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Introduction 

 
The generation of network threat signatures used in intrusion detection 

and prevention systems is mostly a manual process, thus prone to errors 
and slow. Reaction to a new threat must be fast if it is to be effective, and 

at the same time appropriate so as to reduce any chance of unexpected, 
even negative side effects. An attempt to achieve this is the goal of  

automatic extraction of network threat signatures being developed as part 
of the ARAKIS Early Warning project of the CERT Polska team.  

 
Definition of a network threat signature 

 

A signature may be defined as a representation of a set of features of a 
threat. These features may vary: for example, they may include 

information from network packet headers, packet payload, an analysis of 
the frequency of appearance of certain ASCII characters, system calls 

used, temporal characteristics of flows etc. From a security point of view 
the most important aspect of a threat is its method of attack, not the 

actions performed after infecting a system. This is because a new, 
unknown method of propagation results in a threat spreading much more 

widely. Thus, in this article, when we talk of extracting network threat 
signatures, we refer to the attack signature of the threat - not to the body 

of the threat (malware). 
 

Characteristics of a good signature 
 

Apart from the timely generation, a high true detection rate and a 

low false alarm rate, from a practical point of view it is important that 
the signature derived remains independent of application level protocols. 

This means that the signature can be used in any intrusion detection or 
prevention software – one that does not have to understand the relevant 

application level protocol. This allows for the signature to be more 
universal: a) the signature may be used in a larger number of intrusion 

detection systems b) it may be applied to new protocols. 
 

From a prevention point of view, it is useful that the attack signature 
represents the vulnerability utilized. We then have a more general 

signature, less dependant on the actual exploit used. However, from an 
informational (early warning) point of view, it is also useful to acquire a 

signature that identifies a particular exploit. In practice, it is much easier 
to identify a particular exploit than build a more generic signature that 

represents the actual vulnerability (ie. encompassing all exploits). 



The timeliness and universality criteria suggest that the “de facto” 

standards in intrusion detection signature should be utilized, as they are 
the building blocks of current intrusion detection and prevention systems. 

This standard is the representation of a signature as a sequence of bytes 

that make up an attack. This allows the signature to be used at the 
network level, giving added value in an early warning system. If the 

signature is placed at the network level, a large amount of vulnerable 
hosts may be immediately protected, until more complex methods of 

protection are enabled (host based) or the systems patched. 
 

Architecture of a signature extraction system 
 

The first stage of signature extraction is the identification of the network 
traffic that must be processed. This means that an anomaly must be 

detected in the traffic. The flows that make up the anomaly must be 
classified as malicious. Two aspects that are particularly important to look 

for at this stage are the novelty of an event (anomaly) and its 
repeatability. This is because it is assumed that a novel threat – an 

automated one such as a worm or a bot in particular – is characterized by 

a repetition of actions required for propagation. Once we have a set of 
flows attributed to a threat identified, we proceed to the next stage and 

attempt to extract a threat signature. The separation of this extraction 
process from the process of anomaly detection allows for the use of more 

complex extraction algorithms, which are too inefficient to function “on-
line”. The result of the extraction process is then verified by checking the 

signatures extracted on traffic that is known to be “normal” or through 
whitelists of  signatures representing “normal” traffic or by vetting by a 

human expert. Thus we are able to achieve higher quality signatures, not 
prone to generating false alarms. The next stage is an attempt at 

classifying the signature, based on its similarity with previously labeled 
signatures. 

 

 
     

Fig 2. Overview of the signature extraction process 

 
Comparing by hashing – identification and signature extraction in 

one step 
 

The simplest way of attack identification is to compare and catalog 
packets based on cryptographic hash functions, such as MD5 or SHA1. 



Identical packets that are frequently seen from different sources to 

different destinations may be a sign of a new threat propagating. In this 
case the hash (and its equivalent payload) is the signature of the threat. 

Such a technique however is inefficient on a high speed production 

network, generating a large number of false positives, due to the fact that 
a large amount of traffic is monitored and it is mostly non-malicious. It 

becomes more efficient in a honeynet environment, where the traffic is 
smaller and mostly associated with malicious activity. This method is 

frequently employed in today’s environment, for example in the Internet 
Motion Sensor [1] project. Nevertheless, this approach has flaws: any 

small modification of an attack results in a new hash being generated.  
The “signature” extracted fails to identify the sequence that represents the 

attack, it identifies the entire packet payload instead. 
 

For better identification of the attack sequence (variant identification), 
instead of considering an entire packet, it is possible to apply a sliding 

window mechanism on the packet. A set of sliding window hashes can be 
computed over a packet or flow, and subsequently be compared across 

other packets or flows. After a certain threshold is exceeded, based on the 

count of distinct source host addresses and destination host addresses 
that are seen across the same hashes, an alarm may be signaled.   

 
However, when using the sliding windows, every packet has a large 

amount of hashes computed on it, their number being dependant on 
packet length and the size of the window (if s is the packet size in bytes 

and β the window length, the amount of hashes is  s – β + 1). 
 

 
 
    Fig 2. Sliding window across a packet 

 

This large amount of computations means that from an efficiency point of 
view, the use of cryptographic hash functions becomes problematic. In 

their place, Rabin fingerprints [2] can be used. Rabin fingerprints are the 

basis of the Rabin-Karp algorithm, one of the fastest known string 
searching algorithms. Rabin fingerprints are very efficient over a sliding 

window, as they allow for a new sliding window hash to be computed 
based on the previous hash computation. Rabin fingerprinting as a method 

for detecting network threats was first proposed in [3]. 



 

In order to further increase the efficiency it is possible to employ a 
bitmask, as the basis of a fingerprint sampler. The sampling is value 

based, and the amount of fingerprints sampled equals ½ k , where k is the 
length of the bitmask. This method of increasing efficiency is not risk free 

– sampling increases the chance of missing a threat, because its 
fingerprints where never sampled. The probability that a threat of length x 

is detected equals  )1(
1

+−−− βxf
e  where f = ½ k  [3]. For example, for a mask 

of length of 4 bits, a threat of length 100b and a window length of 32b, 

the probability of detection equals 98,66%. 
 

The shorter the window length, the higher the probability of detection but 
also the higher the chance of a false alarm. According to [4], it is 

necessary to employ a window of length 150b in order to reduce false 
alarms to zero (mostly due to the long length of Microsoft RPC queries). 

 

Another way of improving efficiency is monitoring only one direction of a 
connection. If we are interested in attacks that are launched by the side 

initiating a connection, such as by threats that utilize scanning as a 
propagation method, we compute hashes on flows from the client side. If 

we are interested in threats that are spread through servers (passive 
mode of propagation), Rabin fingerprints can be computed on flows from 

servers. 
 

Rabin fingerprints, due to their high efficiency can be used not just in 
honeynet environments but on high speed production networks. 

 
Comparing by hashing can be used not just to classify packets or flows, 

but to compute signatures. If we have a set of Rabin fingerprints that are 
representative of a packet (flow), thresholds can be set so as to be 

associated with a set of fingerprints (for example, the set must be similar 

across packets by a certain percentage). The signature can then be a 
selected Rabin fingerprint. 

 
Extracting signatures “off-line” 

 
If Rabin fingerprints can be computed in real-time why separate the 

signature generator to an off-line module? We suggest this because of: 
• Restrictions of a set window size. The lower the window length the 

higher the probability of attack detection, but the higher the probability 
of false alarms if we use the fingerprint as a signature. The longer the 

window length the larger the probability that a true attack sequence 
was detected but at the price of missing shorter attack sequences. 

• Restrictions of sampling. The Rabin fingerprint sampled may not be the 
best representation of an attack sequence. 



• Polymorphism. Polymorphic attacks may be missed by Rabin 

fingerprinting, as their repeatable sequences will be too short to fill a 
window. 

• Efficiency. More sophisticated algorithms than Rabin fingerprinting are 

too slow to be used “on-line”. 
 

In order to detect repetitions of a sequence of bytes, techniques other 
than comparing by hashing can be used. One such technique is the 

Longest Common Substring (LCS) algorithm, that can be applied across 
different packets or flows. This algorithm was first used to generate 

signatures by the honeycomb [5] system, which functions as a honeyd [6] 
plugin. The problem with honeycomb is its inefficiency when used to 

monitor a large set of IP addresses and the large amount of signatures 
generated, which are difficult to manage. This is because all flows stored 

in memory are compared with each other, without any prior classification. 
 

To address the above problems, we propose a method that uses both 
Rabin fingerprinting and LCS.  Rabin fingerprinting is used to classify 

“on-line” a flow based on the packet payload. This is how an anomaly can 

be detected: expired flows are clustered based on their Rabin fingerprint 
set similarity according to different rules (for example, all expired flows to 

a certain destination port are grouped together, if they contain 30% of the 
same fingerprints). Additionally, every rule checks each cluster with 

different heuristics. For example, the amount of distinct source hosts 
exhibiting similar behavior (ie. in the same cluster) is counted. If a certain 

threshold is exceeded, the entire cluster is sent for further analysis, which 
because of its time complexity is carried out “off-line”.  

 
A representative of the “off-line” algorithms is the LCS algorithm. An LCS 

is computed over a cluster of similar flows. If we compared all the data 
across all flows we can get a signature of the threat. If we compare packet 

vs packet across all flows we can get a signature of the exploits used. 
 

This approach allows for the use of small Rabin window sizes, increasing 

the probability of detection, and at the same time allows for the final 
signature to be computed by the more elastic LCS algorithm. 

 
Using Rabin fingerprints in this way means that polymorphic attacks can 

be detected, as long as a honeynet is being monitored, not a production 
network. This can be achieved through a rule that, when clustering flows 

based on Rabin similarity, sends for further analysis only clusters made up 
of one representative. These single member clusters are then grouped  

together. Thus, polymorphic attacks may be detected based on their lack 
of Rabin similarity. Of course, computing an LCS on such flows is unlikely 

(depending on the quality of the polymorphic code generator). However, 
as shown in [7], it is possible to compute a signature based on disjoint 

sequences of bytes, because even assuming perfect polymorphism, there 
must remain fixed value short byte sequences, so that the polymorphic 



exploit will be able to function correctly. Such algorithms, like the Smith-

Waterman algorithm, are being considered by us for implementation. 
However it is worth remembering that so far, no self propagating code has 

utilized polymorphic exploits. The closest to such code was the Witty 

worm [8], that randomly padded exploit packets. 
 

Reducing false alarms 
 

Signature quality is not the most important when signature extraction 
performs a purely informational role, helping in the understanding of the 

context of events being observed on a network. However, if we want it to 
be used in an IDS/IPS system on a production network, it is imperative 

that the signature does not block any legal traffic. This requires that the 
signature must be checked for its false positive alarm rate. This can be 

achieved either by maintaining whitelists of signatures, or pools of normal 
traffic. When using LCS as the final signature generation algorithm, it 

would seem that the longer the signature, the higher the probability that it 
contains an attack sequence and the lower the chance of a false positive. 

However, if the protocol over which the signature was extracted has long 

headers, it is possible that the LCS will detect these protocol constants as 
the longest common sequence of bytes. Thus the longest common 

substring may not be the best common substring. 
 

Classifying the extracted signature  
 

Classifying the extracted signature allows for better evaluation of new 
security events on a network. This process can be automated by 

comparing a new signature with previously classified ones. The process of 
signature comparison can begin once a signature is extracted. The new 

signature can be checked for an exact match with an existing labeled one, 
whether it is a subset of an existing one or if its similar in any way. The 

most complex process is involved with checking for similarity.  
 

To identify classes of signatures, we use clustering algorithms. An 

example of such an algorithm implemented by us is a simplified version of 
the well known dbscan [9] algorithm. Historical signatures are periodically 

clustered with a similarity metric. We picked the Levenshtein distance 
between strings as the metric. As the signatures can be of different 

length, the radius of the clusters is variable, dependant on the length of 
core member of the cluster. This means that the longer the core cluster 

length the larger the radius of the cluster. This allows for the clustering 
algorithm to work over both short and long LCS. 

 
Implementation  

 
The implementation of the presented architecture is currently in a testing 

phase. The basis for the implementation is open source software, snort 
[10] for on-line analysis and Apache for off-line analysis. Rabin 



fingerprints have been implemented as a snort plugin (called rabin), on 

top of the standard flow and stream4 plugins. The rabin plugin is the basis 
of the flow-classifier plugin, responsible for the classification of flows. 

Signature extraction (LCS) is implemented as an Apache module. When 

the flow-classifier rules detect a threat cluster, the cluster is transferred to 
an Apache module, together with a list of signature extraction algorithms 

that they should be subjected to. The communication between snort and 
Apache is TCP based, which enables the splitting of flow classification and 

signature extraction tasks between different hosts. The subsequent 
signature classification process is also off-line and is implemented as a 

stand-alone PHP5 program. Signature classification is supported by the 
signature definitions of the Bleeding Snort project [11]. 

 
Test results 

 
The above implementation was tested in a honeynet environment, with 

the modified snort process monitoring traffic to a honeyd process, which 
in turn proxied some of the traffic to an nepenthes/mwcollect [12] process 

for better vulnerable application emulation. The honeyd process emulated 

five /26 subnets. 
 

Over a 24 hour period, a total of 775 716 packets were monitored. Only 
similar packets (defined as 30% common Rabin fingerprints) that came 

from at least 3 distinct sources in a space of 5 minutes were sent by the 
flow-classifier snort plugin to Apache. The mod_lcs Apache plugin 

generated a total of 408 LCS signatures. These signatures were 
subsequently grouped into 63 clusters. 63 signatures were then generated 

over these clusters, one signature per each cluster.  
 

The signatures were then checked against a trace of “normal” traffic, of 
2 691 341 packets. As a result, 7 signatures were found that generated 

false positives. Further vetting of signatures produced a total of 35 
signatures, which could potentially be used in a production IDS/IPS 

system. The dropped signatures involved primarily SMB standard traffic. 

Out of the remaining 35 signatures, the following were identified manually 
(with support from the Bleeding Snort ruleset): 

• LSA exploit (port 445/TCP) – 10 clusters 
• ASN1 exploit (port 445/TCP, port 139/TCP) – 8 clusters 

• Winpopup spam (ports 1026-1029 UDP) – 5 clusters 
• RPC DCOM (port 135/TCP, 1025/TCP) – 4 clusters 

• Shellcode x86 NOOP (port 445/TCP) – 2 clusters 
• Port 1026/UDP unknown1 – 2 clusters 

• SQL Slammer (port 1434/UDP) – 1 cluster 
• Port 1433/TCP unknown2 – 1 cluster 

                                                 
1
 Probably related to Winpopup spam  
2 A large amount of short packets to the standard MS SQL Server port - possibly a brute 
force attempt. It was not identified by any Snort rules. 



• NetBIOS query (port 139/TCP) – 1 cluster 

• HTTP OPTIONS query (port 80/TCP) – 1 cluster 
 

Example Slammer signature in Snort format: 

 
alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"Slammer"; content:"|04 01 01 01 01 01 01 01 01 01 01 
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 
01 01 01 01 01 01 01 01 01 01 01 01 dc c9 b0|B|eb 0e 01 01 01 01 01 01 01|p|ae|B|01|p|ae|B|90 90 90 90 90 90 90 
90|h|dc c9 b0|B|b8 01 01 01 01|1|c9 b1 18|P|e2 fd|5|01 01 01 05|P|89 
e5|Qh.dllhel32hkernQhounthickChGetTf|b9|llQh32.dhws2_f|b9|etQhsockf|b9|toQhsend|be 18 10 ae|B|8d|E|d4|P|ff 
16|P|8d|E|e0|P|8d|E|f0|P|ff 16|P|be 10 10 ae|B|8b 1e 8b 03|=U|8b ec|Qt|05 be 1c 10 ae|B|ff 16 ff d0|1|c9|QQP|81 
f1 03 01 04 9b 81 f1 01 01 01 01|Q|8d|E|cc|P|8b|E|c0|P|ff 16|j|11|j|02|j|02 ff d0|P|8d|E|c4|P|8b|E|c0|P|ff 16 89 c6 
09 db 81 f3|<a|d9 ff 8b|E|b4 8d 0c|@|8d 14 88 c1 e2 04 01 c2 c1 e2 08|)|c2 8d 04 90 01 d8 89|E|b4|j|10 
8d|E|b0|P1|c9|Qf|81|";) 

 
Example LSA exploit signature in Snort format: 

 
alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"0x31 LSA"; flow:to_server,established; 
content:"111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111";) 
 

 
Summary 

 
The signature generation methods presented in the article are a small 

subset of the possible methods of addressing the problem. They were 
selected based on their potential practical use in real environments. The 

current implementation works on honeynets.  An important issue not fully 
covered in the paper is the management of the generated signatures. 

Moreover, in the case of LCS it is uncertain that the generated signature is 
really the best and if it’s suitable for use in IDS/IPS systems on production 

networks. Currently, the setup requires manual vetting of signatures. This 
is especially necessary when the signature clusters are first formed. Over 

time, new clusters appear in small increments, but the examining of 

these, due to their smaller amounts is less time consuming. 
 

We are focusing on implementing new algorithms for signature generation 
within the presented architecture in order to improve signature quality – 

to enable generic signatures with a low false alarm rate. However, 
regardless of the signature quality, the presented methods allow for a 

much better understanding of network security events and can serve as 
an element of a network threat early warning system.    
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