
The Most Important
Thing

How Mozilla Does Security and What You Can Steal

Johnathan Nightingale
Human Shield

Mozilla Corporation
johnath@mozilla.com

So you want to steal a
security architecture...

Do you actually want to get better?

Do you care about responsiveness?

Can you let go of secrecy?

Why steal from us?

We have been at it for a while...

in a phenomenally hostile environment...

with 180 million users...

and we seem to be doing a
lot of things right...

and you can see how
we do it

This Diagram is Stupid

Response

Design

Implementation

Testing

Metrics

Good Security is a
Feedback Loop

• The idea that security can be wholly top-down, with
discrete one-way steps in an orderly flow from start
to end is the worst kind of process management
fiction

• Your security process should instead ask at every
step, “How can we make sure problems like this
never happen again?”

The single most important thing
you can do is find ways to

capture expensive knowledge so
that you never pay for the same

lesson twice

Response
A security compromise is the most

expensive knowledge of all

Response
Prepare

Triage

Deploy

Fix

Schedule

Mitigate

Post-Mortem

Who should help?

With tests! (More later)

This is not the same as shipping! (More later)

Where is it written down?

Learning from
Response

• It’s okay for post-mortems to be short

• It’s not okay to skip them

• If you make them into blame-finding, they
stop being useful (even for blame-finding!)

Ask Questions

• Who did we have to bring in late?

• Why didn’t we notice that we broke the
internet?

• How could we have dealt better with the
original reporter?

• What were our bottlenecks?

Write down the answers for next time
(there’s always a next time)

Testing
Testing is your best defense against
forgetting, because you will forget

Data Point

We run:

• 55,000 automated tests

• in 6 test frameworks

• on 4 platforms

• at least 20 times a day

You Already Know Why

• Tests protect your features from security-
based changes

• Tests protect your security from feature-
based changes

• Tests capture and transfer expensive
knowledge

• Tests reduce Bus Factor

Now Make It Happen

• It must be easy to add new tests

• Yes, this is tricky at first

• Money can be exchanged for goods and
services!

• Nothing lands without tests

• Nothing. Lands. Without. Tests.

It’s Hard To Test <X>

• This is terrifying

• Steal another framework

• Don’t underestimate manual testing

Power Tools

• Fuzzing

• Penetration Testing

• YMMV

One More Thing
Tests that don’t run are a waste of everyone’s time

Option: Automatic Gunfire
Buy a box that sits in a corner and runs tests off

trunk every hour. Put a gun on it that shoots
people who break tests.

Option: Manual Slog
Make check-in approval contingent on running

tests, every single time.

Implementation
“We have tests” is not an excuse

to keep breaking things

Where Mistakes Are
Made

• Strategic-level mistakes can be made in
design, but most security bugs come from
mistakes not caught during implementation

• Your ability to profit from expensive
knowledge is highest here, but here is
where you’re probably doing the worst job

No-Brainers

• Static analysis tools

• assert()

• “Public” Betas

• Alphas?

• Source?

Tougher

• Non-security bugs point to security bugs

• Do you have crash reporting?

• No bug happens once

• Where else are you assuming that a null
pointer isn’t exploitable?

• Bad patterns - knowledge that you get to
benefit from more than once.

The Game Changer

• Socializes security knowledge by sharing it

• Gatekeeper against “This is little, it’ll be
fine”

• P(Mistake1) * P(Mistake2) << P(Mistake1)

The most important change you can make at
implementation is mandatory review

Design
Every time you eliminate a threat class

an angel gets its wings

Making Things Right

• Design for re-use

• Find areas that keep needing “temporary”
field patches and fix them for good

• Design for testability

• Threat modelling

Make it easier to profit from expensive knowledge

Metrics
Measure what matters, not what’s

easy to measure

Now with

12%

more bits!

Don’t Know What
Matters?

• Ask sales

• Ask your users

• Don’t ask your competitors, they are
looking for the easy way out

The #1 Grade-A
Stupidest Metric of All

• A focus on bug counting creates perverse
incentives for security

• Developers hide bugs from management

• You hide bugs from customers

Bug Count

Counting bugs teaches you to bury all the
expensive knowledge you should be sharing

Think Harder

• Days of exposure

• Average time to deploy fix

• Better would be avg. time until > 90% of
users are using the fix

• Customer downtime

Get Creative

• Number of regressions per update cycle

• Number of all nighters

• Start using similar metrics when judging
your own suppliers & platforms

• Tension between metrics can be a good
thing, if it pulls people towards awesome

Stupid Criticisms

• This model is totally reactive, not proactive

• This model is steady-state, not innovative

Our tools, let me show
you them

Tinderbox http://www.mozilla.org/tinderbox.html

Mochitest http://developer.mozilla.org/en/docs/Mochitest

Litmus http://wiki.mozilla.org/Litmus

MXR http://mxr.mozilla.org/

Dehydra http://developer.mozilla.org/en/docs/Dehydra

Bug Policy http://www.mozilla.org/projects/security/security-bugs-policy.html

Bugzilla https://bugzilla.mozilla.org/

Fuzzers http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

http://www.mozilla.org/projects/security/security-bugs-policy.html
http://www.mozilla.org/projects/security/security-bugs-policy.html
https://bugzilla.mozilla.org
https://bugzilla.mozilla.org
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

Remember This Slide

• Capture expensive knowledge everywhere,
so that you don’t have to re-learn it

• Apply that knowledge everywhere

• Nothing lands without tests

• Nothing lands without code review

• Counting bugs is stupid, try harder

Credits

• Developer Kit, Sean Martell, http://developer.mozilla.org/en/docs/Promote_MDC
• Waterfall, dave.hau, http://flickr.com/photos/davehauenstein/271469348/
• Alarm, Shannon K, http://flickr.com/photos/shannonmary/96320881/
• Oops, estherase, http://flickr.com/photos/estherase/24513484/
• Card House, Bah Humbug, http://flickr.com/photos/gibbons/2294375187/
• Bulldozer, Atli Harðarson, http://flickr.com/photos/atlih/2223726160/

http://flickr.com/photos/davehauenstein/271469348/
http://flickr.com/photos/davehauenstein/271469348/
http://flickr.com/photos/clausmorell/43477379/
http://flickr.com/photos/clausmorell/43477379/
http://flickr.com/photos/estherase/24513484/
http://flickr.com/photos/estherase/24513484/
http://flickr.com/photos/gibbons/2294375187/
http://flickr.com/photos/gibbons/2294375187/

