worker - Apache HTTP Server Version 2 4

1of3

https://httpd.apache.org/docs/2.4/mod/worker.html

Apache HTTP Server Version 2.4

Apache MPM worker

Description:
Status: MPM
Module Identifier: mpm_worker module
Source File:

Multi-Processing Module implementing a hybrid multi-threaded multi-process web server

worker.c

Summary

This Multi-Processing Module (MPM) implements a hybrid multi-process multi-threaded server. By using threads to
serve requests, it is able to serve a large number of requests with fewer system resources than a process-based server.
However, it retains much of the stability of a process-based server by keeping multiple processes available, each

with many threads.

The most important directives used to control this MPM are ThreadsPerChi 1d, which controls the number of
threads deployed by each child process and MaxRequestWorkers, which controls the maximum total number of
threads that may be launched.

Topics
How it Works
Directives

CoreDumpDirectory
EnableExceptionHook
Group

Listen

ListenBacklog
MaxConnectionsPerChild
MaxMemFree
MaxRequestWorkers
MaxSpareThreads
MinSpareThreads
PidFile
ReceiveBufferSize
ScoreBoardFile
SendBufferSize
ServerLimit
StartServers
ThreadLimit
ThreadsPerChild
ThreadStackSize

User

2/13/19, 5:45 AM



worker - Apache HTTP Server Version 2.4 https://httpd.apache.org/docs/2.4/mod/worker.html

Bugfix checklist

= httpd changelog
= Known issues
m Report a bug

See also

m Setting which addresses and ports Apache HTTP Server uses
= Comments

How it Works

A single control process (the parent) is responsible for launching child processes. Each child process creates a fixed
number of server threads as specified in the ThreadsPerChi 1d directive, as well as a listener thread which
listens for connections and passes them to a server thread for processing when they arrive.

Apache HTTP Server always tries to maintain a pool of spare or idle server threads, which stand ready to serve
incoming requests. In this way, clients do not need to wait for a new threads or processes to be created before their
requests can be served. The number of processes that will initially launch is set by the StartServers directive.
During operation, the server assesses the total number of idle threads in all processes, and forks or kills processes to
keep this number within the boundaries specified by MinSpareThreads and MaxSpareThreads. Since this
process is very self-regulating, it is rarely necessary to modify these directives from their default values. The
maximum number of clients that may be served simultaneously (i.e., the maximum total number of threads in all
processes) is determined by the MaxRequestWorkers directive. The maximum number of active child processes
is determined by the MaxRequestWorkers directive divided by the ThreadsPerChild directive.

Two directives set hard limits on the number of active child processes and the number of server threads in a child
process, and can only be changed by fully stopping the server and then starting it again. ServerLimit is a hard
limit on the number of active child processes, and must be greater than or equal to the MaxRequestWorkers
directive divided by the ThreadsPerChild directive. ThreadLimi t is a hard limit of the number of server
threads, and must be greater than or equal to the ThreadsPerChild directive.

In addition to the set of active child processes, there may be additional child processes which are terminating, but
where at least one server thread is still handling an existing client connection. Up to MaxRequestiWorkers
terminating processes may be present, though the actual number can be expected to be much smaller. This behavior
can be avoided by disabling the termination of individual child processes, which is achieved using the following:

o set the value of MaxConnectionsPerChild to zero
e set the value of MaxSpareThreads to the same value as MaxRequestWorkers

A typical configuration of the process-thread controls in the worker MPM could look as follows:

ServerLimit 16
StartServers 2
MaxRequestWorkers 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25

While the parent process is usually started as root under Unix in order to bind to port 80, the child processes and
threads are launched by the server as a less-privileged user. The User and Group directives are used to set the
privileges of the Apache HTTP Server child processes. The child processes must be able to read all the content that
will be served, but should have as few privileges beyond that as possible. In addition, unless suexec is used, these
directives also set the privileges which will be inherited by CGI scripts.

20f3 2/13/19, 5:45 AM



worker - Apache HTTP Server Version 2.4 https://httpd.apache.org/docs/2.4/mod/worker.html

MaxConnectionsPerChild controls how frequently the server recycles processes by killing old ones and
launching new ones.

This MPM uses the mpm-accept mutex to serialize access to incoming connections when subject to the
thundering herd problem (generally, when there are multiple listening sockets). The implementation aspects of this
mutex can be configured with the Mutex directive. The performance hints (" ../misc/perf-tuning.html)
documentation has additional information about this mutex.

Comments

Notice:

This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the
documentation or server, and may be removed again by our moderators if they are either implemented or
considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at
either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2019 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

30of3 2/13/19, 5:45 AM



