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–Ponemon 2014 SSH Security Vulnerability Report

“51 percent of respondents admitted that their 
organizations have already been impacted by an 

SSH key-related compromise in the last 24 months.”
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Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in
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SSH attacks

• SSH intrusion detection on end hosts is hardly 
scalable 

• Network-based approaches exist, but only inform 
security operators about the presence of attacks
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We perform compromise detection.



We perform compromise detection.

All flow-based.
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NetFlow & IPFIX

• Packets are aggregated into flows; aggregates are 
analyzed 

➤  Scalable, privacy-preserving 

• NetFlow & IPFIX are available on most high-end 
networking devices 

➤  Easily deployable
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Start     Duration Proto SrcIP:Port DstIP:Port Packets Bytes 
2014-05-29 04:59:23  6.350  TCP  A:33038  B:22  11  1675 
2014-05-29 04:59:26  4.950  TCP  A:33101  B:22  11  1675 
2014-05-29 04:59:28  4.850  TCP  A:33126  B:22  11  1675
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Compromise detection
• Deviation-based approach yielded many false 

detections: 

• Retransmissions 

• Various acknowledgement schemes 
(e.g., depending on timing) 

• … 

• Our approach: analyze and characterize attack tool 
behavior (action upon compromise)
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destination addresses in the university network. We identify three attack phases. During
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Figure 4: Various types of compromise flows in a chunk of flow data.

are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.

ACM SIGCOMM Computer Communication Review 24 Volume 44, Number 5, October 2014
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are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.
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are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.
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are dropped at the connection-level, no retransmissions or
failing connection establishments can be observed. Second,
tools like fail2ban, sshdfilter and SSHblock operate on L4
by instructing a local firewall to block tra�c from the at-
tacker to the target. If mitigation takes place while a TCP
connection is active, retransmissions will occur. Also new
TCP connections to the target cannot be established any-
more, resulting in SYN-only flows. Both situations are shown
in Figure 3, where the number of PPF of Flow n deviates
from typical brute-force flows, due to the additional packets
involved in the retransmission(s). After Flow n, there will
be at least one SYN-only flow (Flow n+ 1). Third and last,
tools like SSHGuard drop any tra�c from the attacker’s IP
address using a local firewall, i.e., at L3. From a network
tra�c perspective, the behavior is identical to a L4-block.

Besides host-level mitigation mechanisms, also network-
level mechanisms can be in place. These mechanisms are
usually operated by packet forwarding devices, performing
some sort of tra�c blocking, e.g., by means of Access Con-
trol Lists (ACLs) or null-routing. Blocking rules can be
composed based on blacklists or detections on honeypots,
for example. The network tra�c after mitigation is similar
to host-level mitigation on L3 or L4.

4. DETECTION ALGORITHM
Our three-phase attack model, presented in Section 2,

foresees compromises only after the brute-force phase; by
the nature of SSH, a compromise can only occur after one
or more authentication attempts. As such, the operation
of the brute-force phase detection is essential for detecting
compromises. We therefore start describing our brute-force
phase detection shortly (Section 4.1), before discussing our
compromise phase algorithm (Section 4.2). In the remain-
der of this work, we define an attack as a set of one of more
tuples of attacker and target featuring brute-force behavior.

4.1 Brute-force Phase
Potential brute-force phase tra�c is selected by consider-

ing all hosts sending SSH flows with a number of PPF in
the range r = [11, 51] to a daemon, where 11 is the mini-
mum number of packets needed for a single authentication
attempt, and 51 the highest number of PPF observed7 for
brute-force phase tra�c (see Section 3.2). From all selected
7The numbers provided in this paper are backed up by mea-
surements and higher than reported by related works, which

tra�c, we take the most frequently used number of PPF
as the baseline for identifying deviations for that particu-
lar attack. After establishing the baseline, we analyze the
flow data per tuple of attacker and target; as soon as two or
more consecutive flows with the same number of PPF are
observed, we consider this an attack in the brute-force phase.
The higher this threshold, the higher the chance of ruling
out benign authentication attempts. Considering that be-
nign authentications would come in groups of three (because
the OpenSSH client sets NumberOfPasswordPrompts to 3 by
default), two consecutive SSH flows with the same number
of PPF would already indicate six failed attempts.

4.2 Compromise Phase
Key to our compromise detection are the four actions that

can be observed after a compromise. We have transformed
these actions into six scenarios, as shown in Figure 4. The
two additional scenarios have been defined to accommodate
for the fact that many analysis applications receive and pro-
cess flow data in fixed-size time bins, as a consequence of
which our algorithm has to take into account that attack
data may be spread over multiple data chunks. Each of the
subfigures shows a flow data chunk, with flows (long dashes)
towards targets running an SSH daemon. Short-dashed lines
mark a flow with a compromise.

In Figure 4(a), we show that the compromise flow is main-
tained until the end of the attack, and that other login at-
tempts are observed in parallel towards the same target. A
similar scenario is shown in Figure 4(b), but since the end
of the attack does not lie within the current data chunk, the
compromise flow is characterized by an unterminated TCP
connection (i.e., without a TCP FIN or RST flag set). Simi-
larly to these two scenarios, we show in Figure 4(d) and 4(e)
how the compromise flows should be identified in case the at-
tacker aborts its dictionary towards the compromised target:
tra�c from the same attacker towards other targets reveals
the end of the attack. Figure 4(c) and 4(f) show situations
where the attack tool performs an instant logout upon com-
promise. Observe that the compromise in Figure 4(f) may
also be very close to the end of the data chunk, which is why
compromises classified according to this scenario are checked
in the next data chunk again, to verify whether there is no
tra�c from the attacker towards the compromised target.

report maximum values of around 30 [8, 9]. Cisco appliances
and Mac OS X are the main cause of these high values.
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SSHCure 
Validation approach

• Ground truth: sshd logs from 93 honeypots, servers 
and workstations, divided over two datasets: 

• Dataset 1 — easy targets 

• Dataset 2 — more difficult targets  
 
 

16

Honeypots Servers Workstations Attacks

Dataset 1 13 0 0 636

Dataset 2 0 76 4 10353



SSHCure 
Validation results

• Evaluation metrics: 

• TP / FP — correct / false identification of incident 

• TN / FN — correct / false identification of non-incident 

• Detection accuracy close to 100%

17

TPR TNR FPR FNR Acc

Dataset 1 0,692 0,921 0,079 0,308 0,839

Dataset 2 — 0,997 0,003 — 0,997



SSHCure 
Deployment

•                      is open-source and actively developed 

• Download counter SourceForge (Jan. ’15): 3.1k 

• Recently moved to GitHub (summer ’14) 

• Tested in several nation-wide backbone networks 

• Many successful deployments already:

18

• Web hosting 
companies 

• Campus networks

• National Research and Education 
Networks (NRENs) 

• Governmental CSIRTs/CERTs

SSHCURE



What is hidden in non-flat traffic…
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Unveiling Flat Traffic on the Internet: An SSH Attack Case Study 
Mattijs Jonker, Rick Hofstede, Anna Sperotto and Aiko Pras 
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TABLE I
DATASETS

Dataset Period Duration Packets Bytes Flows
Retransmissions Control Information

Packets Bytes Packets Bytes

UT July / August 2014 31 days 370.73 G 291.64 TiB 7.35 G
5.30 G 2.83 TiB 100.50 G 4.30 TiB
(1.43%) (0.97%) (27.11%) (1.47%)

CESNET August / September 2014 31 days 257.38 G 227.67 TiB 3.57 G
8.29 G 2.78 TiB 83.61 G 3.48 TiB
(3.22%) (1.22%) (32.48%) (1.53%)

TABLE II
DISTRIBUTION OF RETRANSMITTED PACKETS AND BYTES

Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes
UT 95.50% 89.54% 4.50% 10.46%

CESNET 97.87% 91.27% 2.13% 8.73%

sending flow records to a collector using NetFlow or IPFIX.
From within these plugin types, actions can be hooked to
evenst such as flow entries being added to, updated in or
expired from the flow cache. Among these actions is the
filtering of flow cache entries to prevent them from being
exported.

Our extension comes in the form of an input plugin. The
plugin measures TCP retransmissions and control information
packets, and stores and maintains related counters in the flow
cache. To recognize these particular packets, TCP conversa-
tions are analyzed in real-time by evaluating sequence and
acknowledgement numbers, timestamps, flags, receive window
sizes, and payload sizes. This implementation is heavily based
on the TCP packet dissector used by Wireshark.2

For the TCP analysis to be accurate, it is crucial that
packets in both directions of a TCP conversation pass the
observation point. Otherwise, the housekeeping of sequence
and acknowledgement numbers may be affected, which obvi-
ously impairs the analysis. The same is true when packets are
lost downstream of the observation point. We are also aware
that the TCP packet dissector used by Wireshark cannot but
misclassify packets in its on-the-fly analysis in some cases,
especially when packets are reordered. To optimize our plugins
to work on high-speed links, e.g., of 10 Gbps and higher, we
accept these exceptional cases for the sake of performance.

IV. MEASURING TCP RETRANSMISSIONS
& CONTROL INFORMATION

Our first step towards understanding the impact of TCP
retransmissions and control information is to measure them in
two networks that are different in nature. Two datasets were
collected, as shown in Table I, consisting of only TCP flow
data. Dataset UT was collected on the campus network of the
University of Twente (UT). This network features a publicly
routable /16 network address block with connections to faculty
buildings, student and staff residences, etc. Dataset CESNET

2http://www.wireshark.org/
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Fig. 2. Retransmissions over time.

was collected on a backbone link of the Czech National
Research and Education Network (NREN), specifically the
link between CESNET and the ‘commercial Internet’. Due
to the academic nature of these networks, the relative amount
of traffic during summer holidays is considerably lower than
during working days.

The remainder of this section is organized in two parts.
First, in Section IV-A, we analyze retransmissions and control
information in detail based on our measurements. After that,
we perform a similar analysis only for SSH traffic in Sec-
tion IV-B, given that the validation of this work (Section V)
will be performed in the context of SSH intrusion detection.

A. Overall Traffic

Details on the number of retransmitted packets and bytes,
and the amount of control information in terms of packets
and bytes are shown in Table I. Several observations can be
made. On the one hand, TCP control information is mostly
visible in terms of packets. On the other hand, retransmissions
contribute more towards the percentage of bytes, relatively
speaking. Another observation is that there are many more
packets with control information than there are retransmitted
packets. This is mainly because many of the control informa-
tion packet types, such as those that result from the delayed
ACK mechanism, are sent under all network conditions, while
retransmissions appear more frequently during network con-
gestion, for example.

The distribution of retransmission types in terms of packets
and bytes is shown in Table II. As can be observed, most
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TABLE III
DISTRIBUTION OF CONTROL INFORMATION PACKETS

Type
Dataset

UT CESNET
Duplicate ACK 5.24% 1.77%

Non-piggybacked ACK 7.61% 11.71%
Consecutive empty ACK 83.13% 80.60%

Window Update 2.02% 1.88%
Zero Window Probe (ZWP) < 0.01% 0.01%

ZWP response < 0.01% < 0.01%
RST 0.87% 2.59%

Four-way close packet 0.10% 0.21%
KeepAlive Probe 0.54% 0.74%

KeepAlive Response 0.48% 0.48%
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We believe this is because regular retransmissions can also
contain no payload, e.g., retransmissions of empty TCP SYN
and FIN segments bring down the average number of bytes
per retransmitted packet. Considering the UT dataset, it shows
that while 4.50% of retransmitted packets are of the fast type,
these do account for 10.46% of the number of retransmitted
bytes. For the CESNET dataset, these numbers are 2.13% and
8.73%, respectively.

The number of retransmitted packets and fast retransmitted
packets within every five-minute interval in the 31 days of
the UT dataset is shown in Fig. 2. A diurnal pattern can be
clearly identified, which follows the working hours at faculty
buildings, and the presence of on-campus residents. While
Table I provides absolute numbers, and as such is not specific
about the points in time at which events occur, Fig. 2 shows
that retransmissions occur at any time of the day. The two
outlying groups of retransmitted packets around 5 Aug 18:00
and 10 Aug 18:00 coincide with severe SSH dictionary attacks
from China that involve many retransmissions, which makes
these anomalies visible in our measurements. These attacks
will be discussed later, as part of the case study in Section V.

The distribution of the various types of control information
packets is shown in Table III. As can be seen, packets related
to the delayed ACK mechanism, i.e., non-piggybacked ACKs

TABLE IV
TCP RETRANSMISSIONS & CONTROL INFORMATION – SSH

Dataset
Retransmissions Control Information

Packets Bytes Packets Bytes

UT
1488.18 M 167.36 GiB 3269.24 M 145.19 GiB

(9.53%) (1.45%) (20.93%) (1.26%)

CESNET
153.54 M 25.44 GiB 1767.31 M 76.78 GiB
(2.10%) (1.54%) (24.15%) (4.64%)

TABLE V
DISTRIBUTION OF RETRANSMITTED PACKETS AND BYTES – SSH

Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes
UT 99.71% 96.47% 0.29% 3.53%

CESNET 99.87% 99.07% 0.13% 0.93%

and consecutive empty ACKs, account for large percentages of
the total number of control information packets in each dataset.
For example, non-piggybacked ACKs take up 7.61% and
11.71% in UT and CESNET, respectively. Another example is
the consecutive empty ACK, with 83.13% in UT and 80.60%
in CESNET.

Given the significant presence of TCP retransmissions and
control information in our measurements in two networks
that are different in nature, we conclude that these packets
are omnipresent on the Internet. Also, we believe to have
demonstrated that the flatness of originally flat network traffic
on the Internet is likely affected by this omnipresence, as
theorized in Section II.

B. SSH Traffic

The SSH traffic considered in this work was obtained
by filtering the datasets presented in Table I for traffic on
port 22, yielding 11.29 TiB of traffic for UT and 1.62 TiB
for CESNET. Details on the number of retransmissions and
control information packets and bytes are shown in Table IV.
Several observations can be made when comparing the SSH
traffic to the overall traffic. First, for CESNET, the relative
percentage of retransmissions is lower in the SSH-only traffic
than in the overall traffic, at 2.10% versus 3.22%. For UT,
however, it is much higher, namely 9.53% versus 1.43%.
This is because the UT dataset contains several large-scale
SSH attacks, as discussed previously alongside Fig. 2. Second,
control information in the SSH datasets is more dominant than
retransmissions in terms of packets and bytes, which is similar
in the overall traffic. Third, considering that the overall traffic
in UT is only 50% larger than in CESNET in terms of bytes
(from Table I), the relative amount of SSH traffic in UT is
much larger than in CESNET.

As for retransmissions in SSH traffic, the distribution of
these in terms of packets and bytes is shown in Table V.
Compared to the distribution of retransmissions in the overall
traffic, it can be observed that a higher percentage in the
SSH traffic is of the regular retransmission type. In the
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of all retransmissions and TCP control information fields.
Ultimately, this should result in flat traffic.

By comparing the detection results when using non-
compensated and compensated data, we can quantitatively
evaluate the gain of ‘flattening’ traffic in the context of
SSH intrusion detection. We perform the comparison in two
dimensions – attacks and tuples – as this allows us to discover
potential differences in the impact of compensation. Although
comparing the number of detections in terms of attacks and
tuples before and after compensation provides an indication
of the detection improvements, it does not reveal anything
about to accuracy of these detection outcomes. To assess these
accuracies, we have performed a large-scale validation by
collecting authentication logs of 58 machines on the campus
network of the UT – 56 servers and 2 honeypots – to serve
as the ground-truth for validation. These authentication logs
are the only means of validating whether a machine has really
been under attack. Since we only have the logs for UT hosts,
we only consider the UT dataset in this part of the validation.

In the authentication logs, a minimum number of failed
attempts must be encountered for the behavior to be considered
a dictionary attack. Since the detection algorithm considers at
least N consecutive flow records, only N or more connections
to the SSH server that contain at least one failed attempt are
considered. This comes down to at least 5 sessions with one
or more authentication failures each. A list of attacks featuring
this property is used as the ground-truth for validation. We use
this ground-truth for expressing the accuracy of the algorithm,
both in terms of attacks and tuples, by comparing detection
results to the ground-truth based on the following metrics:

• True Positives (TP) – Attacks/tuples correctly classified to
feature a brute-force phase, for which 5 or more sessions
with authentication failures are reported in the ground-
truth.

• False Positive (FP) – Attacks/tuples incorrectly classi-
fied to feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• True Negatives (TN) – Attacks/tuples correctly classified
to not feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• False Negatives (FN) – Attacks/tuples incorrectly classi-
fied to not feature a brute-force phase, for which 5 or
more sessions with authentication failures are reported in
the ground-truth.

Using these metrics, we can evaluate the differences in the
detection algorithm for the non-compensated and compensated
cases in terms of accuracy (Acc), which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

In addition, to understand the relation between TCP control
information and retransmissions, and geographical locations,
we determine the physical origin of attacks and tuples based
on a snapshot of the MaxMind GeoIP4 database at the time
of the measurements. The physical location can reveal why
certain attacks or the majority of tuples are more likely
to be detected only after compensation, as we hypothesize
that retransmissions are strongly bound to the geographical
distance between attackers and targets.

C. Results
The best way to visualize the achievements of this work

is by means of a plot, as shown in Fig. 4. This figure
shows the traffic in terms of the number of PPF over time
between a single tuple of attacker and target. Clearly, the
original network traffic (i.e., the sum of the three series in
the figure) is not flat, but after compensating for control
information packets and retransmissions, traffic that is almost
flat remains. Occasional variations in the remaining number
of PPF after compensation are the result of the performance
trade-off discussed in Section III. We accept these variations,
considering that most attacks feature a large enough number
of flows to reach the threshold N .

The results of operating the detection algorithm on the
considered datasets, both with and without PPF compensation,
are shown in Table VII for attacks and Table IX for tuples.
The number of detected attacks and tuples is considerably
higher after compensation for both datasets. In CESNET,
the total number of detected attacks is about a fourth times
higher after compensation, i.e., from 9475 to 11849, while

4We have used MaxMind’s GeoLite City database, which can be retrieved
from http://dev.maxmind.com/geoip/legacy/geolite/
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of all retransmissions and TCP control information fields.
Ultimately, this should result in flat traffic.

By comparing the detection results when using non-
compensated and compensated data, we can quantitatively
evaluate the gain of ‘flattening’ traffic in the context of
SSH intrusion detection. We perform the comparison in two
dimensions – attacks and tuples – as this allows us to discover
potential differences in the impact of compensation. Although
comparing the number of detections in terms of attacks and
tuples before and after compensation provides an indication
of the detection improvements, it does not reveal anything
about to accuracy of these detection outcomes. To assess these
accuracies, we have performed a large-scale validation by
collecting authentication logs of 58 machines on the campus
network of the UT – 56 servers and 2 honeypots – to serve
as the ground-truth for validation. These authentication logs
are the only means of validating whether a machine has really
been under attack. Since we only have the logs for UT hosts,
we only consider the UT dataset in this part of the validation.

In the authentication logs, a minimum number of failed
attempts must be encountered for the behavior to be considered
a dictionary attack. Since the detection algorithm considers at
least N consecutive flow records, only N or more connections
to the SSH server that contain at least one failed attempt are
considered. This comes down to at least 5 sessions with one
or more authentication failures each. A list of attacks featuring
this property is used as the ground-truth for validation. We use
this ground-truth for expressing the accuracy of the algorithm,
both in terms of attacks and tuples, by comparing detection
results to the ground-truth based on the following metrics:

• True Positives (TP) – Attacks/tuples correctly classified to
feature a brute-force phase, for which 5 or more sessions
with authentication failures are reported in the ground-
truth.

• False Positive (FP) – Attacks/tuples incorrectly classi-
fied to feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• True Negatives (TN) – Attacks/tuples correctly classified
to not feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• False Negatives (FN) – Attacks/tuples incorrectly classi-
fied to not feature a brute-force phase, for which 5 or
more sessions with authentication failures are reported in
the ground-truth.

Using these metrics, we can evaluate the differences in the
detection algorithm for the non-compensated and compensated
cases in terms of accuracy (Acc), which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

In addition, to understand the relation between TCP control
information and retransmissions, and geographical locations,
we determine the physical origin of attacks and tuples based
on a snapshot of the MaxMind GeoIP4 database at the time
of the measurements. The physical location can reveal why
certain attacks or the majority of tuples are more likely
to be detected only after compensation, as we hypothesize
that retransmissions are strongly bound to the geographical
distance between attackers and targets.

C. Results
The best way to visualize the achievements of this work

is by means of a plot, as shown in Fig. 4. This figure
shows the traffic in terms of the number of PPF over time
between a single tuple of attacker and target. Clearly, the
original network traffic (i.e., the sum of the three series in
the figure) is not flat, but after compensating for control
information packets and retransmissions, traffic that is almost
flat remains. Occasional variations in the remaining number
of PPF after compensation are the result of the performance
trade-off discussed in Section III. We accept these variations,
considering that most attacks feature a large enough number
of flows to reach the threshold N .

The results of operating the detection algorithm on the
considered datasets, both with and without PPF compensation,
are shown in Table VII for attacks and Table IX for tuples.
The number of detected attacks and tuples is considerably
higher after compensation for both datasets. In CESNET,
the total number of detected attacks is about a fourth times
higher after compensation, i.e., from 9475 to 11849, while

4We have used MaxMind’s GeoLite City database, which can be retrieved
from http://dev.maxmind.com/geoip/legacy/geolite/
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of all retransmissions and TCP control information fields.
Ultimately, this should result in flat traffic.

By comparing the detection results when using non-
compensated and compensated data, we can quantitatively
evaluate the gain of ‘flattening’ traffic in the context of
SSH intrusion detection. We perform the comparison in two
dimensions – attacks and tuples – as this allows us to discover
potential differences in the impact of compensation. Although
comparing the number of detections in terms of attacks and
tuples before and after compensation provides an indication
of the detection improvements, it does not reveal anything
about to accuracy of these detection outcomes. To assess these
accuracies, we have performed a large-scale validation by
collecting authentication logs of 58 machines on the campus
network of the UT – 56 servers and 2 honeypots – to serve
as the ground-truth for validation. These authentication logs
are the only means of validating whether a machine has really
been under attack. Since we only have the logs for UT hosts,
we only consider the UT dataset in this part of the validation.

In the authentication logs, a minimum number of failed
attempts must be encountered for the behavior to be considered
a dictionary attack. Since the detection algorithm considers at
least N consecutive flow records, only N or more connections
to the SSH server that contain at least one failed attempt are
considered. This comes down to at least 5 sessions with one
or more authentication failures each. A list of attacks featuring
this property is used as the ground-truth for validation. We use
this ground-truth for expressing the accuracy of the algorithm,
both in terms of attacks and tuples, by comparing detection
results to the ground-truth based on the following metrics:

• True Positives (TP) – Attacks/tuples correctly classified to
feature a brute-force phase, for which 5 or more sessions
with authentication failures are reported in the ground-
truth.

• False Positive (FP) – Attacks/tuples incorrectly classi-
fied to feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• True Negatives (TN) – Attacks/tuples correctly classified
to not feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• False Negatives (FN) – Attacks/tuples incorrectly classi-
fied to not feature a brute-force phase, for which 5 or
more sessions with authentication failures are reported in
the ground-truth.

Using these metrics, we can evaluate the differences in the
detection algorithm for the non-compensated and compensated
cases in terms of accuracy (Acc), which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

In addition, to understand the relation between TCP control
information and retransmissions, and geographical locations,
we determine the physical origin of attacks and tuples based
on a snapshot of the MaxMind GeoIP4 database at the time
of the measurements. The physical location can reveal why
certain attacks or the majority of tuples are more likely
to be detected only after compensation, as we hypothesize
that retransmissions are strongly bound to the geographical
distance between attackers and targets.

C. Results
The best way to visualize the achievements of this work

is by means of a plot, as shown in Fig. 4. This figure
shows the traffic in terms of the number of PPF over time
between a single tuple of attacker and target. Clearly, the
original network traffic (i.e., the sum of the three series in
the figure) is not flat, but after compensating for control
information packets and retransmissions, traffic that is almost
flat remains. Occasional variations in the remaining number
of PPF after compensation are the result of the performance
trade-off discussed in Section III. We accept these variations,
considering that most attacks feature a large enough number
of flows to reach the threshold N .

The results of operating the detection algorithm on the
considered datasets, both with and without PPF compensation,
are shown in Table VII for attacks and Table IX for tuples.
The number of detected attacks and tuples is considerably
higher after compensation for both datasets. In CESNET,
the total number of detected attacks is about a fourth times
higher after compensation, i.e., from 9475 to 11849, while

4We have used MaxMind’s GeoLite City database, which can be retrieved
from http://dev.maxmind.com/geoip/legacy/geolite/
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TABLE VII
TOP FIVE ATTACK ORIGINS – ATTACKS

Dataset Country Non-compensated Compensated

UT1

China 370 494 (+34%)
Netherlands 63 72 (+14%)

Russian Federation 42 45 (+7%)
Other 142 159 (+12%)
Total 617 774 (+25%)

CESNET1

Canada 5 49 (+880%)
France 3 30 (+900%)

Germany 4 5 (+25%)
Other 14 19 (+36%)
Total 26 99 (+281%)

information and retransmissions, and geographical locations,
we determine the physical origin of attacks and tuples based
on a snapshot of the MaxMind GeoIP2 database at the time
of the measurements. The physical location can reveal why
certain attacks or majority of tuples are more likely to be
detected only after compensation, as retransmissions typically
occur more often for certain countries – in which the target’s
location also factors in, of course.

C. Results
The best way to visualize the achievements of this paper

is by means of a plot, as shown in Fig. 4. This figure shows
the traffic in terms of PPF over time between a single tuple.
Clearly, the original network traffic (i.e., the sum of the three
series in the figure) is not flat, but after compensating for
control information packets and retransmissions, traffic that
is almost flat remains. Occasional variations in the remaining
number of packets after compensation are the result of the
performance trade-off discussed in Section III. We accept these
variations, considering that most attacks feature a large enough
number of flows to reach the threshold N .

The results of operating the detection algorithm on the con-
sidered datasets, both with and without PPF compensation, are
shown in Table VII for attacks and Table VIII for tuples. The
number of detected attacks and tuples is considerably higher

2We have used MaxMind’s GeoLite City database, which can be retrieved
from http://dev.maxmind.com/geoip/legacy/geolite/

TABLE VIII
TOP FIVE ATTACK ORIGINS – TUPLES

Dataset Country Non-compensated Compensated

UT1

China 6137 10040 (+64%)
Vietnam 1048 1056 (+1%)

United States 638 658 (+3%)
Other 2027 8346 (+311%)
Total 9850 14074 (+43%)

CESNET1

Poland 1186 2365 (+99%)
France 10 613 (+6030%)
Canada 19 520 (+2637%)
Other 369 487 (+32%)
Total 1584 3985 (+152%)

after compensation for all datasets. In CESNET1, the total
number of detected attacks is almost four times higher after
compensation, i.e., from 26 to 99, whereas the improvement
in terms of tuples is almost 152%.
Rephrase the sentence below (I don’t understand what you
want to say).

The reason behind this higher gain in attack detection than
tuple detection is that the number of targets per attack is in
the order of units of tens for CESNET1, and in many cases
the impact of retransmissions and control information cause
none of the tuples of an attack, and thus the attack itself, not
to be detected. The gain in detecting attacks and tuples after
compensation is inverted for UT1, where we see a gain of 25%
in terms of attacks and 43% in terms of tuples.
Rephrase the sentence below (I don’t understand what you
want to say).

The reason behind this lower increase in attack detection
is that some attacks have hundreds of targets, and in many
cases there is at least one target that triggers attack detection
without compensation.

Since we assume that retransmissions depend in part on
the route between attacker and target, we show for each
dataset the three3 countries from which most attacks originate,
both in terms of attacks (Table VII) and tuples (Table VIII).

3The total number of countries involved in attacks in the UT1 dataset is 38,
and 11 for CESNET1.
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TABLE VII
TOP FIVE ATTACK ORIGINS – ATTACKS

Dataset Country Non-compensated Compensated

UT

China 1817 2347 (+29%)
Netherlands 317 694 (+119%)
Venezuela 195 233 (+19%)

Russian Federation 165 189 (+15%)
Chile 154 164 (+6%)
Other 851 1080 (+27%)
Total 3499 4707 (+35%)

CESNET

China 15239 19683 (+29%)
United States 316 (+14%)

Brazil 239 257 (+8%)
Korea 146 170 (+17%)
Turkey 124 139 (+12%)
Other 1075 1420 (+32%)
Total 17139 21985 (+28%)

TABLE VIII
DETECTION PERFORMANCE – ATTACKS

Dataset Logged
attacks TPR FPR TNR FNR Acc

UT
812

0.644 0.087 0.913 0.356 0.788
compensated 0.784 0.096 0.904 0.216 0.849

most attacks originate, both in terms of attacks (Table VII)
and tuples (Table IX). The total number of countries involved
in attacks is 60 for the UT dataset, and 71 for CESNET.
Furthermore, we show the number of attacks and tuples
reported only after compensation for those countries. Several
observations can be made from the results. First, regarding
the UT dataset, many attacks that are detected only after
compensation have the attacking host located in China, with
a figure of 530 attacks and 23331 tuples. While China easily
outperforms the other countries in terms of attacks and tuples
in UT, the relative increase of the number of attacks and
tuples not reported until after compensation from China is also
relatively high. More specifically, the increase in the number
of attacks from China is 29%, and for tuples the increase
is a staggering 73%. China also dominates in the CESNET
dataset, where 4444 attacks from China are detected only after

TABLE IX
TOP FIVE ATTACK ORIGINS – TUPLES

Dataset Country Non-compensated Compensated

UT

China 31887 55218 (+73%)
Netherlands 11048 11646 (+5%)

United States 3573 4203 (+18%)
Vietnam 2358 2396 (+2%)
Germany 1592 1642 (+3%)

Other 10197 12939 (+27%)
Total 60655 88044 (+45%)

CESNET

China 799840 1109458 (+39%)
United States 37161 41230 (+11%)

France 16096 22818 (+42%)
Korea 10051 10890 (+8%)

Malaysia 5579 5811 (+4%)
Other 36994 48521 (+31%)
Total 905721 1234659 (+36%)

TABLE X
DETECTION PERFORMANCE – TUPLES

Dataset Logged
tuples TPR FPR TNR FNR Acc

UT
4562

0.430 0.081 0.919 0.570 0.689
compensated 0.585 0.090 0.910 0.415 0.758

compensation, and 309618 tuples. The respective gains are
29% and 39%. Second, for the UT dataset, we implicitly know
the geographical location of the targets of attacks. Moreover,
we know that traffic between hosts located in China and the UT
campus network is often susceptible to packet loss. The same
can be said for the United States, for which an 18% gain in
terms of tuples can be observed. All these observations make
us conclude that TCP control information and retransmissions
are indeed strongly bound to the distance in geographical
location between attacker and target, and that the effects on
detection can be observed quantitatively.

Out of the top five attack origins in UT, the gain in
the number of detected attacks from The Netherlands after
compensation is at 119%. This gain is higher than the 29%
for China, for example, while attackers in The Netherlands are
located closer (from a geographical point-of-view) to UT’s
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Fig. 4. Compensated brute-force flow records.

TABLE VII
TOP FIVE ATTACK ORIGINS – ATTACKS

Dataset Country Non-compensated Compensated

UT

China 1817 2347 (+29%)
Netherlands 317 694 (+119%)
Venezuela 195 233 (+19%)

Russian Federation 165 189 (+15%)
Chile 154 164 (+6%)
Other 851 1080 (+27%)
Total 3499 4707 (+35%)

CESNET

China 15239 19683 (+29%)
United States 316 (+14%)

Brazil 239 257 (+8%)
Korea 146 170 (+17%)
Turkey 124 139 (+12%)
Other 1075 1420 (+32%)
Total 17139 21985 (+28%)

TABLE VIII
DETECTION PERFORMANCE – ATTACKS

Dataset Logged
attacks TPR FPR TNR FNR Acc

UT
812

0.644 0.087 0.913 0.356 0.788
compensated 0.784 0.096 0.904 0.216 0.849

most attacks originate, both in terms of attacks (Table VII)
and tuples (Table IX). The total number of countries involved
in attacks is 60 for the UT dataset, and 71 for CESNET.
Furthermore, we show the number of attacks and tuples
reported only after compensation for those countries. Several
observations can be made from the results. First, regarding
the UT dataset, many attacks that are detected only after
compensation have the attacking host located in China, with
a figure of 530 attacks and 23331 tuples. While China easily
outperforms the other countries in terms of attacks and tuples
in UT, the relative increase of the number of attacks and
tuples not reported until after compensation from China is also
relatively high. More specifically, the increase in the number
of attacks from China is 29%, and for tuples the increase
is a staggering 73%. China also dominates in the CESNET
dataset, where 4444 attacks from China are detected only after

TABLE IX
TOP FIVE ATTACK ORIGINS – TUPLES

Dataset Country Non-compensated Compensated

UT

China 31887 55218 (+73%)
Netherlands 11048 11646 (+5%)

United States 3573 4203 (+18%)
Vietnam 2358 2396 (+2%)
Germany 1592 1642 (+3%)

Other 10197 12939 (+27%)
Total 60655 88044 (+45%)

CESNET

China 799840 1109458 (+39%)
United States 37161 41230 (+11%)

France 16096 22818 (+42%)
Korea 10051 10890 (+8%)

Malaysia 5579 5811 (+4%)
Other 36994 48521 (+31%)
Total 905721 1234659 (+36%)

TABLE X
DETECTION PERFORMANCE – TUPLES

Dataset Logged
tuples TPR FPR TNR FNR Acc

UT
4562

0.430 0.081 0.919 0.570 0.689
compensated 0.585 0.090 0.910 0.415 0.758

compensation, and 309618 tuples. The respective gains are
29% and 39%. Second, for the UT dataset, we implicitly know
the geographical location of the targets of attacks. Moreover,
we know that traffic between hosts located in China and the UT
campus network is often susceptible to packet loss. The same
can be said for the United States, for which an 18% gain in
terms of tuples can be observed. All these observations make
us conclude that TCP control information and retransmissions
are indeed strongly bound to the distance in geographical
location between attacker and target, and that the effects on
detection can be observed quantitatively.

Out of the top five attack origins in UT, the gain in
the number of detected attacks from The Netherlands after
compensation is at 119%. This gain is higher than the 29%
for China, for example, while attackers in The Netherlands are
located closer (from a geographical point-of-view) to UT’s
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