Security Measures to Improve Internet Public Safety

Internet Systems Consortium
Q2 2013
Overview

• IP Spoofing: the root of most evil
• DNS RRL: radical DDoS opt-out
• Recursive DNS access control
• Final Thoughts
Spoofed Source Attacks: Essence
Spoofed Source Attacks: Past

- **Spoofed Source Attacks:**
 - Past

- **Model:**
 - **Target:**
 - **Source Address:** (target)
 - **Destination Address:** (target)

- **Reflecto:**
 - Botted PC, behind NAT, Megabit speed

- **Internet:**
 - **Attacker:**
 - **Source Address:** (target)
 - **Destination Address:** (target)
Spoofed Source Attacks: Present

Botted server, in the cloud, Gigabit speed
Spoofed Source Attacks: Future

Botted phone or refrigerator, Gigabit speed
Crazy Lessons of History

• Wide area UDP services must never amplify
 – In this light, DNS was crazy
 – And: DNSSEC is even crazier
 – But: NTP is (strangely) OK

• Promoting data to executable code is crazy
 – Like: Java, Flash, ActiveX, Autorun, JavaScript, or the conficker worm’s “click to permit” hack

• Expecting users to be sysadmins is crazy
 – Like: PC, Mac, cloud servers, smart phones
Action Items for Industry

• All recursive name servers need access control
 – They should *only* answer for their customers
• All authority name servers need rate limiting
 – Quickly repeated responses are *never* necessary
• Edge networks should validate their src addr
 – This *can’t* be done closer to the Internet “core”
• Cloud/VM providers should offer sys admin
 – Webmasters *can’t* be expected to update Joomla

• References
RRL On The Wire

[nsa:amd64] repeat 25 \
 dig +novc +ignore +retries=0 +time=1 vix.com aaaa \
 @ns.sql1.vix.com \
 | grep tc
;; flags: qr aa tc rd ad; QUERY: 1, ANS: 0, AUTH: 0, ADD: 1
;; flags: qr aa tc rd ad; QUERY: 1, ANS: 0, AUTH: 0, ADD: 1
;; flags: qr aa tc rd ad; QUERY: 1, ANS: 0, AUTH: 0, ADD: 1
RRL Configuration

options {
 directory "/var/local/named";
 pid-file "'/var/run/named-nsa.pid";
 query-source address 149.20.48.227 port *;
 listen-on-v6 { ::1; 2001:4f8:3:30::3; };
 listen-on { 127.0.0.1; 149.20.48.227; };
 recursion yes;
 notify yes;
 dnssec-enable yes;
 dnssec-lookaside . trust-anchor dlv.isc.org.;
 dnssec-validation yes;
 rate-limit {
 responses-per-second 5;
 window 5;
 };
};
Using RRL In Your Servers

• In authority servers
 – RRL has no negative impact on real flows, because real clients have caches, will retry with UDP, will try TCP if given a truncated response

• In recursive servers
 – RRL would have a negative impact on real flows, because real clients do not have caches
 – It should not be necessary, just use ACLs
RRL In Action: Afilias
Recursive DNS Anti-Abuse

• Clients of RDNS are *stubs* – no cache
 – Thus they repeat queries all the time
 – RRL has no model for this right now

• So, properly configured RDNS *must*:
 – Either: ACL to serve only local/customer
 – Or: 24x7 monitoring like OpenDNS does

• Alas, most open RDNS are embedded
 – Operator has no idea it’s happening
Final Thoughts: DNS RRL

• RRL was first implemented in BIND but is intended for use in all name servers
 – NSD as of 3.2.15, February 2013
 – Knot DNS as of 1.2-RC3, March 2013
• Please study the DNS RRL specification carefully, it’s intended to be implemented literally
• Specification, patches, pointers, and specification are available online
 – http://www.redbarn.org/dns/ratelimits
Final Thoughts: IP Spoofing

• Economics at the edge aren’t just misaligned, they’re pessimal
• There will always be spoofing, although regulation isn’t impossible
• Meanwhile we have to get rid of all DDoS amplifiers
• Fortunately, the economics are better aligned for this