Introduction to SIE and 2013 Update

Paul Vixie
ISC
Security Information Exchange?

- Old: exclusive sensor/analyst “silos”
- New: compete on execution not data
- Goal: everybody’s customers get safer
- Method: mix of public/private channels
- Focus: real time (~DSP), not “batch”
- Motivation: ISC is also an analyst
- Cost: everybody pays what they can afford, often a mix of cash and data
Decentralized - bi-lateral
Centralized - multi-lateral

Efficient sharing within common legal/privacy framework
Data distribution model - original

- SF Bay Area, US (PAIX)
- Main sensor relays
- Some researchers getting feeds off switches
Data distribution model – east++

- DC or NY, US
- Redundant facilities
- More researchers
Data distribution model - relay

- Add relays at exchanges in different countries
- Add local sensors
- Local sharing or tools possible within relay
Data distribution model - future

- Promote node when number of researchers is significant
- Scaling issues
Disparate data
ncap

• plug-in filters in action
nmsg

- Any structured data
- Format:

```plaintext
  magic(4)
  'NMSG'
  version(2)
  length(4)
  gproto(len)
```
Google protocol buffers

- http://code.google.com/apis/protocolbuffers
- APIs for C, C++, Python, Java, Perl
- Arguably better than XML
- Why reinvent the wheel?
- Open source
- Extensible:
package nmsg;

message Nmsg {
 repeated NmsgPayload payloads = 1;
}

message NmsgFragment {
 required uint32 id = 1;
 required uint32 current = 2;
 required uint32 last = 3;
 required bytes fragment = 4;
}

message NmsgPayload {
 required int32 vid = 1;
 required int32 msgtype = 2;
 required int64 time_sec = 3;
 required fixed32 time_nsec = 4;
 optional bytes payload = 5;
 repeated uint32 user = 6;
}
isc/email.proto

package nmsg.isc;

enum EmailType {
 unknown = 0;
 spamtrap = 1; // email sent to a spamtrap
 rej_network = 2; // rejected by network or SMTP (pre-DATA) checks
 rej_content = 3; // rejected by content filter (including domain blacklists)
 rej_user = 4; // classified by user as spam
}

message Email {
 optional EmailType type = 8;
 optional bytes headers = 2; // SMTP headers
 optional bytes srcip = 3; // remote client IP
 optional bytes srchost = 4; // remote client PTR, if known
 optional bytes helo = 5; // HELO/EHLO parameter
 optional bytes from = 6; // MAIL FROM parameter (brackets stripped)
 repeated bytes rcpt = 7; // RCPT TO parameter(s) (brackets stripped)
 repeated bytes bodyurl = 9; // URL(s) found in decoded body
}
Conficker Sinkhole Example

- We generate the DNS content and run the DNS servers; instrument w/ NMSG
- We run the HTTP → NMSG servers
- These NMSG flows are relayed into SIE
- The CWG server copies these files into per-analyst directories for use w/ rsync
- SIE-connected analysts get it real time
Ghost Click Example

• We ran the replacement DNS servers, instrumented with NMSG (queries only)
• Batched for up to one minute to save bandwidth and allow for encryption
• SIE analysts got the data immediately
• We stored copies of the NMSG as files
• Others had to periodically poll (rsync)
Darknet Example

- Sometimes called “network telescope”
- IP space known in BGP but not used
- Internet cosmic background radiation
- Exception to our “always NMSG” rule
- Any BGP speaking router can be a sensor: replace Null0 with GRE0
- We need more/smaller sensors (many)
Important Takeaways, SIE/NMSG

- It’s all real time, but files can be made
- Network of private Ethernet switches
- Most analysts provide or rent a server
- ~25 channels today, some private
- ~40 analysts: comm/acad/police
- ~500Mbit/sec today, some reprocessed
- SIE pricing is “nondiscriminatory”
- We want more data and more analysts
Motivation to Participate

• Operator: run a single kind of sensor, let us deliver to all qualified parties
• Analyst: receive a firehose of real time data in a simple binary format
• Us: offer cash discount on services to analysts who can bring data (+DNSDB)
• Economy: lowers total cost of visibility, aligns individual motives with society’s
• “Snowball effect”
Comparison to *uSoft DCU’s SaaS*

- Sinkhole as a Service (SaaS)
- Capture botnet C&C, parse all “hits”
- Subscribers are network operators
- Each subscriber provides “Azure” creds
- DCU team populates Azure, many files
- Currently handles ~100m per day
- Compressed text files – easy to use
- DCU data is free; Azure is very cheap
Questions?

- Email: info@sie.isc.org
- Web: https://sie.isc.org/