Honeypot technologies

2006 First Conference / tutorial

Junes 2006

{Franck.Veysset, Laurent.Butti}@orange-ft.com
Agenda

- Origins and background
- Different kinds of honeypot
 - High interaction honeypots
 - Low interaction honeypots
- Example: honeyd
- Other kinds of honeypot
 - WiFi honeypot
 - Honeypot and worms
 - Honeyclient / honeytoken
 - Distributed honeypot
- Conclusion...
Why Honeypots?

FIRST 2005
- A Distributed Intrusion Alert System, by Chih-Yao Lin, Taiwan National Computer Emergency Response Team, Taiwan
- A National Early Warning Capability Based on a Network of Distributed Honeypots – Detailed Synthesis, by Cristine Hoepers, NBSO/Brazilian CERT, Brazil

FIRST 2006
- Wednesday and Friday sessions
 - The impact of honeynets for CSIRTs
 - Automated Extraction of Threat Signatures from Network Flows
 - A Distributed Intrusion Detection System Based on Passive Sensors
 - Time signatures to detect multi-headed stealthy attack tools
- and probably more presentations where results come from honeypot…
Origins

- The Cuckoo’s Egg, Cliff Stoll
- There be dragons, Steve Bellovin
- Internet Storm Center, SANS
- Honeywall
- The honeynet Project
- An Evening with Berferd, Bill Checwick
The Cuckoo’s egg

Cliff Stoll, 1986

ISBN: 0743411463
Idea: to learn the tools and motives of BH

To learn the tools, tactics, and motives of the blackhat community, and share the lessons learned

know your enemies

- Sun Tzu was a Chinese military tactician who wrote 2500 years ago, 兵法, (The Art of War)

- "know yourself and know your enemy, and of a hundred battles you will have a hundred victories."
Network observatory

Looking at the internet “background noise”

- Usually relies on distributed sensors
- Provided an overview on current threats across the internet

Some examples

- http://www.dshield.org, http://isc.sans.org (SANS), ISC (Internet Storm Center)
- http://xforce.iss.net ISS XForce Alertcon (X-Force™ Threat Analysis Service)
Survival time! (SANS)
Top 10 Target Ports

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Port Number</th>
<th>30 day history</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>epmap</td>
<td>135</td>
<td></td>
<td>DCE endpoint resolution</td>
</tr>
<tr>
<td>nterm</td>
<td>1026</td>
<td></td>
<td>remote_login network_terminal</td>
</tr>
<tr>
<td>icq</td>
<td>1027</td>
<td></td>
<td>icq instant messanger</td>
</tr>
<tr>
<td>ms_sql_m</td>
<td>1434</td>
<td></td>
<td>Microsoft-SQL-Monitor</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>137</td>
<td></td>
<td>NETBIOS Name Service</td>
</tr>
<tr>
<td>microsoft-ds</td>
<td>445</td>
<td></td>
<td>Win2k+ Server Message Block</td>
</tr>
<tr>
<td>dabber</td>
<td>9898</td>
<td></td>
<td>[trojan] Dabber Worm backdoor</td>
</tr>
<tr>
<td>sasser-ftp</td>
<td>5554</td>
<td></td>
<td>[trojan] Sasser Worm FTP Server</td>
</tr>
<tr>
<td>netbios-ssn</td>
<td>139</td>
<td></td>
<td>NETBIOS Session Service</td>
</tr>
</tbody>
</table>
A Darknet is a portion of routed, allocated IP space in which no active services or servers reside.

- It includes one server (packet vacuum)
 - Gathers the packets and flows that enter the Darknet
 - Any packet that enters a Darknet is by its presence aberrant
 - Netflow analysis (and more...)

Example: CAIDA, Team Cymru, Arbor...
Honeypot Principles (1/2)

- Honeypot is not a production system

- Every flow going to (or coming from) this system is suspicious by nature.

- This makes the analysis of collected data much easier.

- The trap must be well done in order to collect useful and interesting data.

- At the same time, the trap must be difficult to recognize by a potential hacker.
Honeypot Principles (2/2)

- The honeypot can be « hidden » amongst production systems
 - This allows to identify easily actions brought against these systems

- The honeypot can be isolated on a DMZ
 - This will allow to unmask « curious people » who are too interested by the equipments on the DMZ

- The honeypot can be implemented on the Intranet
 - Behaviors can be analyzed…

- And why not a honeypot « Wireless / 802.11b » ?

- The system that will be chosen depends on the objectives
Stakes

Pros
- Collected data are on principle interesting
- Few « false positive » / « false negative »
- High value data

Cons
- Incurred risks when using such a system
 - Bounce: a hacker may attack another site from the honeypot
 - Provocation: a hacker may feel « provoked » and « avenge »
- Important resources needed to operate such a system
 - Skills, time
 - But results can be mutualized
Objectives

- In the research field
 - Knowing trends in the attacks domain
 - Knowing one’s enemies
 - Catch next tools (worm…)

- In order to make the environment more secure
 - Detection of new attacks

- In order to get prepared in case of attacks on operational networks

- And in order to learn how to protect oneself
In a nutshell (honeynet project)

- A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource.
- Has no production value, anything going to or from a honeypot is likely a probe, attack or compromise.
- Primary value to most organizations is information.
A honeypot is a trap set to detect or deflect attempts at unauthorized use of information systems.

Generally it consists of a computer, data or a network site that appears to be part of a network but which is actually isolated and protected, and which seems to contain information that would be of value to attackers.
Different family of honeypots

- **Two distinct types**
 - Low interaction
 - And low risk
 - Used to produce statistics on attacks
 - High interaction
 - Usually known as “research”
 - Many possibilities
Low Interaction

- Emulate services, networks & fingerprints
- Log all interaction
- *Honeyd* is widely used to build low interaction HP

![Diagram of low interaction setup]

- Hacker
- Fake service
- Fake OS
- OS
- HD
High Interaction

- Allow full access to services and OS
- Ability to capture “0-day attacks”
- May be risky…
Some honeypot softwares

- **Low interaction HP**
 - BackOfficer Friendly (BOF) – NFR Security
 - KFSensor – KeyFocus Ltd
 - Deception Toolkit (DTK) – Fred Cohen & Associates
 - http://www.all.net/dtk/index.html
 - See http://www.honeypots.net/honeypots/products
BackOfficeFriendly…

Live demo!
Honeyd

- Written by Niels Provos in 2002
- Low interaction virtual HP
- Released under GPL
- v1.5a available at www.honeyd.org

- Simulates boxes on unused IP space
 (with ARPd)
 - Oses
 - Services
 - Network topology
Honeyd – fake services

```
echo "220 intranet ESMTP Sendmail 8.1"
while read data
{
    if data ~ "HELO" then ...
    if data ~ "MAIL FROM" then ...
    ...
}
```
Honeyd – architecture
Honeyd – accounting

Two levels

- **Network packets**
 - Done by Honeyd daemon
 - Information on packet headers (no payload)

```
```

- **Service level**
 - Done in service scripts

```
USER anonymous
PASS Ngpuser@home.com
CWD /
CWD /_vti_pvt/
```
Honeyd – Advanced architecture (1/2)

DNS domain: example.edu

Attacker
10.0.0.5
Default route 10.0.0.1 (cisco_0.example.edu)

Arpd 10.0.0.0/8 (spoofing ARP)

Honeyd 10.0.0.0/8

10.0.2 (honeyd does not manage its own IP)

Virtual Honeypots

Windows 98 10.0.0.x
Windows NT 4.0 Server SP5-SP6 misery (10.0.0.8)
Linux 2.4.16 - 2.4.18 dns1 (10.0.0.4) dns2 (10.0.0.5)
Linux 2.4.16 - 2.4.18 smtp1 (10.0.0.6) smtp2 (10.0.0.7)

Windows NT 4.0 Server SP5-SP6 shining (10.0.1.7)

10.0.1.0/24 Windows 98

10.0.0.2 (honeyd does not manage its own IP)

Windows 98 10.0.0.x
Cisco IOS 11.3 - 12.0(11)
cisco_1 (10.0.1.1)
cisco_0 (10.0.0.1)
cisco_3 (10.0.3.1)
cisco_2 (10.0.2.1)

10.0.3.0/24 Windows 98

Windows NT 4.0 Server SP5-SP6 matrix (10.0.2.9)

10.0.2.0/24 Windows 98
Honeyd – Advanced architecture (2/2)

Honeyd.conf

```conf
## Honeyd configuration file ##
### Default computers
create default
set default personality "Windows 98"
set default default tcp action reset
set default default udp action reset
add default tcp port 139 open
add default tcp port 137 open
add default udp port 137 open
add default udp port 135 open
set default uptime 398976
### Windows computers
create windows
set windows personality "Windows NT 4.0 Server SP5-SP6"
set windows default tcp action reset
set windows default udp action reset
add windows tcp port 80 "perl scripts/iis-0.95/iisemul8.pl"
add windows tcp port 139 open
add windows tcp port 137 open
add windows udp port 137 open
add windows udp port 135 open
set windows uptime 3284460
bind 10.0.0.8 windows
bind 10.0.1.9 windows
bind 10.0.2.10 windows
### Linux 2.4.x computer
create dns_server
set dns_server personality "Linux 2.4.7 (X86)"
set dns_server default tcp action reset
set dns_server default udp action reset
add dns_server udp port 53 "perl scripts/HoneyDNS.pl -udp"
add dns_server tcp port 21 "sh scripts/ftp.sh"
set dns_server uptime 3284460
bind 10.0.0.4 dns_server
bind 10.0.0.5 dns_server
### Linux 2.4.x computer
create smtp_server
set smtp_server personality "Linux 2.4.7 (X86)"
set smtp_server default tcp action reset
set smtp_server default udp action reset
add smtp_server tcp port 110 "sh scripts/pop3.sh"
add smtp_server tcp port 25 "sh scripts/smtp.sh"
add smtp_server tcp port 21 "sh scripts/ftp.sh"
add smtp_server tcp port 23 "perl scripts/router-telnet.pl"
set smtp_server uptime 3284460
bind 10.0.0.6 smtp_server
bind 10.0.0.7 smtp_server
```

Cisco router
create router
set router personality "Cisco IOS 11.3 - 12.0(11)"
set router default tcp action reset
set router default udp action reset
add router tcp port 23 /usr/bin/perl scripts/router-telnet.pl
set router uid 32767 gid 32767
set router uptime 1327690
bind 10.0.0.1 router
bind 10.0.1.1 router
bind 10.0.2.1 router
bind 10.0.3.1 router
Routing configuration
route entry 10.0.0.1
route 10.0.0.1 link 10.0.0.0/24
route 10.0.0.1 add net 10.0.1.0/24 10.0.1.1 latency 55ms loss 0.1
route 10.0.0.1 add net 10.0.2.0/24 10.0.2.1 latency 15ms loss 0.01
route 10.0.0.1 add net 10.0.3.0/24 10.0.3.1 latency 105ms loss 0.2
route 10.0.1.1 link 10.0.1.0/24
route 10.0.2.1 link 10.0.2.0/24
route 10.0.3.1 link 10.0.3.0/24
```
Honeyd

Live demo!
Honeyd – advanced features

- Subsystem virtualization
  - Run real UNIX applications under virtual Honeyd IP addresses: web servers, ftp servers, etc...

- Internal Web server for easy statistics...

- Management console that allows dynamic change on Honeyd configuration while Honeyd is running

- Dynamic templates
  - Allows the configuration of a host to adapt depending on the operating system of the remote host, the time of day, the source IP address, etc.

- Tarpit

- Passive fingerprintings (p0f)
Feedback: Sasser detection (1/2)

- Sasser was seen for the first time on Saturday, May 1st 2004 from 7:50 pm (FTR&D Intranet)
- Number of hits per day
Sasser detection (2/2)

- Maximum of activity on Sunday, May 2nd

- Thousands of hits on May 2nd, 3rd and 4th
  - This does not mean thousands of machines were infected
  - In fact, 387 unique IP addresses were found (FTR&D site)

- The worm was quickly brought down: 2 working days
  - Monday and Tuesday following the infection
Honeyd: limitation

- As a « low interaction » honeypot, there are some limitations
  - Difficult to emulate complex (binaries) protocols
  - It is possible to « fingerprint » honeyd, thus identify the honeypot

- Stability issues
  - Under heavy load…

- Security issues
  - ?
High interaction HP

- Lots of work in this area

- Different generations
  - Gen1  1999-2002
  - Gen2  2002-2004
  - Gen3  2005-…
  - ...

- Towards honeynet (networks of honeypots)
Key points

- **Strong needs to take care of incoming and outgoing traffic**

- **Data Control**
  - Filter outgoing packets to stop further attacks

- **Data capture**
  - Log every packet that enters and leaves honeypot
No “Data Control”
Data Control enabled
GEN I honeynet
GEN I honeynet

- Controls outbound packets by passing through firewall and router
- Router somehow « hide » the firewall
- Data control is performed by the firewall
  - Firewall keeps track of number of outbound connections
  - The more outbound activity allowed, the more can be learned
  - Might be risky!
- Data capture
  - The IDS gather all the information
  - All systems export their logs to remote syslog server
GEN I: analysis

The first « honeypot » solution

Data Control is quite hard to perform
  › Need to filter on outbound activity (counter?)
  › Hackers can detect the trick
  › Difficult to fine tune

Data Capture is limited
  › Only IDS and Syslog

Introducing GEN II architectures
Honeynet - GenII
2nd Generation Honeynet - Version 0.2

Honeynet Sensor Diagram

Sensor consists of a single system functioning as both Data Control and Data Capture requirements.

It consists of three interfaces. Two of the interfaces are layer2 (outlined in RED), acting as a switch which segments a production network. The third interface has an IP stack for remote connectivity. This is for both Data Collection and administration.

**Interface A:** Layer2 interface segmenting production network.

**Interface B:** Layer 2 interface segmenting Honeynet network.

**Interface C:** Layer3 interface VPN connection to collection point.
Gen II analysis (1/2)

- Gateway works at layer 2 (bridge mode)
  - Very stealthy

- Administration is performed using C interface

- Data Control & Data capture are done by the gateway (honeynet sensor)
Gen II analysis (2/2)

- **Advanced data control functionalities**
  - IDS/IPS functionalities
  - Relies on SNORT INLINE

- **Advanced data capture functionalities**
  - Honeywall gathers firewall and snort logs
  - Sebek runs on all honeypot
  - Honeywall collects sebek logs
Snort-Inline Drop Rule

**Kernel Space**
- `iptables-1.2.7a`
- `ip_queue`

**User Space**
- **Honeypot**
  - Snort Rules = Drop
  - `snort -Q -c /snort.conf`
- **Data Control**
  - Snort-Inline
  - `modprobe ip_queue`
- **DROP**
  - `iptables -A OUTPUT -p icmp -j QUEUE`

Management
Snort-Inline Drop Rule

**Exemple: DNS attack**

```snort
drop tcp $HOME_NET any $EXTERNAL_NET 53
(msg:"DNS EXPLOIT named";flags: A+;
content:"|CD80 E8D7 FFFFFF|/bin/sh";)
```
Snort-Inline Replace Mode

Data Control
Snort-Inline

User Space
Snort-Inline

Kernel Space

Iptables-1.2.7a

Ip_queue

modprobe ip_queue

iptables -A OUTPUT -p icmp -j QUEUE

Honeypot

Snort Rules = Replace

/bin/sh

/ben/sh

Internet

Management
Snort-Inline Replace Rule

Exemple: DNS attack
Can be very “stealth”

alert tcp $HOME_NET any -> $EXTERNAL_NET 53
(msg:"DNS EXPLOIT named";flags: A+;
content:"|CD80 E8D7 FFFFFF|/bin/sh";
replace:"|0000 E8D7 FFFFFF|/ben/sh";)

Is this a known attack?

Yes, this is an attack.
Replace attack code with harmless code: `/bin/sh`
Data Capture: Sebek

- Tool developed by the honeynet project
- Very useful for “data capture”
  - Hidden kernel module that captures all activity
  - Dumps activity to the network
  - Attackers cannot sniff any traffic based on magic number and destination port

- http://www.honeynet.org/tools/sebek/
Sebek Diagram
Sebek: Data capture

- The Sebek kernel module collects data passing through the `read()` system call
  - For example, this captures the intruder’s ssh keystrokes and recovers scp file transfers.

- Sebek client relies on stealth techniques to hide. This also harden its detection. First Sebek version was relying on “the adore rootkit” to hide the sebek files and processes from the attacker
Sebek client: Sys_Read hooking
Sebek client

![Diagram of Sebek client system]

- **Linux 2.4.x Kernel**
  - Socket Interface
  - TCP/IP Stack
  - Netfilter
  - Network Device Driver

- **Sebek Kernel Module**
  - Data logger
  - Transmitter
  - Packet Generator

- **Local Ethernet**
<table>
<thead>
<tr>
<th>Details</th>
<th>IP</th>
<th>PID</th>
<th>UID</th>
<th>COMMAND</th>
<th>PID</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1318</td>
<td>0</td>
<td>sh</td>
<td>0</td>
<td>[2003-07-23 10:44:55]# is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:54]# less messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:52]# cd /etc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:51]# makeit ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:57]# is</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1323</td>
<td>0</td>
<td>less</td>
<td>3</td>
<td>[2003-07-23 10:44:35]# wxc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:09]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1321</td>
<td>0</td>
<td>w</td>
<td>6</td>
<td>[2003-07-23 10:44:09]# who</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:35]# w</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:44]# /malware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2003-07-23 10:44:52]# /mal</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1312</td>
<td>500</td>
<td>w</td>
<td>6</td>
<td>[2003-07-23 10:44:35]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1304</td>
<td>500</td>
<td>tput</td>
<td>3</td>
<td>[2003-07-23 10:44:24]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1307</td>
<td>500</td>
<td>tput</td>
<td>3</td>
<td>[2003-07-23 10:44:24]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1302</td>
<td>500</td>
<td>tput</td>
<td>3</td>
<td>[2003-07-23 10:44:24]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1252</td>
<td>0</td>
<td>mingetty</td>
<td>0</td>
<td>[2003-07-23 10:44:16]# who  [8]  who</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1263</td>
<td>0</td>
<td>sshd</td>
<td>7</td>
<td>[2003-07-23 10:44:07]# wxc</td>
</tr>
<tr>
<td></td>
<td>10.0.1.13</td>
<td>1263</td>
<td>0</td>
<td>sshd</td>
<td>3</td>
<td>[2003-07-23 10:44:02]# who  [8]  who</td>
</tr>
</tbody>
</table>
Sebek network
Sebek... what’s next

Lots of work on Sebek and “anti sebek” techniques
  - See Fake Phrack mag #62 for example
  - Kernel module detection
  - Sebek

New research on the topic
  - EuSec 06: Xebek... (more on this later)
Other HP usages

- WiFi Honeypots
- Virtual honeypots
- Honeypots and Worms
- Distributed Honeypots
- Honeyclients
- Honeypot farms
- Honeynet project
- Legal issues
Wireless Honeypots

Wireless technologies are more and more available
- In corporate networks
- In home networks
- In hot spots
- ...

New technologies such as VoIP/WLAN, UMA (Unlicensed Mobile Access)… are new ways to circumvent your security policy

Seems that wireless honeypot could help us in evaluating these new risks
Wireless Honeypots

Today, most corporate wireless access are still based on IPsec tunneling
  - Implies that Wi-Fi networks are using « Open » mode

Two options for a « Wireless Honeypot »
  - A classic option is a wired honeypot near your IPsec gateway!
  - Another option is a fully featured virtual network emulated reachable from an open wireless access point
Wireless Honeypot?

Goals
- Statistics on « Wardriving »
- Knowledge and understanding of hackers’ motivations
  - « intelligence » aspects
- Knowledge of new technologies and tools
  - Wi-Fi hacker Toolbox

Pros
- Looks like a typical Wi-Fi network
- Level 2 technology: detection of all customers equipments looking for Wi-Fi networks (even without connection)
Wireless Honeypot

- Based on a real AP, and on a *honeyd* server emulating a full network
- All traffic is monitored and captured
- Can fool hacker and wardriver
Wireless Honeypot

After some experiments…

- Most of the connection are just looking for internet access (http://www.google.fr)

- More interesting, many clients do some “automatic” connections (ex: under Windows XP, auto_connect)

- This can be very dangerous (information leak, hole on the system…)
Thanks to Tino H.

His help made the demo possible…
  - One of our laptop died in the plane
New “architecture” to build honeynet

Ideas

- Run everything on a single computer
- Relies on virtualization technologies
  - VMware
  - Xen
  - UML (User Mode Linux)
  - …
Virtual Honeypots (2/3)

 Pros

 › Reduced cost
 › Easy to maintain / repair
 › Portable (honeynet laptop?)

 Cons

 › Single point of failure
 › Not everything is possible (Cisco on Intel?)
 › Security (strong compartmentalization?)
 › Detection? Very difficult to hide…
Virtual Honeypots (3/3)

More information at

New tools available for virtual honeypots 😊
- See “Xebek” at “EuSecWest/Core06”
- See “VMware fingerprinting counter measures”

New tools against “virtual honeypot” 😞
- VMware fingerprinting tools (cf Kostya’s patches)
- And many more (dtdumper…)
Automated Malware Collection

Automated malware collection is a new hyped technique

Most well-known tools are
- Mwcollect
- Nepenthes
- Mwcollect and Nepenthes fusion (February, 2006)

Lots of other techniques are possible
- PCAP capture of compromised hosts for example
Nepenthes Operation

- Nepenthes is a medium interaction honeypot
  - It emulates known vulnerabilities
  - It catches known shellcodes
  - It interprets the shellcode actions
  - It emulates the actions
    - Bind a shell, parses URLs...

- Should not be compromised if no security vulnerabilities (coded in C++) ;-) 

- But can be easily detected, that’s not its purpose!
Nepenthes Loading

Loading of the configuration

- Examine the modules to be charged (vuln, shellcodes, download, submit, log)
- Record the handlers of download for each supported protocol of download (csend, creseive, ftp, HTTP, link, blink, tftp, CCP, optix)
- Record the manager of DNS
- Record FileSubmit
- Sockets are binded on all the ports where the known vulnerabilities (in the form of DialogueFactory) are emulated
- Sockets are binded on all the ports where the known vulnerabilities (in the form of DialogueFactory) are emulated
- Loading of patterns present in 61 known shellcodes
- Be unaware of 17 ranges of IP addresses
Watch ports (SMTP, POP3, IMAP, IMAP & SSL, POP3 & SSL)!

- Bagle port 2745
- Dameware port 6129
- Dcom-vuln ports 135,445,1025
- Vuln-ftp port 21
- vulnIIS port 443
- Kuang2 port 17300
- LSASS port 445
- MSMQ ports: 2103,2105,2107
- MSDTCD ports 1025,3372
- Mssql port 1434
- Mydoom port 3127
- Netbiosname port 139
- NetDDE port 139
- Optixshell port 3140
- PNP port 445
- SasserFTPD ports 5554,1023
- SUB7 port 27347
- UPNP port 5000
- VERITAS port 10000
- Wins vuln port 42
- ASN1 ports: smb:445 iis:80

Ignoring 0.0.0.0/255.0.0.0
10.0.0.0/255.0.0.0
14.0.0.0/255.0.0.0
39.0.0.0/255.0.0.0
127.0.0.0/255.0.0.0
128.0.0.0/255.255.0.0
169.254.0.0/255.255.0.0
172.16.0.0/255.240.0.0
191.255.0.0/255.255.0.0
192.0.0.0/255.255.255.0
192.0.2.0/255.255.255.0
192.88.99.0/255.255.255.0
192.168.0.0/255.255.0.0
198.18.0.0/255.254.0.0
223.255.255.0/255.255.255.0
224.0.0.0/240.0.0.0
240.0.0.0/240.0.0.0
Handling Attacks (1/4)

- Attempt at connection -> Creation of a « Dialogue »
  - Emulation of a vulnerability
- Data transmitted per packets to the Dialogues
Handling Attacks (2/4)

1. **Socket receives packet**
   - If socket closes, yes
   - No more packets
   - No && no other dialogue

2. **Vuln-Dialogue (== pattern?)**
   - If && no other dialogue, yes
   - Gives

3. **Comparison with all shellcodes patterns**
   - Comparison with all shellcodes patterns
   - Last Stage
   - Close
   - Hexdumps

   - Download
   - Switch off other dialogues on same port

If socket closes
Handling Attacks (3/4)

- Some vulns have no pattern used for a first recognition
  - Direct recognition against shellcode or direct action (Kuang2)

- When a vuln Dialogue receives a SCH_DONE Message from a shellcode identifier
  - It gives to the corresponding socket the state CL.Assign_AND_DONE
    - In order the other sockets binded on the same port be dropped
Handling Attacks (4/4)

Downloads binary

If URL still OK

DownloadManager

Giving data (url, host, port)

Creation of a WinNT shell Dialogue

Match (xor’d if needed)

Comparison with all known shellcodes
Collection

Files can be submitted to

- Nepenthes manager to collect
- Gotek server performs better but requires DB backend (mysql)
- Norman sandbox for analysis

Logs can be submitted to

- Managers (Prelude) thanks to IDMEF
- Surfnet for web interfacing
- IRC
Nepenthes Conclusions

- **Nepenthes is modular, organized around a core**
- **Nepenthes is able to catch new shellcodes on known vulnerabilities**
  - Stored in hexdumps
- **Nepenthes is able to catch binaries whose shellcode is known**
  - Stored in binaries
- **Statistics are possible by analysing submitted logs**
Honeypot and worms

- Idea: as seen before, use a honeypot to detect worm (i.e. System that connect to honeypot automatically)

- Fighting back: launch some counter attack, in order to clean the offending system

- More information
  - [http://www.citi.umich.edu/u/provos/honeyd/msblast.html](http://www.citi.umich.edu/u/provos/honeyd/msblast.html)
  - [http://www.rstack.org/oudot/](http://www.rstack.org/oudot/)
In detail: Mblast infection
Using honeypot to fight worm

1. The worm connects to the honeypot, on port 135, and launch its exploit

2. The worm connects on a remote shell (honeypot, port TCP/4444). Then, the honeypot is able to download the worm code (using TFTP)

3. The honeypot know the IP address of the infected host. It is able to launch an attack (or simply connect back to port 4444) and clean or shutdown offending host
Honeytokens

- honeypot which is not a computer

- Used for
  - Espionage
  - Credit card, ssn monitoring
  - bank
  - Spam...

- Two main usages
  - Detect information leaking
  - Tracking
Distributed Honeypot
Example: Leurre.com

- Project by Eurecom institute
  - The Eurecom Honeypot Project
    - http://www.eurecom.fr/~pouget/projects.htm
    - http://www.leurrecom.org

- Distributed HP (more than 25 countries, 5 continents)

- Project launched 4 years ago

- Based on “distributed” honeyd
Information from *leurre.com*

- Thanks to Marc Dacier from Eurecom institute
- More information: dacier@eurecom.fr ...
- See Fabien Pouget & Marc Dacier – Friday 3pm
- Extract from a presentation « Applied Computing 2006 » in spain
35 platforms, 25 countries, 5 continents
In Europe …
Experimental Set Up

- **Internet**
- **Firewall**
- **Observer (tcpdump)**

System Configuration:
- **Mach0**: Windows 98 Workstation
- **Mach1**: Windows NT (ftp + web server)
- **Mach2**: Redhat 7.3 (ftp server)
Big Picture

- Distinct IP Addresses observed: 989,712
- # of received packets: 41,937,600
- # of emitted packets: 39,911,933
- TCP: 90.93%
- UDP: 0.77%
- ICMP: 5.16%
- Others: (malformed packets, etc) 3.14%
Observation 3

All countries host attackers but some countries host more than others.
Attacks by country of origin
(Jan 1 2005 until Jan 1 2006)
Observation 4

There is a surprising steady decrease of the number of attacks
Attacks by environment
(Jan 1 2005 until Jan 1 2006)
Observation 6

- Some compromised machines are used to scan the whole Internet
- Some compromised machines take advantage of the data collected by the first group to launch attacks only against the vulnerable targets.
  - maintaining black lists of scanners is useless.
The «scanners »:
IP sources probing all 3 virtual machines

(24 months ago)
The «attackers»:
IP sources probing only 1 virtual machine
(24 months ago)
Observation 7

- The proportion of attackers vs. scanners has changed twice over the last 24 months.

- Two possible explanations:
  - Collected data is shared in a more efficient way and, thus, less scans are required.
  - Scans are not done sequentially any more but random scans are instead preferred.
Scanners vs. attackers: evolution
Honeyclient

Idea: Honeypot client

- Detect malicious web server, IRC net, P2P net...

- Surf the web searching for websites that use browser exploits to install malware on the honeymonkey computer
Strider HoneyMonkey Exploit Detection

- Strider HoneyMonkey is a Microsoft Research project to detect and analyze Web sites hosting malicious code. The intent is to help stop attacks that use Web servers to exploit unpatched browser vulnerabilities and install malware on the PCs of unsuspecting users. Such attacks have become one of the most vexing issues confronting Internet security experts. Strider HoneyMonkey is a project of the Cybersecurity and Systems Management group in Microsoft Research.
  - Understanding HoneyMonkey
  - Full research technical report on Strider HoneyMonkey
  - MSR Cybersecurity and Systems Management Group

- Academic Presentations
  - Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities, Trust and Security Seminars, Information Trust Institute (ITI), University of Illinois at Urbana-Champaign, October 19, 2005
  - Strider HoneyMonkeys: Active Client-Side Honeypots for Finding Web Sites That Exploit Browser Vulnerabilities, Userix
Honeynet project

- **Very active organization**
  - [http://www.honeynet.org/speaking/index.html](http://www.honeynet.org/speaking/index.html)

- **Presentation of the Honeynet project extracted from**
  - [http://www.honeynet.org/speaking/index.html](http://www.honeynet.org/speaking/index.html)
Honeynet: Problem

*How can we defend against an enemy, when we don’t even know who the enemy is?*
Honeynet: Mission Statement

To learn the tools, tactics, and motives involved in computer and network attacks, and share the lessons learned.
Honeynet: Our Goal

Improve security of Internet at no cost to the public.

- **Awareness:** Raise awareness of the threats that exist.
- **Information:** For those already aware, we teach and inform about the threats.
- **Research:** We give organizations the capabilities to learn more on their own.
Honeynet: Honeynet Project

- Non-profit (501c3) organization with Board of Directors.
- Funded by sponsors
- Global set of diverse skills and experiences.
- Open Source, share all of our research and findings at no cost to the public.
- Deploy networks around the world to be hacked.
- Everything we capture is happening in the wild.
- We have nothing to sell.
Honeynet: Honeynet Research Alliance

Starting in 2002, the Alliance is a forum of organizations around the world actively researching, sharing and deploying honeypot technologies.

http://www.honeynet.org/alliance/
Honeynet: Alliance Members

- South Florida Honeynet Project
- Georgia Technical Institute
- Azusa Pacific University
- USMA Honeynet Project
- Pakistan Honeynet Project
- Paladion Networks Honeynet Project (India)
- Internet Systematics Lab Honeynet Project (Greece)
- Honeynet.BR (Brazil)
- UK Honeynet
- French Honeynet Project
- Italian Honeynet Project
- Portugal Honeynet Project
- German Honeynet Project
- Spanish Honeynet Project
- Singapore Honeynet Project
- China Honeynet Project

As it (September 05)
A few word on legal aspects (1/2)

- I am not a lawyer…
  - …but here are some information (apply to France)

- There should be no problem using honeypot

- But you should keep in mind…
  - Provocation au crimes et délits (art 23L 29/7/1881) (eg Entrapment)
  - Violation de la correspondance privée du pirate (art 226-15, 226-1 Code Pénal)

  - Another problem: compromised honeypot that launch an attack against (you, other networks, competitor networks…)

D108
A few word on legal aspects (2/2)

More information available in…
(chapter 8: legal issues…)

Conclusions

- Very attractive domain
- Still many things to do... a very interesting research area
- A new tool to fight back against black hat
Further info

- **honeynet project web site**
  - [http://www.honeynet.org/](http://www.honeynet.org/)

- **Honeyd (Niels Provos)**
  - [http://www.honeyd.org](http://www.honeyd.org)

- **References on honeypot**
  - [http://www.honeypots.net/](http://www.honeypots.net/)

- **Leurre.com**
  - [http://www.eurecom.fr/~pouget/projects.htm](http://www.eurecom.fr/~pouget/projects.htm)

- **Honeyblog**
Special greetings…

The Honeynet Project

French Honeynet Project

Leurrecom.org