

Automated Extraction of Threat Signatures from Network Flows

 Piotr Kijewski
CERT Polska/NASK

Introduction

The generation of network threat signatures used in intrusion detection

and prevention systems is mostly a manual process, thus prone to errors
and slow. Reaction to a new threat must be fast if it is to be effective, and

at the same time appropriate so as to reduce any chance of unexpected,
even negative side effects. An attempt to achieve this is the goal of

automatic extraction of network threat signatures being developed as part
of the ARAKIS Early Warning project of the CERT Polska team.

Definition of a network threat signature

A signature may be defined as a representation of a set of features of a
threat. These features may vary: for example, they may include

information from network packet headers, packet payload, an analysis of
the frequency of appearance of certain ASCII characters, system calls

used, temporal characteristics of flows etc. From a security point of view
the most important aspect of a threat is its method of attack, not the

actions performed after infecting a system. This is because a new,
unknown method of propagation results in a threat spreading much more

widely. Thus, in this article, when we talk of extracting network threat
signatures, we refer to the attack signature of the threat - not to the body

of the threat (malware).

Characteristics of a good signature

Apart from the timely generation, a high true detection rate and a

low false alarm rate, from a practical point of view it is important that
the signature derived remains independent of application level protocols.

This means that the signature can be used in any intrusion detection or
prevention software – one that does not have to understand the relevant

application level protocol. This allows for the signature to be more
universal: a) the signature may be used in a larger number of intrusion

detection systems b) it may be applied to new protocols.

From a prevention point of view, it is useful that the attack signature
represents the vulnerability utilized. We then have a more general

signature, less dependant on the actual exploit used. However, from an
informational (early warning) point of view, it is also useful to acquire a

signature that identifies a particular exploit. In practice, it is much easier
to identify a particular exploit than build a more generic signature that

represents the actual vulnerability (ie. encompassing all exploits).

The timeliness and universality criteria suggest that the “de facto”

standards in intrusion detection signature should be utilized, as they are
the building blocks of current intrusion detection and prevention systems.

This standard is the representation of a signature as a sequence of bytes

that make up an attack. This allows the signature to be used at the
network level, giving added value in an early warning system. If the

signature is placed at the network level, a large amount of vulnerable
hosts may be immediately protected, until more complex methods of

protection are enabled (host based) or the systems patched.

Architecture of a signature extraction system

The first stage of signature extraction is the identification of the network
traffic that must be processed. This means that an anomaly must be

detected in the traffic. The flows that make up the anomaly must be
classified as malicious. Two aspects that are particularly important to look

for at this stage are the novelty of an event (anomaly) and its
repeatability. This is because it is assumed that a novel threat – an

automated one such as a worm or a bot in particular – is characterized by

a repetition of actions required for propagation. Once we have a set of
flows attributed to a threat identified, we proceed to the next stage and

attempt to extract a threat signature. The separation of this extraction
process from the process of anomaly detection allows for the use of more

complex extraction algorithms, which are too inefficient to function “on-
line”. The result of the extraction process is then verified by checking the

signatures extracted on traffic that is known to be “normal” or through
whitelists of signatures representing “normal” traffic or by vetting by a

human expert. Thus we are able to achieve higher quality signatures, not
prone to generating false alarms. The next stage is an attempt at

classifying the signature, based on its similarity with previously labeled
signatures.

Fig 2. Overview of the signature extraction process

Comparing by hashing – identification and signature extraction in

one step

The simplest way of attack identification is to compare and catalog
packets based on cryptographic hash functions, such as MD5 or SHA1.

Identical packets that are frequently seen from different sources to

different destinations may be a sign of a new threat propagating. In this
case the hash (and its equivalent payload) is the signature of the threat.

Such a technique however is inefficient on a high speed production

network, generating a large number of false positives, due to the fact that
a large amount of traffic is monitored and it is mostly non-malicious. It

becomes more efficient in a honeynet environment, where the traffic is
smaller and mostly associated with malicious activity. This method is

frequently employed in today’s environment, for example in the Internet
Motion Sensor [1] project. Nevertheless, this approach has flaws: any

small modification of an attack results in a new hash being generated.
The “signature” extracted fails to identify the sequence that represents the

attack, it identifies the entire packet payload instead.

For better identification of the attack sequence (variant identification),
instead of considering an entire packet, it is possible to apply a sliding

window mechanism on the packet. A set of sliding window hashes can be
computed over a packet or flow, and subsequently be compared across

other packets or flows. After a certain threshold is exceeded, based on the

count of distinct source host addresses and destination host addresses
that are seen across the same hashes, an alarm may be signaled.

However, when using the sliding windows, every packet has a large

amount of hashes computed on it, their number being dependant on
packet length and the size of the window (if s is the packet size in bytes

and β the window length, the amount of hashes is s – β + 1).

 Fig 2. Sliding window across a packet

This large amount of computations means that from an efficiency point of
view, the use of cryptographic hash functions becomes problematic. In

their place, Rabin fingerprints [2] can be used. Rabin fingerprints are the

basis of the Rabin-Karp algorithm, one of the fastest known string
searching algorithms. Rabin fingerprints are very efficient over a sliding

window, as they allow for a new sliding window hash to be computed
based on the previous hash computation. Rabin fingerprinting as a method

for detecting network threats was first proposed in [3].

In order to further increase the efficiency it is possible to employ a
bitmask, as the basis of a fingerprint sampler. The sampling is value

based, and the amount of fingerprints sampled equals ½ k , where k is the
length of the bitmask. This method of increasing efficiency is not risk free

– sampling increases the chance of missing a threat, because its
fingerprints where never sampled. The probability that a threat of length x

is detected equals)1(
1

+−−− βxf
e where f = ½ k [3]. For example, for a mask

of length of 4 bits, a threat of length 100b and a window length of 32b,

the probability of detection equals 98,66%.

The shorter the window length, the higher the probability of detection but
also the higher the chance of a false alarm. According to [4], it is

necessary to employ a window of length 150b in order to reduce false
alarms to zero (mostly due to the long length of Microsoft RPC queries).

Another way of improving efficiency is monitoring only one direction of a
connection. If we are interested in attacks that are launched by the side

initiating a connection, such as by threats that utilize scanning as a
propagation method, we compute hashes on flows from the client side. If

we are interested in threats that are spread through servers (passive
mode of propagation), Rabin fingerprints can be computed on flows from

servers.

Rabin fingerprints, due to their high efficiency can be used not just in
honeynet environments but on high speed production networks.

Comparing by hashing can be used not just to classify packets or flows,

but to compute signatures. If we have a set of Rabin fingerprints that are
representative of a packet (flow), thresholds can be set so as to be

associated with a set of fingerprints (for example, the set must be similar

across packets by a certain percentage). The signature can then be a
selected Rabin fingerprint.

Extracting signatures “off-line”

If Rabin fingerprints can be computed in real-time why separate the

signature generator to an off-line module? We suggest this because of:
• Restrictions of a set window size. The lower the window length the

higher the probability of attack detection, but the higher the probability
of false alarms if we use the fingerprint as a signature. The longer the

window length the larger the probability that a true attack sequence
was detected but at the price of missing shorter attack sequences.

• Restrictions of sampling. The Rabin fingerprint sampled may not be the
best representation of an attack sequence.

• Polymorphism. Polymorphic attacks may be missed by Rabin

fingerprinting, as their repeatable sequences will be too short to fill a
window.

• Efficiency. More sophisticated algorithms than Rabin fingerprinting are

too slow to be used “on-line”.

In order to detect repetitions of a sequence of bytes, techniques other
than comparing by hashing can be used. One such technique is the

Longest Common Substring (LCS) algorithm, that can be applied across
different packets or flows. This algorithm was first used to generate

signatures by the honeycomb [5] system, which functions as a honeyd [6]
plugin. The problem with honeycomb is its inefficiency when used to

monitor a large set of IP addresses and the large amount of signatures
generated, which are difficult to manage. This is because all flows stored

in memory are compared with each other, without any prior classification.

To address the above problems, we propose a method that uses both
Rabin fingerprinting and LCS. Rabin fingerprinting is used to classify

“on-line” a flow based on the packet payload. This is how an anomaly can

be detected: expired flows are clustered based on their Rabin fingerprint
set similarity according to different rules (for example, all expired flows to

a certain destination port are grouped together, if they contain 30% of the
same fingerprints). Additionally, every rule checks each cluster with

different heuristics. For example, the amount of distinct source hosts
exhibiting similar behavior (ie. in the same cluster) is counted. If a certain

threshold is exceeded, the entire cluster is sent for further analysis, which
because of its time complexity is carried out “off-line”.

A representative of the “off-line” algorithms is the LCS algorithm. An LCS

is computed over a cluster of similar flows. If we compared all the data
across all flows we can get a signature of the threat. If we compare packet

vs packet across all flows we can get a signature of the exploits used.

This approach allows for the use of small Rabin window sizes, increasing

the probability of detection, and at the same time allows for the final
signature to be computed by the more elastic LCS algorithm.

Using Rabin fingerprints in this way means that polymorphic attacks can

be detected, as long as a honeynet is being monitored, not a production
network. This can be achieved through a rule that, when clustering flows

based on Rabin similarity, sends for further analysis only clusters made up
of one representative. These single member clusters are then grouped

together. Thus, polymorphic attacks may be detected based on their lack
of Rabin similarity. Of course, computing an LCS on such flows is unlikely

(depending on the quality of the polymorphic code generator). However,
as shown in [7], it is possible to compute a signature based on disjoint

sequences of bytes, because even assuming perfect polymorphism, there
must remain fixed value short byte sequences, so that the polymorphic

exploit will be able to function correctly. Such algorithms, like the Smith-

Waterman algorithm, are being considered by us for implementation.
However it is worth remembering that so far, no self propagating code has

utilized polymorphic exploits. The closest to such code was the Witty

worm [8], that randomly padded exploit packets.

Reducing false alarms

Signature quality is not the most important when signature extraction
performs a purely informational role, helping in the understanding of the

context of events being observed on a network. However, if we want it to
be used in an IDS/IPS system on a production network, it is imperative

that the signature does not block any legal traffic. This requires that the
signature must be checked for its false positive alarm rate. This can be

achieved either by maintaining whitelists of signatures, or pools of normal
traffic. When using LCS as the final signature generation algorithm, it

would seem that the longer the signature, the higher the probability that it
contains an attack sequence and the lower the chance of a false positive.

However, if the protocol over which the signature was extracted has long

headers, it is possible that the LCS will detect these protocol constants as
the longest common sequence of bytes. Thus the longest common

substring may not be the best common substring.

Classifying the extracted signature

Classifying the extracted signature allows for better evaluation of new
security events on a network. This process can be automated by

comparing a new signature with previously classified ones. The process of
signature comparison can begin once a signature is extracted. The new

signature can be checked for an exact match with an existing labeled one,
whether it is a subset of an existing one or if its similar in any way. The

most complex process is involved with checking for similarity.

To identify classes of signatures, we use clustering algorithms. An

example of such an algorithm implemented by us is a simplified version of
the well known dbscan [9] algorithm. Historical signatures are periodically

clustered with a similarity metric. We picked the Levenshtein distance
between strings as the metric. As the signatures can be of different

length, the radius of the clusters is variable, dependant on the length of
core member of the cluster. This means that the longer the core cluster

length the larger the radius of the cluster. This allows for the clustering
algorithm to work over both short and long LCS.

Implementation

The implementation of the presented architecture is currently in a testing

phase. The basis for the implementation is open source software, snort
[10] for on-line analysis and Apache for off-line analysis. Rabin

fingerprints have been implemented as a snort plugin (called rabin), on

top of the standard flow and stream4 plugins. The rabin plugin is the basis
of the flow-classifier plugin, responsible for the classification of flows.

Signature extraction (LCS) is implemented as an Apache module. When

the flow-classifier rules detect a threat cluster, the cluster is transferred to
an Apache module, together with a list of signature extraction algorithms

that they should be subjected to. The communication between snort and
Apache is TCP based, which enables the splitting of flow classification and

signature extraction tasks between different hosts. The subsequent
signature classification process is also off-line and is implemented as a

stand-alone PHP5 program. Signature classification is supported by the
signature definitions of the Bleeding Snort project [11].

Test results

The above implementation was tested in a honeynet environment, with

the modified snort process monitoring traffic to a honeyd process, which
in turn proxied some of the traffic to an nepenthes/mwcollect [12] process

for better vulnerable application emulation. The honeyd process emulated

five /26 subnets.

Over a 24 hour period, a total of 775 716 packets were monitored. Only
similar packets (defined as 30% common Rabin fingerprints) that came

from at least 3 distinct sources in a space of 5 minutes were sent by the
flow-classifier snort plugin to Apache. The mod_lcs Apache plugin

generated a total of 408 LCS signatures. These signatures were
subsequently grouped into 63 clusters. 63 signatures were then generated

over these clusters, one signature per each cluster.

The signatures were then checked against a trace of “normal” traffic, of
2 691 341 packets. As a result, 7 signatures were found that generated

false positives. Further vetting of signatures produced a total of 35
signatures, which could potentially be used in a production IDS/IPS

system. The dropped signatures involved primarily SMB standard traffic.

Out of the remaining 35 signatures, the following were identified manually
(with support from the Bleeding Snort ruleset):

• LSA exploit (port 445/TCP) – 10 clusters
• ASN1 exploit (port 445/TCP, port 139/TCP) – 8 clusters

• Winpopup spam (ports 1026-1029 UDP) – 5 clusters
• RPC DCOM (port 135/TCP, 1025/TCP) – 4 clusters

• Shellcode x86 NOOP (port 445/TCP) – 2 clusters
• Port 1026/UDP unknown1 – 2 clusters

• SQL Slammer (port 1434/UDP) – 1 cluster
• Port 1433/TCP unknown2 – 1 cluster

1
 Probably related to Winpopup spam
2 A large amount of short packets to the standard MS SQL Server port - possibly a brute
force attempt. It was not identified by any Snort rules.

• NetBIOS query (port 139/TCP) – 1 cluster

• HTTP OPTIONS query (port 80/TCP) – 1 cluster

Example Slammer signature in Snort format:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"Slammer"; content:"|04 01 01 01 01 01 01 01 01 01 01
01
01
01 01 01 01 01 01 01 01 01 01 01 01 dc c9 b0|B|eb 0e 01 01 01 01 01 01 01|p|ae|B|01|p|ae|B|90 90 90 90 90 90 90
90|h|dc c9 b0|B|b8 01 01 01 01|1|c9 b1 18|P|e2 fd|5|01 01 01 05|P|89
e5|Qh.dllhel32hkernQhounthickChGetTf|b9|llQh32.dhws2_f|b9|etQhsockf|b9|toQhsend|be 18 10 ae|B|8d|E|d4|P|ff
16|P|8d|E|e0|P|8d|E|f0|P|ff 16|P|be 10 10 ae|B|8b 1e 8b 03|=U|8b ec|Qt|05 be 1c 10 ae|B|ff 16 ff d0|1|c9|QQP|81
f1 03 01 04 9b 81 f1 01 01 01 01|Q|8d|E|cc|P|8b|E|c0|P|ff 16|j|11|j|02|j|02 ff d0|P|8d|E|c4|P|8b|E|c0|P|ff 16 89 c6
09 db 81 f3|<a|d9 ff 8b|E|b4 8d 0c|@|8d 14 88 c1 e2 04 01 c2 c1 e2 08|)|c2 8d 04 90 01 d8 89|E|b4|j|10
8d|E|b0|P1|c9|Qf|81|";)

Example LSA exploit signature in Snort format:

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"0x31 LSA"; flow:to_server,established;
content:"111
111
111
11";)

Summary

The signature generation methods presented in the article are a small

subset of the possible methods of addressing the problem. They were
selected based on their potential practical use in real environments. The

current implementation works on honeynets. An important issue not fully
covered in the paper is the management of the generated signatures.

Moreover, in the case of LCS it is uncertain that the generated signature is
really the best and if it’s suitable for use in IDS/IPS systems on production

networks. Currently, the setup requires manual vetting of signatures. This
is especially necessary when the signature clusters are first formed. Over

time, new clusters appear in small increments, but the examining of

these, due to their smaller amounts is less time consuming.

We are focusing on implementing new algorithms for signature generation
within the presented architecture in order to improve signature quality –

to enable generic signatures with a low false alarm rate. However,
regardless of the signature quality, the presented methods allow for a

much better understanding of network security events and can serve as
an element of a network threat early warning system.

References

[1] University of Michigan Internet Motion Sensor Project

http://ims.eecs.umich.edu/

[2] Michael O. Rabin. “Fingerprinting by random polynomials”. Technical

Report TR-15-81, Center for Research in Computing Technology, Harvard
University, 1981.

[3] Sumeet Singh, Cristian Estan, George Varghese, Stefan Savage,
“Automated Worm Fingerprinting”. In Proceedings of the 6th ACM/USENIX

Syposium on Operating System Design and Implementation (OSDI), 2004

[4] P. Akritidis, K. Agnagnostakis, E.P.Markatos, “Efficient Content-
Based Detection of Zero-Day Worms”. In Proceedings of the IEEE

International Conference on Communications (ICC), May 2005.

[5] Christian Kreibich, Jon Crowcroft, “Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots”. In Proceedings of the Second

Workshop on Hot Topics in Networks (HotNets-II). Cambridge
Massachusetts: ACM SIGCOMM, 2003.

http://www.cl.cam.ac.uk/~cpk25/honeycomb/

[6] Developments of the Honeyd Virtual Honeyport,

http://www.honeyd.org

[7] James Newsome, Brad Karp, and Dawn Song, “Polygraph -
Automatically Generating Signatures for Polymorphic Worms”, In IEEE

Security and Privacy Symposium, May 2005

[8] Colleen Shannon, David Moore, “The Spread of the Witty Worm”,
CAIDA, 2004, http://www.caida.org/analysis/security/witty/

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, "A

Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise", Proc. 2nd int. Conf. on Knowledge Discovery and

Data Mining (KDD ‘96), Portland, Oregon, 1996

[10] Snort Intrusion Detection System, http://www.snort.org

[11] Bleeding Snort The Aggregation Point for Snort Signatures and
Research http://www.bleedingsnort.com

[12] Nepenthes – finest collection, http://nepenthes.mwcollect.org

[13] Hyang-Ah Kim, Brad Karp, “Autograph: toward automated,

distributed worm signature detection”, In Proceedings of the 13th USENIX

Security Symposium, August 2004

