

Behavioral Study of Bot Obedience using Causal Relationship Analysis

Pekka Pietikäinen, Lari Huttunen

Oulu University Secure Programming Group

- Botnets have become an increasing menace
- Tens of strategically placed hosts to hundreds of thousands
- Life-cycle:
 - Infection directly through the network or user interaction
 - Trojan payload downloaded and/or executed
 - Bot joins the botnet
 - Bots are used for some activity
 - Bots are upgraded to new versions

Introduction

- Active/passive
- Scope: Individual machines/network
- Detection time: proactive/reactive
- User: end-user, network operator etc.
- Type: Indirect, Direct

Detection mechanisms

Data source	Scope	Detection time	User	Туре
Victim	Individual machine	After infection	Unhappy end- user	Direct, Indirect
Honeypot or spampot	Varies	Early	Security researcher	Direct
Antivirus software	Individual machine	Infection attempt	End-user, network operator	Direct
IDS with signature	Network	Infection attempt	Network operator	Direct
IDS without signature	Network	After infection	Network operator	Indirect
DNS-based IDS	Network	After infection	Network operator	Indirect
Flow data	Several networks	Early to postmortem	Network operator	Direct, Indirect

Botnet detection methods

- Attempt to collect live instances of malware
- High-interaction (traditional honeypot)
- Low-interaction (Nepenthes)
- Only catches the low-hanging fruit
- Privacy and liability issues
- Requires expertise
- Still, provides the best intelligence about botnets

Honeypots and spampots

- Finds signatures of malware running on the system or malicious activity in general
- Can only spot activity for which signatures exist
- Usefulness as information source for botnet investigations depends on the deployment

Anti-virus software

- Collect data from network and attempt to find botnet traffic
- IRC traffic as signature
 - Easy to evade, just change the protocol a bit or encrypt
 - Legitimate traffic as false positives
 - Ephemeral port numbers -> have to look at all traffic
- Secondary botnet behaviour
 - Portscans, DDoS's etc.

Intrusion detection systems

- New type of IDS especially useful for botnets
- Catch anomalies in DNS queries
 - Known controllers
 - Popular hosts
 - Abnormal qtypes
- False positives a problem
 - Correlate with NetFlow data
- Passive DNS replication
 - Gets around privacy issues, but cannot be proactive

DNS-based IDS

- Summary data collected at border router
- Data rate is (almost) manageable
- Timestamp, Source/destination address & port, protocol, packet count, byte count, ...
- Isolating relevant data and anonymization needed for sharing

- Method for modeling and visualizing interactions in network traffic
- Groups potentially related events together

Causality analysis

Total distinct addresses: Total flows: Control port flows: C&C hosts: C&C flows: Number of victims: Victim flows: Control port flows: Port 445 flows: Other traffic:

Summary of incident

C&C port activity

Causality graph

- There is no single silver bullet for botnets
- Correlation of data from several methods is needed
 - Flow + DNS-based IDS to find potential targets for further analysis
 - Causality analysis to understand botnet activities better
 - Sharing of data between organizations
- Evidentiary value of flow data
 - Number of victims can be enumerated and monentary value estimated
 - Causality analysis can be used to minimize flow data to the essentials

Conclusions

THE END

http://www.ee.oulu.fi/research/ouspg/