unfortu-
nately, this approach is vulnerable to system 

tampering and can be very time consuming particu-
larly in large networks.  Backdoor detection methods 
can be very effective in catching comprises even 
though the original attack goes unseen.  Finally, 
anomaly-based detection methods are particularly ef-
fective in recognizing unauthorized network traffic or 
suspicious user activities.     
 

SERVER RESPONSE ANALYSIS 
For large organizations the manual verification of at-
tack outcomes is burdensome.  In addition, the dis-
tributed architecture presents certain problems for ac-
tive verification methods.  For example, if there are 
multiple paths into a network then the verification 
system may not have the same visibility as the in-
truder.  In addition, extra costs would be involved to 
add this capability to regional sites.  As a complement 
to active verification, server response review allows 
determining the outcome immediately after the attack.  
In this section we show that server response analysis 
also applies to buffer overflow vulnerabilities.   

Windows 2000 Server and XP Professional were se-
lected for target operating systems and configured 
with VMware [20], virtual machine software that al-
lows for multiple operating systems on a single 
physical computer.  Windows 2000 Service Pack (SP) 
0 through Windows XP SP 1 were tested to insure 
consistency of results.  A testing and development 
framework, the Metasploit Framework [21], was se-
lected as it is open source and has a wide range of ro-
bust Windows buffer overflow exploits.  The eight 
exploits chosen, shown in Table 1, represent some of 
the most serious and commonly exploited vulnerabili-
ties in the past few years.  For example, the WebDav 
vulnerability was used in 0-day attacks and the 
LSASS and RPC DCOM vulnerabilities were ex-
ploited by the Sasser and MSBlaster worms respec-
tively.  In addition, there is a particular focus on IIS 
attacks as HTTP requests are often the most likely to 
be allowed through perimeter firewalls.  Additional 
details on the vulnerabilities and exploits listed in Ta-
ble 1 are available on the Microsoft Security website 
[22] and the Metasploit website.   

Ethereal [23] was used to capture the response since, 
in a lab environment, it has the same traffic collection 
capabilities of most NIDS.  For a response character-
istic to be of significant value it must be consistent 
(reduces false positives or false negatives) and distin-
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guishable (determines success from failure).  It is im-
portant to note that we define a “successful” attack as 
one where attacker code is executed.  Unless the 
shellcode causes obvious network activity (e.g., re-
verse shell) there is no way to determine (based on 
the response) if the executed code actually did any-
thing useful.  Often shellcode will not be completely 
universal or reliable resulting in failures.  Next, we 
used a minimum of three repetitions for both patched 
and unpatched computers in each configuration to ob-
tain the appropriate responses (there was not signifi-
cant variance observed).  In addition, the VMware 
target host was reset to its default setting (i.e. using 
the snapshot feature) after each repetition to insure 
the accuracy of the tests.  When possible, we also 
used publicly available exploits to improve the vari-
ability in the tests. 

The results of our experiments indicate that unpatched 
servers do not return a distinguishable response.  We 
can partially attribute this to the control the attacker 
has when exiting the shellcode.  On the contrary, 
patched servers had very consistent responses as ex-
pected.  The exploit tested, corresponding Microsoft 
bulletin, patched and unpatched server responses, and 
size of the default response is shown in Table 1.  The 
size of the error message can be used in determining 
the legitimacy of the response as seen later in the pa-
per.   
 

Table 1:  Experimental Server Response Results 

 
 
The results demonstrate that the server response can 
give clear evidence of the configuration of the target 
system.  The consistency of response (especially for 

HTTP overflows) makes it ideal for both misuse and 
anomaly-based detection applications.  For example, 
specific signatures could be created that match the 
exploit attempt with the associated expected response 
(i.e., using Snort’s flowbits plug-in) [18].  If this re-
sponse is not seen, then an alert for a successful attack 
could be generated. 

A somewhat surprising result from the above tests 
was that the exploit vector did not impact the patched 
server response.  However, past experience and the 
fact that the operating system on the LSASS exploit 
did influence the response led us to investigate the 
impact of the exploit vector on additional samples.  
While not as rigorous as those listed in Table 1, all of 
the tests (SQL_Hello, Workstation Service (Wksrvc) 
WINS, NetDDE) reinforced the validity of determin-
ing outcome via patched server response.  The 
Wksrvc (MS-03-49) test confirmed that there are 
limitations to matching on responses.  In particular, 
the two different exploit vectors (NetrValidateName2 
and NetrAddAlternateComputerName) resulted in two 
different patched responses on a Win2k server.  In 
addition, the response on the Win2K and WinXP sys-
tems differed.  While there is little issue with creating 
accurate signatures, the limitations of signature detec-
tion and the varying OS and exploit vector result in a 
potential scaling problem.  A more sophisticated post-
processing engine using protocol analysis may be a 
solution for those vulnerabilities with no obvious dif-
ference between patched and unpatched responses.   
 
When implementing response checking methods in 
real world environments one must keep in mind the 
possibility of custom error messages.  For instance, 
the patched response for the WebDAV exploit might 
be a 200 OK initially before redirecting to the error 
page.  In addition, it may be another error entirely.  
However, unless system administrators start getting 
really creative there should still be clear distinguish-
able differences that can be programmed in the NIDS.  
The effort required to determine a reliable and valid 
response characteristics should not be trivialized.  It 
would be a serious error to write a signature based 
solely on tests with one public exploit.  Instead, de-
velopers must be careful to recognize the difference 
between a response caused by specific exploit charac-
teristics and the responses that may be caused by the 
various ways to exploit the vulnerability.      
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NIDS ANALYST EVASION 

While it is desirable for the attacker to evade attack 
detection, the ultimate goal is to conceal the intrusion.  
Furthermore, the intruder may be unsure if the attack 
will be detected by the NIDS, despite evasion at-
tempts.  It is then logical to assume that the intruder 
will, in addition, wish to attack the last link in the 
chain, the analyst.  We argue that if the intruder can 
convince the analyst that a successful attack has failed 
then the intrusion will go undetected.  Then after suf-
ficient time has passed the intruder would either con-
nect back to the victim, presumably using a different 
Internet Protocol (IP) address, or wait for the shell-
code to initiate an outbound connection.  In this case, 
it is almost as if the attack had never been detected in 
the first place.   

Three social engineering techniques are developed in 
this section. The first method attempts to deceive the 
analyst into believing an intruder is unable to connect 
to a backdoor port.  The second uses decoy shellcode 
that makes the attack appear to target another operat-
ing system.  The third technique requires that the at-
tacker manipulate or forge the server response on un-
patched systems.  Each of these methods either 
attacks training, common practices, or trusts that ana-
lysts use.   

The first method is a simple attempt to deceive the 
analyst into believing an intruder is unable to connect 
to his/her backdoor port.  IDS analysts are trained to 
look for signs an exploit failed such as the inability to 
connect to a backdoor the port.  Figure 2 illustrates 
how this would appear to an analyst.  
  

 
Figure 2.  Fake Backdoor Evasion 

 

In the example, the intruder attempts to initiate a con-
nection to port 4444 (a known backdoor port associ-
ated with several exploits).  The target server re-
sponds with a RST ACK indicating that the port is not 
open.  An attacker would implement this second tech-

nique by using a payload that does not setup a back-
door (i.e., instead adding a new user) and then by 
sending SYN packets to a backdoor port associated 
with the exploit. 

The second evasion method involves using decoy 
shellcode that makes the attack appear to target an-
other operating system.  IDS analysts are trained to 
identify the operating system the exploit targets by 
reviewing the shellcode to look for common indica-
tors [19].  Shellcode that executes the UNIX com-
mand shell (e.g. /bin/sh) is frequently seen on the 
internet.  In addition, code that sets up a backdoor on 
Linux x86 systems is also common in shellcode.  The 
below command sets up a temporary backdoor (on 
port 1524) in inetd.conf, the internet daemon on 
Linux: 
/bin/sh –c echo 'ingreslock stream tcp nowait root 
/bin/bash bash -i'> /tmp/.inetd.conf;   /usr/sbin/inetd 
/tmp/.inetd.conf 

If commands similar to the ones above are present in 
shellcode, it is typically assumed that the shellcode is 
developed for a UNIX environment.  This is used to 
develop Windows payloads that include non-
functional UNIX-based shellcode at the end.  To im-
plement this technique in the Metasploit Framework, 
the real Windows payload is encoded using the 
msfencode command line tool.  The tool is modified 
to insure that the bad characters for the exploit are not 
present and the final decoy shellcode is created.  Fi-
nally, the default encoding behavior of the framework 
is adapted to use an encoder that returns the payload 
unmodified.  This method plays to the “dumb” at-
tacker concept and encourages the analyst to believe 
that the intruder has no clue about what the target is 
and how to construct an exploit.  

The final evasion technique is the most complex and 
involves modifying or forging the server response.  
While it is true that the server response can be trusted 
in association with simple exploits (i.e., password 
guessing or directory traversals), buffer overflows and 
other attacks that give the intruder either administra-
tor or root access are exceptions.  In order to forge a 
realistic packet, a server socket handle or equivalent 
is required for the connection in question.  This han-
dle can either be created through the use of raw sock-
ets or can be located if still available.   
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A limitation of both the findsock and findtag methods 
is that in many cases (i.e., Internet Information Server 
(IIS)) the socket owner is not the process that is ex-
ploited.  Code that attempts to find or use valid socket 
descriptors, then, will loop until the thread is exter-
nally closed.  For these attacks to be successful, the 
findsock or findtag code must be injected into the cor-
rect process and then executed in the context of that 
process [24].  This requires, at the minimum, the fol-
lowing API calls:  OpenProcess, VirtualAllocEx, 
WriteProcessMemory, and CreateRemoteThread.  In 
addition, the correct process must be located through 
either enumerating open processes (EnumProcesses, 
EnumProcessModules, GetModule) or by stepping 
through a snapshot of current processes (CreateTool-
help32Snapshot, Process32First, Process32Next).  
The minimum size required for process injection is at 
least 255 bytes. 

The first case is when the attacker creates the forged 
packet.  To do this the IP and TCP headers must be 
manually constructed and the false response data in-
serted.  While the IP header is easily constructed, 
creation of a reliable TCP header is not straightfor-
ward.  The attacker must capture the initial sequence 
numbers and then calculate the checksum and ac-
knowledgment sequence number.  While difficult, 
this is possible since the attacker is part of the session 
and usually has prior knowledge of the size of the at-
tack.  The final part of sending a raw packet is gener-
ating and including the application layer data.  For 
instance, an IIS buffer overflow response might be a 
HTTP/1.1 400 Bad Request.  This method is limited 
because raw socket forging or rawsock requires Win-
dows 2000 or greater due to the required use of 
IP_HDRINCL.  In addition, another limitation is the 
size to create the packet is at least 350 bytes including 
the Application Programming Interface (API) calls 
required (socket, setsockopt, and sendto).  However, 
in the cases where a socket is no longer available or 
requires too much size to locate, rawsock would be 
the obvious choice. 

In certain overflows it is also possible to use the de-
fault constructs of the target application to forge the 
response.  This is the ideal case for the attacker since 
it does not require the extra size of including the error 
message.  For example, in several Internet Server Ap-
plication Program Interface (ISAPI) overflows it is 
possible to instead locate the connection ID and use 
ISAPI functions to forge a message.  An attacker us-
ing the forging technique would exploit the target sys-
tem, fake a failed response to trick the analyst, and 
then execute a delayed backdoor.  Figure 3 shows 
how this attack might appear to an analyst.  Packets 1-
3 are the TCP handshake.  Packet 4 contains the 
buffer overflow.  It then appears that the target issues 
a bad request error in packet 5 and then resets the 
connection.  In fact, packet 5 is forged by the intruder.   

The second case requires that the attacker locate the 
socket handle associated with the exploit connection.  
Two compact methods to achieve this involve locat-
ing the peer or source port (findsock) or sending and 
recognizing a hardcoded tag (findtag).  In the find-
sock option, the attacker uses the getpeername call to 
“determine the endpoint associated with a given 
socket” [7].  If the source port matches that of the at-
tacker then a response packet can be forged by plac-
ing the required data on the stack and calling send.  
When optimized and hardcoded to a specific service 
pack this process requires only 40 bytes.  In the find-
tag option, socket descriptors are enumerated by us-
ing ioctlsocket to determine the amount of data pend-
ing in the network's input buffer that can be read from 
the socket.  If data is pending, recv is called to com-
pare the hard-coded tag with the one the attacker sent.  
While findtag does require an additional packet, it 
also works through Network Address Translation 
(NAT) devices, unlike findsock.  The benefit of using 
findtag or findsock is in the minimal case the required 
shellcode size is small.  All that is required is the code 
to find the socket handle (40 bytes), the added size of 
the error message (shown in Table 1), and a secon-
dary backdoor payload to execute. 

 

 
Figure 3.  Forged Server Response  

 
DETERMINING RESPONSE TRUST 

While network traffic analysis saves time and has 
been shown to confirm attack outcomes it is not as 
straightforward as once thought.  Analysts that 
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The first step in using the payload comparison 
method is to construct a database of known shellcode.  
To do this we analyzed the public exploits on “Securi-
tyfocus.com” and “Securiteam.com” to extract just 
the payload component.  While this captures the ma-
jority of the relevant shellcode (for our tests), it is as-
sumed that many more would need to be added in an 
operational environment.  The next examples show 
the three most likely situations encountered when at-
tempting to extract the relevant payload.  First, the 
easiest case is when the shellcode is almost entirely 
standalone as in the “oc192-dcom” exploit.  This ex-
ploit uses a bindshell payload where the only option is 
the port the shell will bind to.  In addition, all bad 
characters have already been removed from the pay-
load so with the exception of a few of bytes of port 
information there should be an exact match.  The 
“wbr_c” WebDAV exploit is an example of a payload 
with nulls and a static XOR key.  Slightly more work 
is involved because each byte of the shellcode must 
be XORed against the key of 0x95.  However, once 
that work is accomplished it becomes a similar prob-
lem as in the first case.  The worst case scenario is 
when the key is calculated during runtime.  For in-
stance, the “Webdav-reloaded” exploit determines the 
key based on a fairly simple for loop that checks for 
nulls, carriage returns, and line feeds.   

blindly trust the response might incorrectly character-
ize a successful intrusion.  Even worse, is the case 
when the NIDS is programmed to disregard attacks 
based solely on the response, resulting in complete 
evasion.  Therefore, a method is needed to determine 
when the server response can be trusted.  We provide 
a brief overview of three such methods in this section. 
Note that these methods are not intended to be a 
100% solution, as an attacker using advanced poly-
morphic techniques can force the analyst to resort to 
other means (e.g., active verification) of confirming 
the outcome.  Instead, we focus on the majority of 
attacks that will not likely be completely polymorphic 
in nature.  Also, all three methods are likely to be 
processor intensive so post-processing or offline 
analysis would be ideal. 

One solution stems from current methods analysts use 
to determine the function of the shellcode.  The ana-
lyst first determines the encoding technique and then 
decodes the shellcode.  The shellcode is then reverse-
engineered to determine its functionality.  While pos-
sible, it is difficult and time consuming.  Neverthe-
less, this method is useful when only the decoder can 
be located due to a polymorphic NOP sled.  One ap-
proach is to use emulation and heuristics to speed up 
the determination of the shellcode function [25].  A 
similar method is commonly used in the anti-virus 
community to analyze potentially malicious code 
without executing it.  However, the NIDS has several 
disadvantages primarily the fact that it does not reside 
on the attacked host and must be capable of multi-OS 
and instruction set emulation.  In addition, attacker 
shellcode can be designed specifically to resist auto-
matic analysis through emulation [26].  

The next step, and one required in all the methods of 
determining trust, is to program the NIDS to locate 
the shellcode. In the common case of public exploits, 
this can be done by locating the decoder or by follow-
ing the NOP sled until the shellcode is encountered.  
Then the end of the shellcode is determined through 
simple heuristics.  Finally, a differential analysis is 
performed between the intruder’s shellcode and those 
in the database (starting with shellcode associated 
with the particular exploit).  If a match is not found 
then the system could either default to generating an 
alert or proceed to the next method of determining 
trust.  If a match is found then the variability between 
the two payloads is analyzed. Some flexibility is re-
quired to account for differences due to attacker 
modifiable options like ports, IP address, and user 
name/password. 

The next method requires that public shellcode be 
stored in a database and matched against the at-
tacker’s payload.  If the payload matches then the re-
sponse can be trusted (i.e., assuming forging payloads 
are not made public).  While this method does require 
extra work to maintain the database, once it is created, 
the upkeep should be minimal.  This method is par-
ticularly effective against static public exploits (i.e., 
they are usually compiled and executed with no 
changes).  It is important that the payload comparison 
algorithm check for the existence of other payloads to 
prevent an attacker inserting a known shellcode in 
addition to the real payload.   

There is an increasing trend towards small, dynami-
cally encoded payloads which makes payload com-
parison obsolete.  In this case, we recommend using 
the size of the payload to determine if forging is pos-
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sible.  For example, the latest release of the Metas-
ploit Framework has an average encoded Windows 
payload size of 246 bytes.  Based on payload size, 
only 1 of the 19 payloads would be large enough to 
forge responses for the exploits tested.    In “payload 
size analysis” we use knowledge of the attacks devel-
oped earlier in the paper to estimate the minimum 
forging size.  Factors considered are the size of the 
backdoor, error message size (e.g., shown in Table 1), 
process injection code size, and forging and/or socket 
location code size.  It is important to note that this is 
the most risky approach of the three as it requires that 
the IDS developer or analyst be aware of the most 
optimum methods of forging.  For example, we ear-
lier addressed the fact that the intruder does not al-
ways have to include the error message in the shell-
code.  While more research is required to make any 
definitive statements about size required to forge re-
sponses and install a reliable backdoor we feel in 
most cases at least 350 bytes are required.   

 The size of the payload is determined by using the 
NOP sled and any padding to separate the payload 
from the rest of the exploit.  Also, if the NOP sled is 
polymorphic then the decoder could be located and 
the size of the payload determined through reverse-
engineering.  An intruder could split a larger payload 
either within or between packets in an attempt to de-
feat the payload size analysis method.  However, this 
attack is defeated by inspecting all packets and re-
assembling the payload before analysis.  Whichever 
method is used it should be apparent that it takes a 
more methodical approach to determine the outcome 
instead of using network characteristics to “guess” at 
the outcome of the attack. 

CONCLUSION 
The results of this study highlight the dangers of im-
proper traffic analysis and why the network security 
analyst can also be vulnerable to evasion attacks.  
Since the manual evaluation of NIDS alerts is time 
consuming, error prone, and requires expert knowl-
edge more efficient methods are needed to determine 
attack outcomes.  Hopefully, we have shown that in 
many cases this process can be automated.  However, 
the presented methods are certainly not a silver bullet 
approach and often the NIDS will be required to re-
sort to a more active method of alert verification.  It is 
no surprise to us why many people are turned off by 
the magnitude of effort involved in resolving IDS 

alerts and why some unfortunately choose to instead 
just block attacks and forget about what might be get-
ting through.  We expect that organizations will wish 
to block traffic that can be identified, with high confi-
dence, as malicious.  However, not all malicious traf-
fic can be blocked and some may wish to not drop 
attacks but instead only alert on them for whatever 
reason.  It is in those cases that we feel there is sig-
nificant room for improving how IDS alerts are han-
dled.  As a follow-on to this research we expect to 
implement the response checking methods and further 
investigate response detection and forging on addi-
tional platforms such as Linux.    
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