

Honeypot technologies

2006 First Conference / tutorial Junes 2006

{Franck.Veysset,Laurent.Butti}@orange-ft.com

Agenda

Origins and background Different kinds of honeypot > High interaction honeypots Low interaction honeypots **Example: honeyd** Other kinds of honeypot WiFi honeypot Honeypot and worms Honeyclient / honeytoken Distributed honeypot

Conclusion...

Why Honeypots?

FIRST 2005

 A Distributed Intrusion Alert System, by Chih-Yao Lin, Taiwan National Computer Emergency Response Team, Taiwan
 A National Early Warning Capability Based on a Network of Distributed Honeypots – Detailed Synthesis, by Cristine Hoepers, NBSO/Brazilian CERT, Brazil

FIRST 2006

- Wednesday and Friday sessions
 - The impact of honeynets for CSIRTs
 - Automated Extraction of Threat Signatures from Network Flows
 - A Distributed Intrusion Detection System Based on Passive Sensors
 - Time signatures to detect multi-headed stealthy attack tools

> and probably more presentations where results come from honeypot...

▶ Cliff Stoll, 1986

ISBN: 0743411463

A NEW YORK TIMES BESTSELLER FOR MORE THAN FOUR MONTHS!

Tracking a Spy Through the Maze of Computer Espionage

> "A spy story for the '90s—and it's all true." —TOM CLANCY

Idea: to learn the tools and motives of BH

To learn the tools, tactics, and motives of the blackhat community, and share the lessons learned

 know your enemies
 Sun Tzu was a Chinese military tactician who wrote 2500 years ago, 兵法, (The Art of War)

> * "know yourself and know your enemy, and of a hundred battles you will have a hundred victories."

Network observatory

• Looking at the internet "background noise"

- Usually relies on distributed sensors
- Provided an overview on current threats across the internet

▶Some examples

- <u>http://www.dshield.org , http://isc.sans.org (SANS), ISC (Internet</u> Storm Center)
- ▶ <u>http://xforce.iss.net</u> ISS XForce Alertcon (X-Force™ Threat Analysis Service)
- <u>http://www.mynetwatchman.com/</u> (firewall log analysis)

Dshield

Eikst

Survival time ! (SANS)

Top 10 Target Ports

SANS - Internet Ston File <u>E</u> dit <u>V</u> iew <u>G</u> o			And Alert System - Current Infosec News		
6.05) 🚫 [💊 http:	//isc.incidents.org/top10.ph	p?isc=d7c660467c3a5129ac0ccd 🔽		
.ast update June 08 F <mark>op 10 Ports</mark>	3, 2004 21:43 pm	GMT (5 minutes ago)		
Service Name	Port Number	30 day history	Explanation		
epmap	135		DCE endpoint resolution		
nterm	1026		remote_login network_terminal		
icq	1027	en er brer di litte	icq instant messanger		
ms-sql-m	1434		Microsoft-SQL-Monitor		
netbios-ns	137		NETBIOS Name Service		
microsoft-ds	445		Win2k+ Server Message Block		
dabber	9898		[trojan] Dabber Worm backdoor		
sasser-ftp	5554		[trojan] Sasser Worm FTP Server		
mydoom	3127		W32/MyDoom, W32.Novarg.A backdoor		
netbios-ssn	139		NETBIOS Session Service		
	111				
🔟 🖂 🖓 🚺 🗠			-111- 🧐 🚽		

Virst

France Télécom R&D – Veysset & Butti – June 2006 D10

Darknet & Network Telescope

A Darknet is a portion of routed, allocated IP space in which no active services or servers reside

- It include one server (packet vacuum)
 - > Gathers the packets and flows that enter the Darknet
 - > Any packet that enters a Darknet is by its presence aberrant
 - Netflow analysis (and more...)

Example: CAIDA, Team Cymru, Arbor...

Honeypot Principles (1/2)

• Honeypot is not a production system

- Every flow going to (or coming from) this system is suspicious by nature.
- > This makes the analysis of collected data much easier.
- The trap must be well done in order to collect useful and interesting data.
- At the same time, the trap must be difficult to recognize by a potential hacker.

Honeypot Principles (2/2)

• The honeypot can be « hidden » amongst production systems

> This allows to identify easily actions brought against these systems

• The honeypot can be isolated on a DMZ

- This will allow to unmask « curious people » who are too interested by the equipments on the DMZ
- > The honeypot can be implemented on the Intranet
 - Behaviors can be analyzed...

And why not a honeypot « Wireless / 802.11b » ?

The system that will be chosen depends on the objectives

France Télécom R&D – Veysset & Butti – June 2006 D14

Stakes

Pros

- Collected data are on principle interesting
- Few « false positive » / « false negative »
- High value data

🕑 Cons

- Incurred risks when using such a system
 - Bounce: a hacker may attack another site from the honeypot
 - Provocation: a hacker may feel « provoked » and « avenge »
- Important resources needed to operate such a system
 - Skills, time
 - But results can be mutualized

Objectives

In the research field

- Knowing trends in the attacks domain
- Knowing one's enemies
- Catch next tools (worm...)

In order to make the environment more secure

Detection of new attacks

In order to get prepared in case of attacks on operational networks

• And in order to learn how to protect oneself

In a nutshell (honeynet project)

A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource

Has no production value, anything going to or from a honeypot is likely a probe, attack or compromise

• Primary value to most organizations is information

A honeypot is a trap set to detect or deflect attempts at unauthorized use of information systems.

Generally it consists of a <u>computer</u>, data or a network site that appears to be part of a <u>network</u> but which is actually isolated and protected, and which seems to contain information that would be of value to attackers.

Different family of honeypot

• Two distinct types

D Low interaction

- > And low risk
- > Used to produce statistics on attacks

• High interaction

- Usually know as "research"
- Many possibilities

Low Interaction

Emulate services, networks & fingerprints

- Log all interaction
- **Implies Weild Arrows Antices Arrows Arrows**

High Interaction

Allow full access to services and OS
 Ability to capture "0-day attacks"
 May be risky...

Some honeypot softwares

D Low interaction HP

- BackOfficer Friendly (BOF) NFR Security
 - <u>http://www.nfr.com/products/bof/overview.shtml</u>

> KFSensor – KeyFocus Ltd

- <u>http://www.keyfocus.net/kfsensor/index.php</u>

> Deception Toolkit (DTK) – Fred Cohen & Associates

– <u>http://www.all.net/dtk/index.html</u>

See <u>http://www.honeypots.net/honeypots/products</u>

BackOfficerFriendly...

KeyFocus...

le View Scenario Settings Help							
🐮 😒 😻 💽 🌡 👔 🕄 🖉) ai 🔟 🛠	1				
127.0.0.1 - Main Scenario 📃 🔨	ID	Start Time				Vi	Received
i 🔁 TCP	() 4365	20:59:07.125			\subset	p hap 6-cust64	RFB 003.003[0A]'tm[1
🐗 21 FTP Guild - Recent Ac	(4364	20:39:45.562		1	i Sel Ser	st68.cnt42.mia5.d	[04 01 01 01 01 01 01 01
22 SSH	(9 4363	29:36:59.23				~NEGAHDARI2	GET /default.ida?XXX
	9 4367	3:52.42		25	ITF	211.201.15.8	HELO 45xgl9b3rsi78s[
	🦉 3f	1 5:55.62			nGe	www.vipondassociate	[05 01 00]
🚭 25 SMTP - 🔤 cent Activi	S - 2	19 5:53.03		<i>6</i> 0	winGate	www.vipondassociate	[04 01 01 A4 D1 A4 1.
	43	2:35.28		21	FTP Guild	p508E3E58.dip.t-diali	USER anonymous[0D
🚭 📢 80 IIS - Reant Activ	43	16:02:53.343		17300	Kuang 2, Trojan	12-230-64-180.client	
🐗 110 POP3	43	1 8:17.187	UDP	111	sunrpc	61.185.147.2	g[00]\$[A6 00 00 00 0
111 sunrpc	43	15:01.015	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%252f.
	435	15:15:00.828	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%25%
	4354	15:15:00.593	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%%35
	4353	15:15:00.375	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%%35
443 HTTPS	9 4352	15:15:00.140	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%c1%9
🐳 999 WinSatan	9 4351	15:14:59.921	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%c0%a
🐳 1024 NetSpy, Trojan	9 4350	15:14:59.671	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%c0%2
4 1080 WinGate - Recent	Q 4349	15:14:59.437	TCP	80	IIS	VICENTE-PL4D3RX	GET /scripts/%c1%:
2	Q 4348	15:14:59.250	TCP	80	IIS	VICENTE-PL4D3RX	GET /msadc/%255c.
1214 Grokster, P2P file sharii	Q 4347	15:14:59.062	TCP	80	IIS	VICENTE-PL4D3RX	GET /_mem_bin/%2
🛶 🐳 1433 MS SQL Server 🛛 🗸 🖌	() 4346	15:14:58.796	TCP	80	IIS	VICENTE-PL4D3RX	GET /_vti_bin/%255

Specter

- - -

Honeyd

Written by Niels Provos in 2002

Low interaction virtual HP

- Oses
- Services
- Network topology

Honeyd – fake services

Honeyd – architecture

V. Vikit

Honeyd – accounting

🕑 Two levels

- Network packets
 - Done by Honeyd daemon
 - Information on packet headers (no payload)

2005-01-10-15:13:39.7650 tcp(6) s 194.174.14.3 2739 22.33.18.26 21 [Windows XP SP1] 2005-01-10-15:13:41.2517 tcp(6) E 194.174.14.3 2739 22.33.18.26 21: 233 1072

Service level

- Done in service scripts

2005-01-10-15:13:39 194.174.14.3:2739 > 22.33.18.26:21 USER anonymous PASS Ngpuser@home.com CWD / CWD /_vti_pvt/

Honeyd – Advanced architecture (1/2)

Ľ

Honeyd – Advanced architecture (2/2)

Honeyd.conf

set dns_server personality "Linux 2.4.7 (X86)" set dns_server default tcp action reset set dns_server default udp action reset add dns_server udp port 53 "perl scripts/HoneyDNS.pl uđp add dns_server tcp port 21 "sh scripts/ftp.sh" set dns_server uptime 3284460 set dns "server uptime 3284460 pind 100.0.4 dns_server bind 100.0.5 dns server ### Linux 2.4.x computer create smtp_server set smtp_server default tcp action reset set smtp_server default udp action reset add smtp server tcp port 110 "sh scripts/pop3.sh" add smtp server tcp port 25 "sh scripts/smtp.sh" add smtp server tcp port 21 "sh scripts/ftp.sh" add smtp server tcp port 23 "perl scripts/router-telnet.pl" set smtp server uptime 3284460 bind 10.00.6 smtp server bind 10.0.0.7 smtp_server

- # Cisco router create router
 set router personality "Cisco IOS 11.3 - 12.0(11)"
 set router default tcp action reset
 set router default udp action reset
 add router tcp port 23 "/usr/bin/perl scripts/router-telnet.pl"
 set router uid 32767 gid 32767
 set router uptime 1327650
 bind 10.0.0.1 router
 pind 10.0.2.1 router
 bind 10.0.3.1 router create router bind 10.0.3.1 router ### Routing configuration route entry 10,0.0.1 route 10.0.0.1 link 10.0.0.0/24 route 10.0.0.1 add net 10.0.1.0/24 10.0.1.1 latency 55ms loss 0.1 > route 10.0.0.1 add net 10.0.2.0/24 10.0.2.1 latency 15ms route 10.0.0.1 add net 10.0.3.0/24 10.0.3.1 latency 105ms route 10.0.1.1 link 10.0.1.0/24 route 10.0.2.1 link 10.0.2.0/24 route 10.0.3.1 link 10.0.3.0/24

Honeyd

Live demol

Honeyd – advanced features

• Subsystem virtualization

Run real UNIX applications under virtual Honeyd IP addresses: web servers, ftp servers, etc...

- Internal Web server for easy satistics...
- Management console that allows dynamic change on Honeyd configuration while Honeyd is running

Dynamic templates

> Allows the configuration of a host to adapt depending on the operating system of the remote host, the time of day, the source IP address, etc.

- 🕑 Tarpit
- Passive fingerprintings (p0f)

Feedback: Sasser detection (1/2)

Sasser was seen for the first time on Saturday, May 1st 2004 from 7:50 pm (FTR&D Intranet)
 Number of hits per day

Sasser detection (2/2)

Maximum of activity on Sunday, May 2nd

> Thousands of hits on May 2nd, 3rd and 4th

This does not mean thousands of machines were infected
In fact, 387 unique IP addresses were found (FTR&D site)

• The worm was quickly brought down: 2 working days

Monday and Tuesday following the infection

Honeyd: limitation

As a « low interaction » honeypot, there are some limitations

- Difficult to emulate complex (binaries) protocols
- > It is possible to « fingerprint » honeyd, thus identify the honeypot

• Stability issues

Under heavy load...

High interaction HP

Different generations

- Gen1 1999-2002
 Gen2 2002-2004
 Gen3 2005-...
- > ...

• Towards honeynet (networks of honeypots)

Strong needs to take care of incoming and outgoing traffic

🕑 Data Control

Filter outgoing packets to stop further attacks

🕑 Data capture

Log every packet that enters and leaves honeypot

No "Data Control"

Data Control enabled

GEN I honeynet

GEN I honeynet

Controls outbound packets by passing through firewall and router

- **Router somehow « hide » the firewall**
- Data control is performed by the firewall
 - Firewall keeps track of number of outbound connections
 - > The more outbound activity allowed, the more can be learned
 - Might be risky!

🕑 Data capture

- > The IDS gather all the information
- > All systems export their logs to remote syslog server

GEN I: analysis

The first « honeypot » solution

Data Control is quite hard to perform

- Need to filter on outbound activity (counter?)
- Hackers can detect the trick
- Difficult to fine tune

Data Capture is limited
 Only IDS and Syslog

Introducing GEN II architectures

Honeynet - Gen 2nd Generation Honeynet - Version 0.2

Gen II analysis (1/2)

Gateway works at layer 2 (bridge mode)
 Very stealthy

• Administration is performed using C interface

Data Control & Data capture are done by the gateway (honeynet sensor)

Gen II analysis (2/2)

Advanced data control functionalities

- IDS/IPS functionalities
- Relies on SNORT-INLINE
- http://snort-inline.sourceforge.net

Advanced data capture functionalities

- Honeywall gathers firewall and snort logs
- Sebek runs on all honeypot
- Honeywall collects sebek logs

Snort-Inline Drop Rule

France Télécom R&D – Veysset & Butti – June 2006 D46

Snort-Inline Drop Rule

First

Exemple: DNS attack

drop tcp \$HOME_NET any \$EXTERNAL_NET 53
(msg:"DNS EXPLOIT named";flags: A+;
content:"|CD80 E8D7 FFFFFF|/bin/sh";

Snort-Inline Replace Rule

Exemple: DNS attack Can be very "stealth"

alert tcp \$HOME_NET any -> \$EXTERNAL_NET 53
(msg:"DNS EXPLOIT named";flags: A+;
content:"|CD80 E8D7 FFFFF|/bin/sh";
replace:"|0000 E8D7 FFFFF|/ben/sh";)

REPLACE MODE OPERATION

Data Capture: Sebek

• Tool developed by the honeynet project

• Very useful for "data capture"

- Hidden kernel module that captures all activity
- Dumps activity to the network
- Attackers cannot sniff any traffic based on magic number and destination port

http://www.honeynet.org/tools/sebek/

Sebek Diagram

Diagram of Sebek/BSDsebek Network Setup

Sebek: Data capture

• The Sebek kernel module collects data passing through the *read()* system call

- For example, this captures the intruder's ssh keystrokes and recovers scp file transfers.
- Sebek client relies on stealth techniques to hide. This also harden its detection. First Sebek version was relying on "the adore rootkit" to hide the sebek files and processes from the attacker
 - Sebek : http://www.honeynet.org/papers/honeynet/tools/
 - > Adore: <u>http://www.team-teso.net/releases.php</u>

Eirst

Sebek client

France Télécom R&D – Veysset & Butti – June 2006 D55

GUI Sebek

- Mozilla								
Sebek Home Keystrokes Browse Search Sup 27 Jul 2003 15:46:40 -0500								
ADUDC & AN					kes Browse Search Sun, 27 Jul 2003 15:46:40 -0500			
Keystroke Summary View for IP: 10.0.1.13								
Details	IP	PID	UID	COMMAND	FD	DATA		
0	10.0.1.13	1318	0	sh		[2003-07-23 20:04:33]# ls		
						[2003-07-23 20:04:34]# less messages		
						[2003-07-23 20:04:52]# cd /etc		
						[2003-07-23 20:04:54]# mkdir		
0	10.0.1.13	1323	0	less		[2003-07-23 20:04:57]# ls [2003-07-23 20:04:35]# \000		
•	10.0.1.15	1525	U	16.88		[2003-07-23 20:04:50]# q		
0	10.0.1.13	1321	0	w		2003-07-23 20:04:09 # w/000		
Õ	10.0.1.13	1271	500	bash	-	[2003-07-23 20:03:29] # hojesj jesj who		
<u> </u>	101011120			owen.		[2003-07-23 20:03:33]# w		
						[2003-07-23 20:03:43]# ./malware		
						[2003-07-23 20:03:47]# chmod ux[BS] +x mal		
-	100110					[2003-07-23 20:03:52]# ./mal		
0	10.0.1.13	1312	500	w		[2003-07-23 20:03:33]# vA000		
۲	10.0.1.13	1271	500	bash		[2003-07-23 20:03:24]# [BS] [BS]		
۲	10.0.1.13	1304	500	tput		[2003-07-23 20:03:24]#\000		
۲	10.0.1.13	1305	500	WC		[2003-07-23 20:03:24]# [BS]		
۲	10.0.1.13	1307	500	tput	3	[2003-07-23 20:03:24]#\000		
0	10.0.1.13	1302	500	tput	3	[2003-07-23 20:03:24]# \000		
۲	10.0.1.13	1252	0	mingetty	0	[2003-07-23 20:03:16]# blackhat		
0	10.0.1.13	1263	0	sshd	7	[2003-07-23 20:02:07]#\000\000\000		
۲	10.0.1.13	1264	500	scp		[2003-07-23 20:02:07]# C0664 38802 malware		
						[2003-07-23 20:02:09]#\000		
0	10.0.1.13	1263	0	sshd		[2003-07-23 20:02:09]#\000		
			0	sshd	4	[2003-07-23 20:02:02]# SSH-2.0-OpenSSH_3.1p1		
95 23 7	🖉 🔂 🛃 De	ocument: D) one (0.13	27 secs)		-0-27		

Sebek network

Sebek... what's next

• Lots of work on Sebek and "anti sebek" techniques

- See Fake Phrack mag #62 for example
- Kernel module detection
- Sebek

New research on the topic

> EuSec 06: Xebek... (more on this later)

Other HP usages

WiFi Honeypots Virtual honeypots **Honeypots and Worms Distributed Honeypots Honeyclients Honeypot farms Honeynet project** Legal issues

Wireless Honeypots

Wireless technologies are more and more available

- In corporate networks
- In home networks
- In hot spots
- > ...

New technologies such as VoIP/WLAN, UMA (Unlicensed Mobile Access)... are new ways to circumvent your security policy

Seems that wireless honeypot could help us in evaluating these new risks

Wireless Honeypots

Today, most corporate wireless access are still based on IPsec tunneling

> Implies that Wi-Fi networks are using « Open » mode

• Two options for a « Wireless Honeypot »

A classic option is a wired honeypot near your IPsec gateway!
Another option is a fully featured virtual network emulated reachable from an open wireless access point

Wireless Honeypot?

() Goals

- Statistics on « Wardriving »
- Knowledge and understanding of hackers' motivations
 - « intelligence » aspects
- Knowledge of new technologies and tools
 - Wi-Fi hacker Toolbox

Pros

Looks like a typical Wi-Fi network

Level 2 technology: detection of all customers equipments looking for Wi-Fi networks (even without connection)

Wireless Honeypot

Based on a real AP, and on a *honeyd* server emulating a full network

All traffic is monitored and captured

Can fool hacker and wardriver

Wireless Honeypot

• After some experiments...

Most of the connection are just looking for internet access (<u>http://www.google.fr</u>)

More interesting, many clients do some "automatic" connections (ex: under Windows XP, auto_connect)

> This can be very dangerous (information leak, hole on the system...)

Wireless Honeypot

Thanks to Tino H. His help made the demo possible... One of our laptop died in the plane

Live demoi

Virtual Honeypots (1/3)

New "architecture" to build honeynet

Ideas

- Run everything on a single computer
- Relies on virtualization technologies
 - VMware
 - Xen
 - UML (User Mode Linux)
 - ...

Virtual Honeypots (2/3)

Pros

- Reduced cost
- > Easy to maintain / repair
- Portable (honeynet laptop?)

Cons

- Single point of failure
- Not everything is possible (Cisco on Intel?)
- Security (strong compartmentalization?)
- > Detection? Very difficult to hide...

Virtual Honeypots (3/3)

More information at

http://www.honeynet.org/papers/virtual/index.html

New tools available for virtual honeypots 😳

- See "Xebek" at "EuSecWest/Core06"
- See "VMware fingerprinting counter measures"
 - <u>http://honeynet.rstack.org/tools.php</u>

New tools against "virtual honeypot" VMware fingerprinting tools (cf Kostya's patches) And many more (dtdumper...)

Automated Malware Collection

Automated malware collection is a new hyped technique

Most well-known tools are

- > Mwcollect
- Nepenthes
- Mwcollect and Nepenthes fusion (February, 2006)

• Lots of other techniques are possible

PCAP capture of compromised hosts for example

Nepenthes Operation

Nepenthes is a medium interaction honeypot

- It emulates known vulnerabilities
- It catches known shellcodes
- It interprets the shellcode actions
- It emulates the actions
 - Bind a shell, parses URLs...

Should not be compromised if no security vulnerabilities (coded in C++);-)

But can be easily detected, that's not its purpose!

Nepenthes Loading

Loading of the configuration

- > Examine the modules to be charged (vuln, shellcodes, download, submit, log)
- Record the handlers of download for each supported protocol of download (csend, creseive, ftp, HTTP, link, blink, tftp, CCP, optix)
- record the manager of DNS
- Record FileSubmit
- Sockets are binded on all the ports where the known vulnerabilities (in the form of DialogueFactory) are emulated
- Sockets are binded on all the ports where the known vulnerabilities (in the form of DialogueFactory) are emulated
- Loading of patterns present in 61 known shellcodes
- Be unaware of 17 ranges of IP addresses

- Watch ports ("25", // SMTP, "110", // POP3, "143", // IMAP, "220", // IMAP, "465" // POP3 & SSL, "993", // IMAP & SSL, "995" // POP3 & SSL)

-Bagle	port 2745
-Dameware	port 6129
-Dcom-vuln	ports 135,445,1025
– Vuln-ftp	port 21
-vulnIIS	port 443
-Kuang2	port 17300
-LSASS	port 445
-MSMQ	ports: 2103,2105,2107
-MSDTCD	ports 1025,3372
-Mssql	port 1434
-Mydoom	port 3127
-Netbiosnam	ne port 139
-NetDDE	port 139
-Optixshell	port 3140
-PNP	port 445
-SasserFTPD	ports 5554,1023
-SUb7	port 27347
-UPNP	port 5000
- VERITAS	port 10000
-Wins vuln	port 42
-ASN1	ports: smb:445 iis:80

- > Ignoring 0.0.0.0/255.0.0.0
- > 10.0.0/255.0.0.0
- > 14.0.0.0/255.0.0.0
- > 39.0.0.0/255.0.0.0
- > 127.0.0.0/255.0.0.0
- > 128.0.0.0/255.255.0.0
- > 169.254.0.0/255.255.0.0
- > 172.16.0.0/255.240.0.0
- > 191.255.0.0/255.255.0.0
- > 192.0.0.0/255.255.255.0
- > 192.0.2.0/255.255.255.0
- > 192.88.99.0/255.255.255.0
- > 192.168.0.0/255.255.0.0
- > 198.18.0.0/255.254.0.0
- > 223.255.255.0/255.255.255.0
- > 224.0.0.0/240.0.0.0
- > 240.0.0.0/240.0.0.0

Handling Attacks (1/4)

[O4O52OO6 14:25:15 debug net mgr] Socket TCP (bind) O.O.O.O:O -> O.O.O.O:139 DialogueFactory NetbiosName Factory creates netbiosname dialogues DialogueFactory NETDDE Factory creates netdde dialogues could Accept a Connection

Attempt at connection - > Creation of a « Dialogue » Emulation of a vulnerability Data transmitted per packets to the Dialogues

Handling Attacks (2/4)

lf socket closes

Handling Attacks (3/4)

Some vulns have no pattern used for a first recognition

Direct recognition against shellcode or direct action (Kuang2)

When a vuln Dialogue receives a SCH_DONE Message from a shellcode identifier

- It gives to the corresponding socket the state CL ASSIGN AND DONE
 - In order the other sockets binded on the same port be dropped

Handling Attacks (4/4)

Collection

Files can be submitted to

- Nepenthes manager to collect
- Gotek server performs better but requires DB backend (mysql)
- Norman sandbox for analysis

Logs can be submitted to

- Managers (Prelude) thanks to IDMEF
- Surfnet for web interfacing
- > IRC

Nepenthes Conclusions

Nepenthes is modular, organized around a core

Nepenthes is able to catch new shellcodes on known vulnerabilities

Stored in hexdumps

Nepenthes is able to catch binaries whose shellcode is known
 Stored in binaries

• Statistics are possible by analysing submitted logs

Honeypot and worms

Idea: as seen before, use a honeypot to detect worm (ie. System that connect to honeypot automatically)

Fighting back: launch some counter attack, in order to clean the offending system

• More information

<u>http://www.citi.umich.edu/u/provos/honeyd/msblast.html</u>

http://www.rstack.org/oudot/

In detail: Mblast infection

Analysis of mblast.exe

Using honeypot to fight worm

- 1. The worm connects to the honeypot, on port 135, and launch its exploit
- 2. The worm connects on a remote shell (honeypot, port TCP/4444). Then, the honeypot is able to download the worm code (using TFTP)
- 3. The honeypot know the IP address of the infected host. It is able to launch an attack (or simply connect back to port 4444) and clean or shutdown offending host

France Télécom R&D – Veysset & Butti – June 2006 D82

Honeytokens

(b) honeypot which is not a computer

Used for

- Espionage
- Credit card, ssn monitoring
- bank
- > Spam...

Two main usages Detect information leaking Tracking

Distributed Honeypot

Example : Leurre.com

Project by Eurecom institute The Eurecom Honeypot Project

- <u>http://www.eurecom.fr/~pouget/projects.htm</u>
- http://www.leurrecom.org

Distributed HP (more than 25 countries, 5 continents)

Project launched 4 years ago

Based on "distributed" *honeyd*

Information from *leurre.com*

• Thanks to Marc Dacier from Eurecom institute

• More information: <u>dacier@eurecom.fr</u> ...

See Fabien Pouget & Marc Dacier – Friday 3pm

Extract from a presentation « Applied Computing 2006 » in spain

35 platforms, 25 countries, 5 continents

Europe

Experimental Set Up

Distinct IP Addresses observed: 989,712

of received packets: 41,937,600
of emitted packets: 39,911,933

TCP: 90.93%
 UDP: 0.77%
 ICMP: 5,16 %
 Others: (malformed packets, etc) 3.14%

Observation 3

• All countries host attackers but some countries host more than others.

Attacks by country of origin (Jan 1 2005 until Jan 1 2006)

Observation 4

There is a surprising steady decrease of the number of attacks

Attacks by environment (Jan 1 2005 until Jan 1 2006)

Observation 6

- Some compromised machines are used to scan the whole Internet
- Some compromised machines take advantage of the data collected by the first group to launch attacks only against the vulnerable targets.
 - maintaining black lists of scanners is useless.

The «scanners »: IP sources probing all 3 virtual machines

Vini

(24 months ago)

The *«attackers* »:

IP sources probing only 1 virtual machine

VEIRST

(24 months ago)

Observation 7

• The proportion or attackers vs. scanners has changed twice over the last 24 months.

• Two possible explanations:

- Collected data is shared in a more efficient way and, thus, less scans are required.
- Scans are not done sequentially any more but random scans are instead preferred.

First

Scanners vs. attackers: evolution

Honeyclient

Idea: Honeypot client

> Detect malicious web server, IRC net, P2P net...

Surf the web searching for websites that use browser exploits to install malware on the honeymonkey computer

😂 The Strider HoneyMonkey Project - Mozilla Firefox		
<u>File Edit View Go</u> Bookmarks	Tools Help 🔇 ⊘ 🥥 🖨 📥 Wetp://research.microsoft.com/HoneyMonkey/ 😵 🌾	
💡 honeymonkey - Recherche Goog	le Strider HoneyMonkey Project	8
	Quick Links 🗸 Home Worldwide	<u> </u>
Microsoft Research	Search: All Research Online 🔽	Go
Microsoft Research Home About Microsoft Research Research Areas People Worldwide Labs University Relations News Publications Downloads Conferences and Events Lectures Online Related Web Sites Press Resources Careers	Striber	
Visiting Microsoft Research Contact Us	NEW: "Strider URL Tracer with Typo-Patrol" research prototype available for download Strider HoneyMonkey Exploit Detection	
	 Strider HoneyMonkey is a Microsoft Research project to detect and analyze Web sites hosting malicious code. The intent is to stop attacks that use Web servers to exploit unpatched browser vulnerabilities and install malware on the PCs of unsuspecting Such attacks have become one of the most vexing issues confronting Internet security experts. Strider HoneyMonkey is a protect the Cybersecurity and Systems Management group in Microsoft Research. <u>Understanding HoneyMonkey</u> 	g users.
	 <u>Full research technical report on Strider HoneyMonkey</u> 	
	 MSR Cybersecurity and Systems Management Group 	
	 Academic Presentations Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities, <u>Trust and S</u> <u>Seminars, Information Trust Institute (ITI), University of Illinois at Urbana-Champaingn</u>, October 19, 2005 	ecurity
Strider HoneyMonkeys: Active Client-Side Honeypots for Finding Web Sites That Exploit Browser Vulnerabilities, Usenix		
http://research.microsoft.com/csm/strider/ Proxy: FTR&D M 0 Adblock 🌑 🖄 🖾		. i 📿 🔁

Honeynet project

• Very active organization

http://www.honeynet.org/speaking/index.html

Presentation of the Honeynet project extracted from <u>http://www.honeynet.org/speaking/index.html</u>

How can we defend against an enemy, when we don't even know who the enemy is?

Honeynet: Mission Statement

To learn the tools, tactics, and motives involved in computer and network attacks, and share the lessons learned.

Honeynet: Our Goal

Improve security of Internet at no cost to the public.

- > <u>Awareness</u>: Raise awareness of the threats that exist.
- Information: For those already aware, we teach and inform about the threats.
- Research: We give organizations the capabilities to learn more on their own.

Honeynet: Honeynet Project

- Non-profit (501c3) organization with Board of Directors.
- **•** Funded by sponsors
- Global set of diverse skills and experiences.
- Open Source, share all of our research and findings at no cost to the public.
- Deploy networks around the world to be hacked.
- **Everything we capture is happening in the wild.**
- **We have nothing to sell.**

Honeynet: Honeynet Research Alliance

Starting in 2002, the Alliance is a forum of organizations around the world actively researching, sharing and deploying honeypot technologies.

http://www.honeynet.org/alliance/

Honeynet: Alliance Members

- South Florida Honeynet Project
- **D** Georgia Technical Institute
- Azusa Pacific University
- USMA Honeynet Project
- Pakistan Honeynet Project
- Paladion Networks Honeynet Project (India)
- Internet Systematics Lab Honeynet Project (Greece)
- Honeynet.BR (Brazil)
- UK Honeynet
- French Honeynet Project
- Italian Honeynet Project
- Portugal Honeynet Project
- German Honeynet Project
- Spanish Honeynet Project
- Singapore Honeynet Project
- 🕑 China Honeynet Project

A few word on legal aspects (1/2)

🕑 I am not a lawyer...

...but here are some information (apply to France)

There should be no problem using honeypot

• But you should keep in mind...

Provocation au crimes et délits (art 23L 29/7/1881) (eg Entrapment)
Violation de la correspondance privée du pirate (art 226-15, 226-1 Code Pénal)

> Another problem: compromised honeypot that launch an attack against (you, other networks, competitor networks...)

A few word on legal aspects (2/2)

More information available in...(chapter 8: legal issues...)

http://www.honeynet.org/book/Chp8.pdf

Still many things to do... a very interesting research area

• A new tool to fight back against black hat

Further info

boneynet project web site http://www.honeynet.org/ Honeyd (Niels Provos) http://www.honeyd.org References on honeypot http://www.honeypots.net/ Leurre.com http://www.eurecom.fr/~pouget/projects.htm Honeyblog http://www.honeyblog.org/

Special greetings...

Leurrecom.org

France Télécom R&D – Veysset & Butti – June 2006 D112