
Worm Poisoning Technology and Application
 Cui Xiang, Zhou Yonglin, Zou Xin, Wu Bing
National Computer network Emergency Response technical

 Team Coordination Center of China(CNCERT/CC)
No.A3 Yumin Road, Chaoyang District, Beijing 100029, China

 cuix@cert.org.cn

Abstract

In this paper, the concept of Worm Poisoning and PoisonWorm are
presented and the feasibility of Worm Poisoning is emphatically testified.
A propagation model called SIRP model and the side-effect to network
traffic of PoisonWorm are given and compared to the classical epidemic
Kermack-Mckendrick model. We highlight the feasibility and necessity
of PoisonWorm and its application in active defense system against
Internet worms. Also the technology of P2P-based unknown worm
detection and signature verification is briefly introduced.

Keywords

Worm, Worm Poisoning, PoisonWorm, SIPR, Detection, DHT, P2P

1. Introduction

Current strategy against Internet worms is similar to capturing mouse
using mousetrap, that is, to clip the occasionally passing mouse and
never release until it dies. However, this strategy is less effective than
that of spreading pest control chemicals to cause a plague among
cockroach group. For infected cockroach, we don’t expect it dead at
once. We hope it goes back nest and infects others, by which way can
kill pests at an exponential rate.

The theory of Worm Poisoning is similar with pest-toxicant production
technics. The PoisonWorm functions like the pest-toxicant and the
poisoned worm is like the infected pest then.

2．The Concepts of Worm Poisoning and PoisonWorm

Worm Poisoning (also called Worm Spoofing) is a new-invented
technology for worm containment. It tricks malicious worms to spread
irrelevant file or code by their own mechanisms. The worm which
poisons others and propagates by the poisoned worms is called
PoisonWorm.

So PoisonWorm is a special worm with active spread motivation, but
without self-propagating capability. While it can obtain spread ability

when some other malicious worms break out. It will reduce the
negative influence of the malicious worm gradually, and won’t cause
extra burden to the Internet or its host.

3．The basic principle of PoisonWorm

Usually, PoisonWorm is latent in the host. When it detects malicious
worms, it will try to trick the worm to spread PoisonWorm file. If
there’re N worms in the host, the spread speed and the number of
infected victims of PoisonWorm are the union of the N worms.

4．The feasibility of Worm Poisoning technology

There’re various kinds and spread mechanism of worms. Whether or
not the commonness of worms can be extracted is the issue.

Firstly, PoisonWorm would not carry a signature library like current AV
softwares, big size file is not easy to spread. It also does not limit to
poison the fast scanning worm(most of unknown worm detection
technology particularly aims to fast scanning worm).

Worm may spread using multi-vectors such as vulnerability、backdoor、
e-mail、cracking simple password、IM and P2P etc. There isn’t any
commonness in the spread mechanism. However, the residence
mechanism of worm in the victim host has something in common. The
commonness, this paper concerned, is different from the usual
anti-virus (which is according to the virus behavior, like API function,
executive order and so on) detection technology.

Worm always resides in the compromised victim in order to make itself
executed when the OS restarts. It generally follows the steps below:

1). Get its path by calling the ‘GetModuleFileName’ API;
2). Get system or windows directory path by calling the

‘GetSymtemDirectory’ or ‘GetWindowsDirectory’ API;
3). Link system path and worm name to establish the full path by

calling ‘lstrcat’ API;
4). Copy itself to the full path by calling ‘CopyFile’ API;
5). Modify the Registry or other AutoStart file, which may enable

the autorun ability;
6). Begin to spread.

This is the general procedure after worm executed. PoisonWorm makes
use of the first step which worm calls GetModuleFileName to get
self-path. The purpose of calling GetModuleFileName is to return the
path of the running worm process. PoisonWorm hooks the API to always
return PoisonWorm’s file path by modifying the address space of the
poisoned worm’s process. So there is no influence on other normal

processes! After the malicious worm calls the API, it will get
PoisonWorm’s path and then copy PoisonWorm to the destination path
and makes PoisonWorm autorun.The most importance is that the
malicious worm will spread PoisonWorm instead of itself from now. The
following figure will show what PoisonWorm will do:

Worm PoisonWorm

 Call GetModuleFileName to get self path Hook GetModuleFile API
and make the API always
rerurn the path of
PoisonWorm(only hook
in the worm process)

Worm copy PoisonWorm
instead of itself to system
path for the following
spread.

Call GetSystemDirectory to get system path

Call lstrcat to make full path

Call CopyFile,copy to system path

PoisonWorm is effective to the following type of worms:

3.1 Exploiting Worm

The MSBlaster worm is a typical buffer overflow worm, which broke out
at Aug. 2003. its executive procedures are shown below:

1) get self path by calling GetModuleFileName. However, it doesn’t
try to obtain the system path or copy itself to the system directory.
2) when exploiting remote system successfully, the shellcode binds
a cmd shell in the remote system, open tcp 4444 port and listens.
MSBlaster worm openes a tftp server in local system(infection
source) and listen on udp 69 port.
3) send tftp –i localip GET msblast.exe” string as a cmd to remote
tcp 4444 port.
4) remote system runs the tftp command and connects back to the
tftp server running in the infection source;
5) the tftp server will transfer the MSBlaster file to the remote
system.

Because PoisonWorm has hooked GetModuleFileName API, so
MSBlaster will transfer PoisonWorm to remote instead itself. Now we
have proved MSBlaster spreads PoisinWorm using its own spread
mechanism. Similarly, it works on Nimda、Welchia、Sasser etc, by this
mechanism.

3.2 E-Mail worm

For the example of Mydoom and Beagle which broke out in 2004:

1) get self path by calling GetModuleFileName. Copy itself to system
path and save the returned path by GetModuleFileName to a global
string variable e.g. G;
2) open the file G and encode the file for the purpose of spread as an
email attachment;
3) search email addresses, query for the MX record of DNS to get the
SMTP Server. Send the email containing the worm attachment to the
SMTP Server;

Because PoisonWorm has hooked GetModuleFileName API, so Mydoom
and Beagle will encode PoisonWorm and send it to victims via email
attachment.

3.3 Worms that using rootkit or cracking password are similar

3.4 IM-based worms are similar to E-Mail Worm.

3.5 P2P-based worms

This type of worms call GetModuleFileName to get self path, then copy
itself to the shared directory of P2P software such as Kazaa. Actually,
they are more easy than other worms.

3.6 Memory-Residence Worm

This type of worms don’t need to call GetModuleFileName API because
they have no corresponding file on the hard disk. They just exist in the
RAM. In this case, PoisonWorm won’t work. But we can make use of
PoisonWorm’s extended attribute to contain them.

3.7 Packed worm
Many worms with file carrier are packed using packing software such as
UPX. Thus they can not only avoid infected by normal virus but also
shrink in size.

PoisonWorm is also effective to packed worm because it dose not
infects worms in File, but in memory.

GetModuleFileName is an export function of Kernel32.dll. Kernel32.dll
is loaded by OS at the early boot stage (because many system services
depend on the functions in Kernel32.dll). Other processes using the API
by sharing the loaded Kernel32.dll. The address of the API won’t
change before or after the packed worms remove their package.
PoisonWorm modifies the GetModuleFileName API in the memory space
of the packed worm. So the file changing of packed worm does no
matter.

Now we have proved PoisonWorm can poison all kinds of worms except
Memory-Residence worm. The poisoned worms use their own spread
mechanism but to spread the file of PoisonWorm, not poisoned worm

itself.

Of course, we can use other technology to poison, for example, reusing
the port, which used to transport file such as UDP 69 port of MSBlaster
and TCP 5554 port of sasser worm. Thus, when these worms’ remote
shellcode connect back to download file, PoisonWorm accepts the
connection and transports itself to the remote victim.

The next issue is how PoisonWorm detect the worms to poison?

PoisonWorm is not AV software. So it can only pay attention to
wide-spread worms. What PoisonWorm tries to save is not the single
infected system but the whole Internet.

For the known wide-spread worms, PoisonWorm recognizes them by
filename and path, file or network signature. These signatures and
policies are distributed to PoisonWorm via plugins by PoisonWorm
Command and Control Center which consists of security expertise and
servers.

For the unknown worms(perhaps exist and open to the public for a long
time but PoisonWorm doesn’t have its signature), PoisonWorm can use
existing technology such as AutoGraph[12],EarlyBird[8] 、

HoneyComb[11]、NetBait[13]、DSC[24] to discover them. it can also
use “DHT-Based UNKNOWN-WORM Detection and Signature
Verification” to accelerate the speed of detection. This will be discussed
below.

After finding a worm, PoisonWorm terminates the worm process and
moves it to a new path. Then it runs the worm process in Suspend mode
and use QueueUserAPC to write a piece of “preferential executing” code.
When worm process resumes to run, the written code executes firstly.
It modifies the address of GetModuleFileName in the worm process in
order to make GetModuleFileName always return the path of
PoisonWorm. Thanks to the WriteCopy attribute, it won’t affect any
other normal processes.

Summarizing above, Worm Poisoning is effective for majority worms.
CodeRed、Slammer、Witty have no file carrier, but can be controlled and
isolated after PoisonWorm finds them.

4. Initialization of PoisonWorm

PoisonWorm can firstly spread using worms captured by honeypots. An
unpatched windows 2000 system will be infected by malware in 25
mins on average[16] after connected to Internet. By several honeypots,
PoisonWorm can reach many hosts which infected by active worms and
bots.

After a short period, PoisonWorm can spread in a very large range of
Internet. These PoisonWorms have the ability to find new worms and
receive control commands.

5．The extend attribute of PoisonWorm

In order to serve “Worm Active Defence System”, PoisonWorm must
add some extended attribute like below:

5.1 Controllable

The meaning and aim of PoisonWorm is not to kill particular worm, but
to exist for a long time as a part of Worm Active Defence System. So it
must be controlled safely. ”MD5+TimeStamp”[17] is an effective way to
solve the problem. Every PoisonWorm will carry a hard-coded and same
MD5 hash. When receiving a command such as updating signature, it
calculates the hash of the command header and compare with its. If
they match, it will accept and execute the following command. The
command will instruct PoisonWorm what to execute, what functions to
add or what new signature to update etc. To avoid the command reused
by attacker by sniffer, PoisonWorm checks the TimeStamp each time.
Thus one command can and only can be executed for one time.
Furthermore, a new MD5 hash is embedded in the command for next
time use. PoisonWorm must replace the old MD5 with the new obtained
one everytime.

Of course, we can use other way like public/private key to control:
every PoisonWorm carries a public key. PoisonWorm controller has the
corresponding private key. PoisonWorm only accepts command signed
by the private key.The shortcoming is that it needs too much code and
work. Furthermore, if private key is missed, it’s very dangerous.

PoisonWorm must support plugin, so it can add new function and
remove unnecessary function just like some well-designed bots.

5.2 Detecting unknown worm speedy and precisely by
DHT-Based technology

PoisonWorm shouldn’t have central control point. The PoisonWorm uses
P2P network architecture and DHT(Distribute Hash Table) to query
information. To improve the speed and precision of unknown worm
detection, one PoisonWorm must communicate with others.

In the article, ”DHT-Based UNKNOWN-WORM Detection and Signature
Verification” method is addressed to improve the coordination policy of
Earlybird and Autograph:

1) PoisonWorm uses EarlyBird or DSC to find suspicious flow, uses
Autograph to create signature. PoisonWorm also find suspicious file by

heuristic technology (i.e. topology worm can’t be detect by EarlyBird
style method). All the unknown worm detection technology is not 100%
reliable, PoisonWorm must verify the result. PoisonWorm calculates the
hash of the signature or the file as the Object to query.

2) Some P2P software use DHT to find particular files. We apply this
idea to worm detection. In order to verify whether the signature and
suspicious file appear in a single host or widely in Internet, PoisonWorm
sends queries to it’s peer PoisonWorms. The queried object is the hash
of signature or suspicious file. This action is just like P2P software to
find particular file name. If most of peer PoisonWorms havn’t the object,
perhaps it’s a scan or spam behavior of local host. Strictly, every
PoisonWorm should sends more than one query out because spread of
worm need time interval. If the query results increase just like the
same characteristic of worm propagation, the probability of a
wide-spread worm outbreak is very large. This idea eliminates the
influence of background traffic noise greatly.

5.3 Robustness
PoisonWorm should have the ability to defend simple improvements of
worms by VXers, for example, to call lower-level functions than
GetModuleFileName to get self path.

6．Is PoisonWorm necessary?

Currently, there’re so many commercial anti-virus technology and
products such as IDS、IPS、AVsoft、Content-filter Router and Firewall
etc. Is PoisonWorm necessary? We summarize ten reasons of creating
PoisonWorm:
z It is scalable and inexpensive. When network expands, the

PoisonWorm management cost will keep unchanged. It’s
different with current worm prevention projects.

z PoisonWorm spread with the help of other worms, so the total
flow of PoisonWorm and the poisoned worm can be lower than
the flow produced by the original worm(proved in 9.25 below).

z PoisonWorm focus on large number of alone vulnerable hosts. It
is a complementarity of security protection software. No matter
how excellent AV software is, it can’t protect the hosts without
AV software. No matter how useful and in time the patch is, it is
nothing for the users without security awareness. But,
PoisonWorm is different.

z MD5 or public/privacy key authentication, plugin support and
botnet-style control methods supply reliable and flexible control
ability.

z Use P2P architecture, no bottleneck and no single-point failure.
z Host&DHT-Based Worm Detection and Signature Verification

technology eliminates the disturbance of background traffic
greatly. Most current automatic worm detection technology use
IDS idea, which influenced by all kinds of existing worm、scan、
spam、ddos attack greatly. Every PoisonWorm finds anomaly in
local host and then tries to verify the same anomaly with Peer
PoisonWorm. So the background traffic can’t influence it.

z PoisonWorm can be applied to the research field of worm spread
in true Internet environment. Every PoisonWorm has an unique
ID, so it’s not affected by NAT and dynamic IP. PoisonWorm can
log the information of the found worm.

z How to control worm is a very difficult issue. Neither patch nor
security tools can remove worms if users don’t download them.
CRII worm still exists even though it broke out early in 2001.
PoisonWorm can solve the problem in specialty.

z PoisonWorm is also effective even for those worms which use
hit-list,ie FlashWorm [4,6,19,20]. Flashworm makes many
worm detection method useless, such as dark ip 、 icmp
unreachable and scan rate etc.

z High-level worm control is useless for low-level network while
low-level network defense costs too much. Host to host path is
hard to cut off completely. PoisonWorm can solve the problem
partly.

z DHT-Based information shared mechanism gives PoisonWorm a
global view.

7．Difference between PoisonWorm and anti-worm

The concept of anti-worm(also called good worm) is addressed by
Frank[25]. The idea is to transform a malicious worm into an anti-worm
which spreads itself using the same mechanism as the original worm
and immunizes a host. It looks like PoisonWorm from surface, but they
are different in essential:
z In short, anti-worm transform a malicious worm into an anti-worm

but PoisonWorm tricks a malicious worm to spread PoisonWorm.
z Anti-worm can’t conduct packed worms but PoisonWorm can do

easily.
z Anti-worm always kills the malicious worms whenever it finds them,

while PoisonWorm allows the malicious worm continue to propagate
for some time and then kills them.

z anti-worm releases a new worm to kill the existing worm, while
PoisonWorm always exists in Internet even if no other mailicious
worms break out.

z The anti-worm itself needs to be generated quickly and spread at
least as fast as the original worm. So the active anti-worm is equally
disruptive to the network during the spreading process. While

PoisonWorm is passive, it replaces the propagation of the original
worm, the whole flow of network may even decrease.

z Anti-worm aims to buffer overflow worm including
Memory-Residence worm but PoisonWorm aims to all kinds of worm
(e-mail/p2p/IM etc) except Memory-Residence worm.

z It’s hard to produce anti-worm based on multi-vendor worm like
Nimda but multi-vendor worm has no impact to PoisonWorm.

z Sometimes, it’s impossible to produce successful anti-worms for
example a worm that needs to negotiate a connection or change
the jump address.

z Anti-worm needs many resources and widely deploied such as
several virtual machines and complex arithmetic but PoisonWorm is
only a single program.

8．Experiment result

8.1 PoisonWorm.asm was compiled in masm32 v8 under Win2kPro OS.
The source code has 480 lines and the compiled exe file is 3584 bytes.

8.2 Experiment environment

 Infection Source S(10.0.0.6)

Win2kServ,Win2kPro

Network Control Device C

Cisco 2621
Dest host D(192.168.0.6)

Win2kPro sp2

First, running MSBlaster、Sasser and PoisonWorm in turn in S(infection
source). D(short for Destination) is a vulnerable host running Win2kPro
sp2 OS, C is a Cisco 2621 router which enables D infected by worms in
S quickly and traffic controll. Because the scan policy of worms is
different, D need some time to be scanned successfully. To solve the
time delay problem, we configured a DNAT (Destination Network
Address Translation) in C. The function of the DNAT is that no matter
what the scanned destination IP is, C changes the destination IP to D’s
IP and send the scan packet to D, and the Source IP of the response
packet from D is changed to the original scanned IP by S. All the work
is done by C transparently.

To avoid D receiving too many packets, we configured TCP source port
ACL in C. The ACL only allowed source ports among 2500、2900、3400、
3800、5554(sasser uses it) to pass through. After several seconds of
worms started, the source port could increase to 2500. So PoisonWorm
has enough time to poison those worms. When D responded to S, the
source port was random but the destination is fixed. So we allowed any
destination ports among TCP 4444, UDP 69 (MSBlaster)、TCP 9996,
5554(sasser) to pass through. All these measures enabled D to be
infected very fast and reliably.
8.3 Testing result

Executing MSBlaster and PoisonWorm in turn on host S, D was infected
successfully in 10 seconds. PoisonWorm was transferred to host D by
MSBlaster and running steady. At the same time, MSBlaster and
PoisonWorm kept running in host S. It’s MSBlaster who transferred
PoisonWorm to host D and let it run. The details of transferred data is
shown in figure 1. Tested sasser worm,we got a similar successful result
like MSBlaster shown in figure 2.The two figures show what the two
worms actually transferred in the network:not themselves, but
PoisonWorm.

Figure 1: packets sent by MSBlaster worm

Figure 2: packets sent by sasser worm

For Welchia(MSBlaster-remover) and NetSky worm, we only tested in
local host. Executing PoisonWorm after executing Welchia and NetSky,
we observed PoisonWorm was copied to the destination folder by the
two worms separately. We can conclude that if the two worms spread
based on either the destination path or running process path, they will
always spread PoisonWorm actually.

9．SIPR Model analysis

9.1 SIPR Model introduction
The SIPR (susceptible-infected-poisoned-recovered) model is

presented here in order to analyze Worm Poisoning Technology. It’s an
epidemic model that assumes each host to exist in one of four possible
states: susceptible, infected, poisoned or recovered. It assumes that
susceptible hosts can be infected by either the worm or PoisonWorm
and an infected host will develop immunity to both the malicious worm
and PoisonWorm. The used notations are listed in table 1 and the
meaning of the notations are explained in fig.3.

Table 1: Notations in this SIPR model
Notation Definition
I(t) Number of infectious hosts at time t

S(t) Number of susceptible hosts at time t
R(t) Number of removed hosts from infectious population at time t
Ps(t) Number of susceptible hosts infected by PoisonWorm at time t
Pi(t) Number of Ps hosts infected by malicious worm at time t
β Pairwise rate of infection in worm propagation model
γ Removal rate of infectious hosts
k Self-killing rate of PoisonWorm in Pi
η Average scan rate per infected host(use 4000)
N Total number of hosts under consideration(use 1000001)

① PoisonWorm kills the local malicious worm with k

probability, so the host converts to Ps(PoisonWorm in

susceptible host) ② Ps convert to Pi(malicious worm

coexisting with PoisonWorm in susceptible host)when infected

by malicious worm ③ susceptible host convert to Ps when

infected by PoisonWorm ④⑤ the activity of infection, the

malicious worm is transferred ⑥ the activity of infection, the

PoisonWorm is transferred ⑦ susceptible host converts to

infected host when infected by malicious worm

 ①
 ②

 ④ ⑥
 ③

 ⑤

 ⑦

P s P i

S I

W o r m A t t a c k

Sta tu s S w it c h

Figure 3: SIPR model attacking and status switching graph

Based on the above analysis, we can derive the following SIPR
model:

dI(t)/dt = βI(t)S(t) – dR(t)/dt (1)

dPi(t)/dt = βI(t)Ps(t) –ｋPi(t) (2)

dPs(t)/dt = βPi(t)S(t) – dPi(t)/dt (3)

dS(t)/dt = –β[Pi(t) + I(t)]S(t) (4)
dR(t)/dt = γI(t) (5)

Equations (1–5) are five coupled non-linear differential equations,

referred to as the SIPR Model.
In comparison, Kermack-Mckendrick(SIR) model is also shown

here:

dI(t)/dt = βI(t)S(t) − dR(t)/dt

dS(t)/dt = −βI(t)S(t)
dR(t)/dt = γI(t)

9.2 Simulation experiments

9.2.1 simulation parameters
In the following experiments, we’ll compare SI, SIR and SIPR

models to validate the effectiveness of SIPR model. We used the same
public parameters for all the three models (table 2).
Table 2: Parameters used in SI, SIR and SIPR models simulation experiments

Model I(0) R[0] S[0] Ps[0] Pi[0] β γ k
SI 1 unused 1000000 unused unused 0.0000009 unused unused
SIR 1 0 1000000 unused unused 0.0000009 0.05 unused
SIPR 1 0 300000-700000 700000-300000 0 0.0000009 0.05 1

9.2.2 Comparing SI, SIR and SIPR models

9.2.3 Comparing different percentage of Ps[0] in SIPR
Intuitively, the more percentageof Ps[0]in N, the more containment

ability PoisonWorm will achieve. Fig.5 shows the number of Infectious
hosts for various Ps[0] percentage between 0%, 30%, 50% and 70%.
If PoisonWorm occupy more than 50% of the total susceptible hosts,
the malicious worm will almost lose its propagation ability.

9.2.4 Human intervention comparison of SIP and SIPR models
 We can see from Fig.6, though there’re fewer infectious hosts in SIPR

model, it need less human intervention that remove worms and patch
vulnerability.

9.2.5 Evaluation of extra traffic rised up by PoisonWorm
It’s crucial that PoisonWorm won’t bring extra traffic burden to the
Internet at the same time of containing malicious worms. We compute
the traffic in SIR and SIPR in a rough way below:
Flow(SIP) = ηI(t)×ScanPacketSize + βI(t)S(t)×WormSize

Flow(SIPR) = η[I(t) + Pi(t)] × ScanPacketSize + βI(t)[S(t) + Ps(t)] × WormSize + βPi(t)S(t) × PoisonWormSize

WormSize = 100×ScanPacketSize, PoisonWormSize = 1000×ScanPacketSize, η = 4000, β = 0.0000009

We can see in Fig.7, SIPR model produces less and delayed traffic even
though the PoisonWormSize is assumed very large. In reality, the
PoisonWorm can be much smaller than this assumed size, a 4k-size
basic PoisonWorm was compiled successfully in this paper. So
PoisonWorm won’t congest the network and isn’t an addtion to the
current traffic .

10．Related research

The concept of Worm Poisoning is firstly addressed in the paper. Worm

similar to PoisonWorm is not discovered in the wild up to date
(annotation: the author had implemented a PoisonWorm based on
Worm Poisoning technology and tested it successfully under Win2kpro
sp4, Win2kServ sp3 and WinXP sp2).

No related research of verifing the signature and suspicious files using
P2P technique is discovered. (PoisonWorm hashes the signature or file
as the querying object). There’s P2P-based IDS [23] in abroad, but it’s
very different from the technology in the paper.

In the research field of automatic unknown scanning worm detection
and signature creation, there’re many successful outcomes, including
AutoGraph[12] 、EarlyBird[8]、HoneyComb[11]、NetBait[13]、DSC[24]
etc. DSC(Destination-Source Correlation) discovers unknown worm
based on local host activity, other research is based on mass-scanning、
unused ip accessing、failed connection、DNS query[14] etc. AutoGraph、
EarlyBird、HoneyComb、NetBait can extract signature based on large
amount packets. PoisonWorm makes use of these outcomes
unchanged.

In the research field of worm containment, there’re also many
outcomes, including modifying local TCP/IP protocol stack to limit
outgoing connection speed[1]、using worm-hole and Honeynet to
slowing down worm spread speed、filtering blacklist and content by
Firewall plus Router[2,3] 、 Anti-wormetc. Most of these control
mechanism must deploy hard and soft equipments widely which costs a
lot. Thanks to Internet designed to have very strong connectedness, it’s
hard to cut down all spread path.

10．Future research

10.1 Worm Poisoning technology update and countermeasure

Hooking GetModuleFileName API is only a demonstration of Worm
Poisoning idea. VXers can defeat or detour the mechanism easily. They
can use many other ways to get its path. Worm Poisoning technology
must update its Poisoning technology correspondingly just like Rootkit
and anti-Rootkit、Buffer overflow and BOPT (Buffer Overflow Prevention
Technology).

10.2 The propagation parameter self-adjusting

After PoisonWorm has successfully propagated for (x) times(in this
paper,we simply use x=k=1) using local malicious worm, it should
remove the malicious worm. When PoisonWorm infects a new victim,
whether or not it carries the original malicious worm (b) and continues
to spread for limited (y) times on the new victim. The value of x and y

should be zero or a positive integer, and b is a Boolean type value
representing whether or not it carries the original worm. The optimized
values can be calculated by querying the state of PoisonWorm peers.
Optimization can be explained in multi-ways including contributing to
the least infected hosts、least influence to Internet trffic or earliest to
begin to decrease etc.

10.3 Discover suspicious files ability and support plugins

 We can’t conclude whether or not a process is malicious when it’s
scanning. Perhaps it’s just a victim of malicious worm which injecting
a remote thread to its process. To enhance the ability to detect new
attack or achieve new feature, updating new plugins in time is
necessary.

10.4 Cooperation with current Worm Containment systems

Current worm defense strategies include filtering infection
source,attacked ports and packets with malicious content, anti-worm
etc. PoisonWorm should cooperate with them.

10.5 The academic value of PoisonWorm

Giving every PoisonWorm a global-unique id, they will report
information of found worms to a control center (though the center has
a central architecture, but it’s not a part of PoisonWorm defense system.
It’s not a bottleneck). The collected information can disclose spread
process and actual effect to Internet of the unknown worm.
10.6 How to defend worms which spread using Worm Poisoning
technology?

11. ACKNOWLEDGMENTS

We would like to thank PhD Yuejin Du from CNCERT/CC for his excellent
proposal and guidance. We also thank Liu Yang from CNCERT/CC for his
help on translation.

12. CONCLUSION

Worms in the future will be increasingly fast. We must be prepared for
the inevitable threat. Outbreaks of the Code-Red, SQL Slammer,
MSBlaster, and Sasser worms only reinforce the inadequacy of a system
highly dependent on human factors to react accordingly. New defensive
mechanisms must be invented to better protect our information
systems. We have proposed Worm Poisoning technology in this paper.
The techniques developed here would certainly be interesting to other
researchers for studying future worms and for inventing new
techniques.

13. REFERENCES

[1] M. M. Williamson. Throttling viruses: Restricting propagation to
defeat malicious mobile code. Technical Report HPL-2002-172, HP
Laboratories Bristol, 17 June 2002.
[2] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet
quarantine: Requirements for containing selfpropagating code. In
Proceedings of the IEEE INFOCOM 2003, March 2003.
[3] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of
scanning worms. In Proceedings of 13 USENIX Security Symposium
(Security’04), October 2004.
[4] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in
Your Spare Time”
in Proc. of the 11th USENIX Security Symposium (Security’02), 2002.
[5] D. Moore, “The Spread of the Code-Red Worm (CRv2),”
http://www.caida.org/analysis/security/code-red/coderedv2
analysis.xml
[6] N.Weaver, “WarholWorms: The Potential for Very Fast Internet
Plagues,”
http://www.cs.berkeley.edu/_nweaver/warhol.html.
[7] C. C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation
Modeling and Analysis,” in 9th ACM Conference on Computer and
Communication Security, Nov 2002.
[8] S. Singh, C. Estan, G. Varghese, and S. Savage. The earlybird
system for real-time detection of unknown worms. Paper submitted to
HOTNETS-II, August 2003.
[9] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early
warning for internet worms. In Proceedings of the10th ACM conference
on Computer and communication security,2003.
[10] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,and N.
Weaver. Inside the slammer worm. In IEEE Security and Privacy journal,
2003
[11] Christian Kreibich, Jon Crowcroft. Honeycomb － Creating
Intrusion Detection Signatures Using Honeypots,
www.csd.uch.gr/~hy558/papers/honeycomb.pdf
[12] Hyang-Ah Kim ,Brad Karp.Autograph: Toward Automated,
DistributedWorm Signature Detection,www-2.cs.cmu.edu/~hakim/
autograph/autograph-usenixsec2004.pdf
[13]Brent N. Chun..Netbait: a Distributed Worm Detection Service
berkeley.intel-research.net/bnc/papers/netbait.pdf
[14] David Whyte Evangelos Kranakis P.C. van Oorschot. DNS-based
Detection of Scanning Worms in an Enterprise Network
[15] C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation
modeling and analysis. In Proceedings of the 9th ACM Conference on

Computer and Communication Security,November 2002.
[16] Joe Stewart , “Emerging Threats : From Discovery to Protection”
[17] warlord. Social Zombies: Aspects of Trojan .nologin.org
[18] Brandon Wiley, “Curious Yellow: The First Coordinated Worm
Design”,http://blanu.net/curious yellow.html.
[19] Nicholas Weaver ,Vern Paxson. A Worst-Case Worm
[20] Stuart Staniford,,David Moore,Vern Paxson,Nicholas Weaver.The
Top Speed of Flash Worms
[21] Jayanthkumar Kannan,Karthik Lakshminarayanan.Implications of
Peer-to-Peer Networks on Worm Attacks and Defenses. CS294-4
Project, Fall 2003
[22] honeynet project ,”Know your enemy – Tracking Botnet”
[23] Yan Chen, Aaron Beach, Jason Skicewicz.Cyber Disease Monitoring
with Distributed Hash Tables: A Global Peer-to-Peer Intrusion Detection
System. NWU-CS-04-40 , July 12, 2004
[24] Guofei Gu, Monirul Sharif, Xinzhou Qin, David Dagon, Wenke Lee
and George Riley.Worm Detection, EarlyWarning and Response Based
on Local Victim Information
[25] Frank Casta.neda¤y, Emre Can Sezery and Jun Xu. WORM vs.
WORM: Preliminary Study of an Active Counter-Attack Mechanism.
http://www.icir.org/vern/worm04/castaneda.pdf

	Worm Poisoning Technology and Application
	Abstract
	Keywords
	Table 1: Notations in this SIPR model

