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Abstract.  
In this paper, we present a method to detect the existence of sophisticated attack tools in the 

Internet that combine, in a misleading way, several exploits. These tools apply various attack 
strategies, resulting into several different attack fingerprints. A few of these sophisticated tools 
have already been identified, e.g. Welchia. However, devising a method to automatically detect 
them is challenging since their different fingerprints are apparently unrelated. We propose a 
technique to automatically detect these tools through their time signatures. We exemplify the 
interest of the technique on a large set of real world attack traces and discover a handful of those 
new sophisticated tools.   

1. Introduction 

Empirical study of attacks in the Internet is an emerging research field. Early identification of new 
threats is a key element to implement counter-measures in a timely manner. Previous work focused on the 
propagation models of worms in general [11,32,38] or the analysis of specific worms [15,25,26,31].  A few 
initiatives aimed at monitoring worms and attacks propagation in the Internet such as the so-called 
telescopes (a.k.a blackholes/darknets) or the DShield web site [4,14,39,44]. Those approaches have 
highlighted the existence and dangers of certain types of malware (see for instance the recent Witty worm 
analysis in [5]).  

In this paper, focus on the identification of a specific class of tools that we call multi-headed stealthy 
attack tools. They combine several exploits within a single piece of software. This is not a new technique, 
as the very first worm, the Internet worm, did already contain several infection techniques [31].  However, 
the specificity of this class of attacks is that only one of the available exploits will be used to launch an 
attack against a given target. In other words, machines targeted by those multi-headed tools see different 
attacks originating from different sources that can easily be interpreted as different tools. As a consequence, 
the fact that several exploits have been combined within a single piece of code remains invisible to the 
victims as long as the malware is not captured and analyzed. If the spreading of the malware is not too 
aggressive, its existence may remain unknown for a while. A few of these sophisticated tools have already 
been identified, e.g. Welchia. However, this is the result of their malicious activities on users’ machines 
and there is a high probability that some other similar, but more stealthy, tools of this type are currently 
active in the Internet. The identification of these tools remains a great challenge. 

The main contribution of this paper is a method to detect their existence. The key idea is to identify the 
similarities between the time signatures of (apparently) different attack tools. By time signatures, we mean 
the time series of the number of different sources using a given attack per day. Assume for instance that we 
build a multi-headed tool that combines two attack tools X and Y and that we can record the number of 
attacks launched by X or Y each day in the Internet. If each execution of the tool randomly leads to launch 
either attack X or attack Y, and if we further assume that targeted machines are equally vulnerable to X and 
Y, then, on average, we should observe approximately the same number of attacks of type X or Y. This 
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equality should hold for every single day. In other words, the time signatures of X and Y should look 
similar: they will exhibit an increase (resp. decrease) if more machines get compromised by (resp. cured 
from) the considered multi-headed tool. If one attack variant is more successful than the other, time 
correlations (ups and downs) should still exist although the amplitudes of the curves should be different. On 
the other side, if one considers two independent tools, there is no reason for their time signatures to be 
similar over a long period of time1. Thus, by detecting similarities between the time signatures of 
(apparently) different attack tools, it is possible to find out that these tools are combined within a single 
malware code. This, in fact, is the only existing technique we can use to identify these malware apart from 
fastidious reverse engineering techniques. 

The structure of the paper is as follows. In Section 2, we present the experimental setup used to identify 
attack tools based on a set of characteristics (sequence of targeted ports, attack duration, number of 
exchanged packets, etc) excluding their time signature. In Section 3, we detail our method to systematically 
identify similarities between time signatures of attack tools and thus identify multi-headed tools. Section 4 
presents the results of applying the method to our dataset. Conclusions and future work are presented in 
Section 6. 

2. Experimental Environment 

2.1. A Unique Dataset 

Our dataset has been obtained with a honeypot platform (see [29] for details). It emulates three virtual 
machines running different operating systems (Windows 98, Windows NT Server, Linux RedHat 7.3) with 
various services. Logs are centralized in a database that contains, for each attack, a large variety of 
information, such as:  

• Raw packets (entire frames including the payloads are captured with tcpdump); 
• IP geographical localization obtained with NetGeo, MaxMind and IP2location; 
• Passive Operating System fingerprinting obtained with Disco, p0f and ettercap; 
• TCP level statistics using Tcpstat; 
• DNS reverse lookup, whois queries, etc… 
The motivation behind the platform is to gather statistical data on attacks in the Internet in a long-term 

perspective. The platform has been active for 20 months (600 days). During this period, approximately 
80,000 different IP addresses have been observed, i.e. about 135 distinct IP addresses, on average, per day. 
Those addresses originate from 91 different countries. Only a negligible number of those addresses have 
been observed twice, that is on two different days.  

We have also started to deploy similar platforms in other locations. Currently, our distributed honeypot 
environment consists of 30 entities located in 20 different countries, covering the 5 continents. However, 
data obtained with those new platforms do cover a much shorter period of time and are thus not suitable for 
the type of time analysis carried here. Therefore, we will focus in this work only on data provided by our 
initial platform.  

2.2. Attacking Tools Clustering Engine 

We have presented in [12, 13] a method to identify the tools behind the observed attacks using to a 
clustering algorithm detailed in [28]. It is based on the following notions: 

• Attack Source: An IP address that targets a honeypot platform on a given day. Thus, the same IP 
address seen on two different days corresponds to two different attack sources (see [13] for more 
details). 

                                                           
1 We provide a formal proof of this claim in Section 4. 
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• Ports Sequence: An ordered list of ports targeted by an attack source on a virtual machine. For 
instance, if source A sends requests to port 80 (HTTP), and then to ports 8080 (HTTP Alternate) and 
1080 (SOCKS), the associated ports sequence will be {80;8080;1080}. 

The clustering algorithm relies on a small number of input parameters, especially:  
• The number of virtual machines targeted by one source in the honeypot environment; 
• The number of packets sent by one source to each machine; 
• The total number of packets sent by one source to the whole environment (the three virtual 

machines); 
• The duration of the observation, from the first packet sent by the source to the last one; 
• The average inter-arrival time between packets sent by the source; 
• The associated ports sequence. 
 
Some parameters are generalized by means of hierarchy trees. This reduces the risk of errors induced by 

packet losses. Additionally, an association-rule based algorithm is applied to group all attacks sharing 
common values for these 8 parameters. In a second step, we refine the initial grouping. This is achieved 
with the Levenshtein distance (see [28] for details) that allows comparing strings obtained from the 
concatenation of the packet payloads. If the Levenshtein distances are not uniform within one cluster, we 
split it into smaller and more homogeneous clusters. As a result, our clustering technique groups attacks 
into clusters defined as: 

 
Definition: A cluster is a set of IP Sources having the same attack fingerprint (values of the parameters) on 
a honeypot platform. 

 
When applied to our dataset,  our  clustering algorithm generates approximately 2000 clusters. Half of 

them contain a single attacking source. However, those clusters represent a negligible fraction of about 2% 
the total number of attacks. On the other hand, as can be seen from Table 1, the 965  largest clusters 
represent 98% of the attacks and the largest 137 clusters count for 76% of all the attacks. Table 1 further 
provides the average number of attack sources per cluster.  

 
# of clusters Ck % of the observed attacks Average # of sources per 

cluster 

965 98% 52 
654 80% 63 
137 76% 283 
46 63% 704 

Table 1: Information about the clusters generated for the 600 days dataset 

3. Time Analysis of Attack Processes 

3.1. First Observations  

We have shown in [12,13] that the clusters obtained with our clustering algorithm are coherent in terms 
of content and reveal worth-investigating attack features (geographical locations of the attacks, attack 
ordering, raw profile of attacking machines, etc). We have been able to name of few of those clusters by 
comparing the fingerprints of some known tools on our honeypot, obtained in a control environment, to the 
fingerprints of those clusters. However, this task is tedious, and only a few dozens of tools have been 
clearly identified so far.  
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In the present work, we go one step further and focus on the time behavior of our clusters. The type of 
results we are looking for is illustrated by Figures 1(a-d). In these figures the y-axis represents the number 
of IP addresses associated to each cluster, as a function of time, with a granularity of 3 days on the x-axis. 
We observe from Figures 1(a-d) that some clusters can exhibit a similar time evolution though they 
correspond to very different attack fingerprints. Figures 2a) and b) further highlight that the global 
activities against some of those ports (obtained by summing the activities of all the clusters targeting those 
ports) are completely uncorrelated.  For instance, the intervals between brackets correspond to periods 
where no evident time correlation exists. An important conclusion from those examples is that some 
temporal correlations exist between attack fingerprints that seem otherwise unrelated. The next sections of 
this paper aim at defining a methodology to automatically find out those similarities and apply this 
methodology to our dataset. 

 

a) 2 attacks (clusters) targeting port {135} and 
ports {135,4444} resp. 

 
b) 2 attacks (clusters)  targeting port {80} and 
port {135} resp. 

c) 2 attacks (clusters) targeting port {1433} and 
port {139} resp. 

d) 2 attacks (clusters) targeting port {445} and 
ports {5554,1023,9898} resp. 

Figure 1: Examples of time correlation between clusters 

 

 
a) Number of attacks having targeted port 80 or 
attacks having targeted port 135  

 
b) Number of attacks having targeted port 139 or 
attacks having targeted port 1433 

Figure 2: Observed activities on some targeted ports 
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3.2. Methodology 

Time series analysis can provide valuable information, e.g. trends [16], to administrators in charge of 
detecting anomalous behaviors or intrusions in their network [44]. In the present work, we use a time series 
analysis to discover similarities in the time behavior of attack processes identified by our clustering 
algorithm (see Section 2.2). By similar time behavior, we mean that the amount of attacks with respect to 
time of two similar processes exhibit the same trends (ups and downs). However, we do not impose that the 
actual values of the two time series are similar. In practice, this means that before testing the similarity 
(using a distance metric) of two time series, we first normalize them. In addition, we want that: 
• The method uses an adequate technique to summarize data and thus wiping out  some “small” details on 

the variability of the time series so as not be too conservative; 
• The distance returned by the method must be easy to interpret, leading to a clear decision on whether the 

time series are similar or not. This is of utmost necessity as the number of time series that we collect 
continuously increases with time. 
The first step of the method will thus consist in summarizing data. Several techniques have been 

proposed to do this. They can be classified into data-adaptive techniques and non data-adaptive techniques, 
depending on whether the basis on which data is projected is derived from the data itself or not [30]. In the 
first category, we find, for instance, the Singular Value Decomposition (SVD), the Piecewise Aggregate 
Approximation (PAA) or the random projection (sketch) techniques. Discrete Wavelet Transform (DWT) 
or Discrete Fourier Transform (DFT) [3,9,10,21] are examples of techniques from the second category. The 
decision to use one type of method or the other depends on some intrinsic characteristics of the data, like 
periodicity or regularity [30].  

We have decided to use SAX (Symbolic ApproXimate Aggregate), a recently proposed PAA technique, 
that transforms time series into strings and provides an easy-to-interpret distance between the resulting 
strings [18,20,24]. We have not used a Fourier analysis because of the clear lack of periodicity of our time 
series and we did not consider a wavelet approach due to the wide range of observed behaviors of our time 
series that hinder a clear choice for a common wavelet basis (e.g. Haar or Daubechies) for all of them. In 
the remaining of this section, we present SAX and the method used to select its parameters for the need of 
our application. 

3.3. Symbol Aggregate Approximation 

Symbolic Aggregate Approximation (SAX) is a Piecewise Aggregate Approximation (PAA) technique 
[18,20,24]. PAA methods stem from the observation that most time series can be approximated by 
segmenting the time series into intervals of equal size and summarizing each of these intervals by its mean 
value [17].  SAX adds one step to the PAA technique as the PAA representation of a given time series is 
further quantized using predetermined breakpoints (quantization levels, see [24]). The quantized time series 
is interpreted as a string of characters as each quantization level is mapped to one given character. Figure 3 
presents an example where a time series is mapped to the string “ccccccccccccccgffedc”.  The SAX 
representation of a time series T of length N is denoted by WT(N,w,α), where: i) N is the number of 
elements in T, ii) w is the number of elements in the SAX representation of T (i.e. the length of WT) and iii) 
α is the alphabet size (number of quantization levels). In the example of Figure 3, N=600, w=20 and 
α=7. For the sake of conciseness, we will use WT instead of WT(N,w,α), whenever possible. 
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Figure 3: Example of a SAX representation of a Time Series (N=600, w=20, α=7) 

The ratio 
w
Nr = is called the compression ratio. For instance, a value of r=10 means that 10 elements 

of T are mapped to a single symbol in WT. Computation of WT is performed in three steps (see Figure 4): 

1. T is first normalized into
T

TTT
σ

μ−
=' , where Tμ  and Tσ  are respectively the mean and the standard 

deviation of T. T’ thus has a mean of zero and a variance of one. This makes the similarity measure (the 
Euclidean distance in our case) invariant to shifting and scaling [19]. 

2. T’ is then transformed into T’’ using the PAA technique over intervals of length r. The ith element of T’’, 
T’’(i), is computed as follows: 

{ }∑
+−=

∈=
ir
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3. Given that T’’ is approximately normally distributed [22], the α quantization levels are chosen so as to 
maximize the energy of the quantized representation of the time series [24], leading, for a given T’’ to its 
symbolic representation WT. 

 

 
Figure 4: Three steps to get the SAX symbolic representation of Tk

3.4. Finding Similarities with SAX 

SAX estimates the distance between two time series T1 and T2 of length N as the distance between their 
SAX representations WT1 and WT2. For sake of efficiency, inter symbol distances can be pre-computed and 
loaded in a lookup table TAB (see [24] for details). The distance between WT1 and WT2 is computed as 
follows, where WT1(i) and WT2(i) are the i-th symbols of WT1 and WT2 respectively:  

2
T1 TTT )(i)W,(i)W(()W,W(

2121 ∑ =
=

w

i
TAB

w
ND    (1) 

Our objective is to use SAX to automatically discover similar time behaviors among the attack processes 
identified by our clustering algorithm (see section 2.2). This means that we must determine a threshold τ 
such that all pairs of time series (T1,T2) such that D(WT1,WT2)≤τ will be (visually) similar. The choice of τ 
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depends on the values of the alphabet size α, that controls the levels of details kept in WT, and the 
compression ratio r, that controls the time scale at which we will look for similarities. While r is application 
dependent, there exists no a priori good values for α, though the authors in [20] suggest values between 4 
and 10.  

We want to observe similarities at a time scale (r values) of around 10 days. Actually, there is no 
specific requirement for this time scale. Note that we have checked that other values between 4 and 10 days 
also provide similar results. The choice of α requires a visual inspection of the time series deemed similar 
by the tool, which can only be done when τ is chosen. We started by looking at the histogram of the 
distances between our 137 time series (for a total of 9316 comparisons). An interesting property concerning 
the shape of the histogram is that it remains similar for different values of α and r: there is some mass at 
zero and the rest of the values are larger than 1.  Figure 5 presents a typical example with α=5 and r=10. 

To check whether setting τ to 0 was a good choice, we inspected all the time series with distance zero, 
and some time series whose distances are between 1 and 2 for α=4,5,6 and 7 and a fixed value of r=10. It 
turned out that: 
• α=4 (4 quantization levels) wipes out too many details of the time series leading to time series with a 

distance of zero that are visually too dissimilar; 
• For  α=5, the time series with a distance of zero are reasonably similar while the time series at a distance 

between 1 and 2 are clearly dissimilar; 
• Using values α≥ 6 is too conservative, as time series that we were considering as similar for α=5 had a 

distance larger than 1 when using more than 5 symbols to code them even though they were visually 
very similar over the 600 days period. 
Thus, we conclude from the above study that a value of α=5 along with a threshold of τ=0 are adequate 

choices for our purpose. Note that we also checked that the results are not significantly affected by the 
choice of the compression ratio r, when r varies between 4 and 12.  

As a conclusion, for the rest of the paper all results are based on the application of the SAX method with  
α=5, r=10 and τ=0. 

 
Figure 5: Distance distribution for r=10 and α=5 

4. Results 

We present here results obtained when applying SAX  to the 137 largest clusters obtained from our dataset. 
Out of those 137 clusters, we found 89 pairs of similar time series (a cluster might appear in several pairs). 
Before discussing those similarities in detail, we first demonstrate that this high number of observed 
similarities is neither an artifact of SAX nor of our clustering algorithm. 
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4.1. Discussion 

Before analyzing similarities, we first need to be sure that SAX by itself did not lead to any false 
positives. This is possible if there is a non-negligible probability that two random and independent time 
series can be declared similar by SAX. This probability depends on the inter symbol distances defined in 
TAB (equation (1)), as some values in this table (that represents the inter symbol distances) are equal to 
zero [24]. To obtain a distance of 0 between two random and independent time series of size W, the 
distance between each of their W elements must be null. As there is a total of 25 elements in TAB and 13 
of them are equal to zero, the probability P that 2 strings out of K random and independent strings, are 
similar is:  

wKKP ⎟
⎠
⎞

⎜
⎝
⎛×

−
=

25
13

2
)1(

. 

The probability of getting one similarity out of 9316 (=137 x 136 / 2) comparisons is thus smaller than 
10-13. Therefore, from a probabilistic point of view, it is quite unlikely that the 89 similarities found with 
SAX are observed by chance. 

One could also argue that the large amount of observed similarities results from our clustering algorithm 
that could have erroneously split the traces due to a single tool into different clusters. To verify the absence 
of such a bias, we have computed the distribution of the number of differing parameters in the clustering 
algorithm of all the 89 pairs of similar time series. We obtained that 60 pairs differ by more than 4 
parameters while only 10 differ by a single parameter value.  This result indicates that the similarities we 
observe cannot be simply explained by the fact that our clustering algorithm is too conservative. 

4.2. Observed Similarities 

We found 89 pairs of similar clusters that we grouped into 3 different sets. The first group, with 28 pairs, 
does not contain multi-headed stealthy tools. This group results from the fact that our honeypot platform 
offers 3 different operating systems and that attack tools are attacking differently specific operating 
systems, leading to different attack fingerprints (from our clustering algorithm point of view) on each 
machine. As a consequence, similar pairs of this set will share most of their source addresses.  

The two other sets of similar pairs of clusters are much more interesting and deliver the promised results.  
In the first one, the source addresses for similar pairs of clusters differ, but a strong correlation of their 
network of origin exists. In the last set, the time signatures are the only elements that link pairs of traces of 
attacks together.  

4.2.1 Common IP Addresses  
Looking at the source IP addresses of the 89 pairs of similar clusters, we observed that those pairs 

seemed either to share most of their addresses or no addresses at all. To further investigate this issue, we 
computed the ratio of the number of common sources for each of the 89 pairs of clusters. We found out that 
28 clusters shared between 85% and 100% of their addresses, while this ratio was almost 0 for all the other 
pairs of clusters. Further investigation of those 28 clusters revealed that the reason why those tools have 
been declared dissimilar was because the sequence of ports targeted by a given attacking machine (IP 
address) on different machines in the platform was different. However, while the sequences of ports differ 
from one targeted machine to another, one port sequence is always a prefix of the other. Let and 

be the ports sequences associated to a pair of clusters . For all 28 pairs in this first group, we 

find that:  or . Such a behavior is a characteristic of sophisticated tools 
that always scan the same sequence of ports on a machine, but stop scanning if ever one of the ports is 
closed.  Figure 1a) shows two such clusters. The first one represents attacks targeting ports sequence {135} 
and the other one ports sequence {135, 4444}. They correspond to MBlaster. If port 135 is found open by 
the worm, it further scans port 4444 to check if a remote shell is also open [8,23,33]. This behavior leads to 

aPS

bPS ),( ba CC
,*)( ba PSPS = ,*)( ab PSPS =
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two distinct clusters for our clustering algorithm: one for the attacks on port {135} for the Linux virtual 
machine and one for the attacks on ports sequence {135,4444} for the Windows virtual machines where 
port 135 is open. Overall, we obtained four pairs of similar time series for ports sequences {135} and 
{135,4444}. They correspond to four distinct variants of MBlaster. We also observed that each variant, i.e. 
each pair of clusters, has a very different time signature. This can be an easy way to distinguish them. 

The use of time analysis is thus a good way to find out this type of tools. It represents a costless 
alternative to a complex reverse engineering of the code (that first needs to be captured!) that would reveal 
that the tool stops scanning a machine whenever a port in the pre-defined sequence of scanned ports is 
closed. However, we cannot term those tools multi-headed tools because there is always a (prefixing) 
relationship between the ports sequences observed in the different machines. We are thus not in the case of 
a tool that uses a different attack each time it targets a new machine. 

The fact that they share IPs addresses is an artifact of the attack tools. We could very well have observed 
the same phenomenon without having common IP addresses if these worms had used another propagation 
strategy. However, we did not observe this type of behavior for our 137 clusters.  

  

4.2.2 Common Source Characteristics 
Out of the 89 initial pairs of similar clusters, 61 pairs remain for which there is no clear relation between 

(i) the IP addresses of the attacking machines of each pair and (ii) the ports sequences. At this point, we 
took advantage of the fact that a form of propagation of attack tools is to randomly (and not sequentially as 
in the case of the first 28 pairs above) scan machines within a network. Thus, while we never observe that 
the very same attacking machine has targeted two different machines of our platform, we should find a 
relationship between the origin networks of the machines in some of the pairs of similar clusters. To 
investigate this issue, we associated to each source in each cluster, a domain defined as the set of addresses 
returned by a whois server for this address. Figure 6 presents the observed overlap between the domains of 
source IP addresses of the 61 pairs of clusters. We have computed the percentages as follows: if clusters 

and are respectively composed of IP addresses from domains  and : aC bC aDom bDom
 

 

100.
)()()(
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)  :  (
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ba DomDomcardDomcardDomcard
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∩−+
∩
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From Figure 6, we clearly observe two distinct groups of pairs of clusters. A first group consisting of 8 
pairs for which the overlapping value is close to zero and a second group for which the overlapping values 
are (mostly) above 20%. We defer the study of the specific group of 8 pairs to the next section and 
concentrates here on the group of 53 pairs for which there is a non-negligible domain relation among the 
sources.  
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Figure 6: Percentage of overlapping domains between pairs of clusters 

In this group of 53 pairs, we identified a variant of the worm Nachi, also called Welchia [2,34] that 
exploits one of the following vulnerabilities:  

• DCOM RPC vulnerability described in MS03-026 bulletin  
• WebDav vulnerability described in MS03-007 bulletin  
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• Workstation Service vulnerability described in MS03-049 bulletin  
   Welchia is an example of multi-headed tools. To infect other machines, it randomly chooses an IP 
address and then attacks it either against port 135 or port 445, but not both (it is thus a real multi-headed 
tool). From our platform viewpoint, traces left by machines infected by Welchia look very different. They 
will thus be stored in two different clusters, one for the attacks against port 135 while the other contains 
attacks against port 445. It is quite unlikely that we will find the very same source in both clusters but large 
networks containing many machines compromised by this worm have good chances to appear in both 
clusters. This is exactly what happens, as the overlapping ratio (pair 18 in Figure 6) for Welchia is 21%. 

Another example of such multi-headed tools is Spybot.FCD [6,35]. This tool tries to exploit Windows 
vulnerabilities either on port 135, 445 or 443. We have found three (similar) clusters corresponding to 
Spybot.FCD.  

Welchia, Spybot.FCD or W32.Kobot.A are examples of multi-headed stealthy tools that have been 
studied and analyzed. Many more remain to be identified. Our time signature analysis provides a simple 
and efficient way to reveal their existence. It should provide valuable input to other research teams 
interested in studying specific attack tools and/or in reverse engineering them [1,7,26,27,36,37,40].  

As N.C. Weaver reports in [41] about Warhol worms, many worms are using random scanning in order 
to detect new targets, but it can happen that some virulent worms start by scanning local subnets and 
logically adjacent networks. This is a very efficient way to speed up the propagation since vulnerable 
machines are often clustered together and this proves to be an excellent way to wreak havoc in internal 
networks. Code Red II's increased virulence was mostly caused by such a subnet scanning routine. Along 
the same line, Zhou et Al. discuss in [42] the potential impact of routing worms that make use of IANA 
Class A allocations combined with the information of BGP routing prefixes to obtain allocated and active 
IP ranges. These propagation activities do not appear clearly if we look at the common domains provided 
by whois requests, as presented in Figure 8 because the domains returned by a whois server can be of very 
different sizes. Thus, we performed a similar analysis, but looking at common /8, /16 and /24 networks for 
the pairs of clusters. /16 and /24 comparisons did not show any striking pattern. The results are much more 
interesting for the /8 network comparison, as depicted in Figure 7. Similarly to Figure 6, we still observe 
(the same) 8 pairs of clusters that do not share many /8 networks. Most of the remaining 53 other pairs have 
more than 40% of /8 networks in common. We also note that 13 pairs have between 80% and 100% of 
common /8 networks. Those networks differ, though, from one pair to another. There are 256 blocks of 
addresses of /8 type. However, the clusters under study share a very few number of them. For the 13 pairs 
with similarity level between 80 and 100%, the number of common /8 networks does not exceed 15. At this 
point, two scenarios are possible. Either all machines infected by such tools are confined within the few 
common networks we observe or they are spread all over the world but their propagation strategy is such 
that we see more attacks from some networks than from others. The distributed platform we are currently 
deploying should help us to address this issue in the future.  
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Figure 7: Percentage of common /8 networks between pairs of clusters 
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4.2.3 The real stealthy cases 
In this section, we focus on the last 8 pairs of clusters that exhibit no significant similarity in their source 

IP addresses and port sequences. To better characterize those pairs, we collected additional data about the 
infected machines, namely a passive OS fingerprinting (using p0f) and domain name resolution outputs. 

As for the passive OS fingerprinting, we first observed that almost 100% of the machines in those 8 
pairs are Windows machines. We further estimated the number of personal machines by looking at specific 
strings in the domain names. If the domain name includes some specific strings such as   ‘%dial%’, 
‘%dsl%’ or ‘%cable%’, there is a good probability that those machines are personal computers.  While over 
the whole set of clusters identified by our clustering algorithm, 34% of the machines appeared to be 
personal computers, this figure jumps to 63% for the case of 8 pairs of clusters under consideration. A 
preliminary conclusion is that the attacking machines in those 8 pairs of clusters are mostly windows 
machines from personal users.  

We also investigated the port numbers targeted by those 8 pairs of clusters.  Attacked ports are 21, 25, 
80, 111, 135, 137, 139, 445, 554 and 27374. We however found no obvious relation among them.  

To try to gain further insights on those tools, we picked one of those 8 pairs that consists of attacks 
targeting port 27374 (a port left open by some Trojans) while the other cluster targets port 21 (FTP). We 
refer to those two clusters as Ca and Cb respectively.  Table 2a) gives the top 10 origin countries of those 
attacks (based on Maxmind) and Table 2b) provides the top 5 origin domains. As can be seen, there is no 
simple relation between those two types of information. For instance, China does not account for 

activities while it represents one fourth of activities. In addition, the weight of .com domains highly 
differs from one cluster to the other. 

bC aC

 
Ca Cb Ca Cb
CN:  24% US:  47% .net                   31% .net                 32% 
KR:  17% KR:  11% .com                   4% .com               40% 
TW:  14% FR:   10% .it                        3% .fr                     9% 
US:   10% CA:    7% others               28% others               1% 
DE:    7% DE:    6% 

 

undetermined  34% undetermined 18% 

Table 2: a) Top 5 sources locations    b) top domains for clusters Ca and Cb

Those 8 similarities correspond to multi-headed stealthy tools that have not, to the best of our 
knowledge, been identified so far. As a matter of fact, without having access to the code of the tool itself, 
our method appears to be the only way to pinpoint their existence. It is also very interesting to note that 
same pairs of similarities exist on other honeypot platforms that we monitor. It is, therefore, not something 
specific to that single platform. A precise characterization of those malware remains, at this stage, an open 
issue and we hope that this result will encourage researchers to capture and study them.  

5. Conclusion 

In this paper, we have highlighted the existence of so called multi-headed stealthy tools based on the 
similarity between their time signatures. Since those tools present different attack fingerprints, they are 
difficult to identify except by reverse engineering their code. However, we have shown that their 
identification is feasible by following two distinct steps: first, we group attacks with a common fingerprint 
on a honeypot platform into the same cluster, and then we compare the evolution of these clusters over time 
to find out similarities. By applying this method to a large set of real world attack traces, we have 
highlighted the relevance of the method. A handful of multi-headed stealthy tools have also been 
discovered.  

 Future work will follow two major directions. One is to generalize the technique on all our honeypot 
platforms, as soon as they provide a suitable amount of data, in order to carry an in-depth cross-platform 
comparison. A second direction will consist in reverse engineering a few attack tools, for which captured 
packets contain the code. Our dataset as well as a graphical interface to test our tool (java applet) will be 
made publicly available. 
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