
Copyright© 2015 KRvW Associates, LLC

Ken van Wyk, ken@krvw.com, @KRvW

Pen Testing iOS Apps

FIRST 2015
Ken van Wyk, @KRvW

Berlin, Germany
14-19 June 2015

Copyright© 2015 KRvW Associates, LLC

Topics we’ll cover

We’ll focus on how to break
typical iOS apps
– iOS topics
–Application topics

Simple analysis
–Surface of app
–Static analysis
–Dynamic analysis

Deeper analysis
–Explore app binary
–Run-time exploration and

exploitation
3

Copyright© 2015 KRvW Associates, LLC

Tools

Most tools we’ll use are
either open source or
inexpensive
– iExplorer for exploring file

system on an iOS device
– iOS device and a USB cable

Preferably jailbroken
Cydia
Cycript

4

Copyright© 2015 KRvW Associates, LLC

Clear up some misconceptions

Apple’s iOS has been a huge
success for Apple
–Together with Android, they have

re-defined mobile telephony
Apple has made great advances
in security
–They are still far from really good
–Not even sure if they’re pretty

good

Software developers still make
silly mistakes

5

Copyright© 2015 KRvW Associates, LLC

System Hardening Features

Attack surface reduction
Stripped down OS
–No /bin/sh

Privilege separation
Code signing
Data execution prevention (DEP)
–Vital for return oriented

programming
–No architectural separation of data

and code segments
Address space layout
randomization (ASLR)

6

Copyright© 2015 KRvW Associates, LLC

Application sandboxing

By policy, apps are only
permitted to access
resources in their sandbox
– Inter-app comms are by

established APIs only
URLs, keychains (limited)

–File i/o in ~/Documents only

These rules don’t always
apply to Apple’s own apps

7

Copyright© 2015 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3GS) has hardware crypto
module
–Unique AES-256 key for

every iOS device
–Sensitive data hardware

encrypted
Sounds brilliant, right?
–Well...

8

Copyright© 2015 KRvW Associates, LLC

iOS crypto keys

GID key - Group ID key
UID key - Unique per dev
Dkey - Default file key
EMF! - Encrypts entire
file system and HFS
journal
Class keys - One per
protection class
–Some derived from UID +

Passcode

9

Copyright© 2015 KRvW Associates, LLC

iOS NAND (SSD) mapping

Block 0 - Low level boot
loader
Block 1 - Effaceable storage
–Locker for crypto keys,

including Dkey and EMF!
Blocks 2-7 - NVRAM
parameters
Blocks 8-15 - Firmware
Blocks 8-(N-15) - File system
Blocks (N-15)-N - Last 15
blocks reserved by Apple

10

Copyright© 2015 KRvW Associates, LLC

Built-in file protection classes

iOS (since 4) supports file
protection classes
–NSFileProtectionComplete
–NSFileProtectionCompleteU

nlessOpen
–NSFileProtectionCompleteU

ntilFirstUserAuthentication
–NSFileProtectionNone

All but None are derived
11

Copyright© 2015 KRvW Associates, LLC

Built-in file protection limitations

Pros
–Easy to use, with key

management done by iOS
–Powerful functionality
–Always available
–Zero performance hit
Cons
–For Complete, crypto keying

includes UDID + Passcode
4 digit PIN problem

12

Copyright© 2015 KRvW Associates, LLC

Keychains

Keychain API provided for
storage of small amounts of
sensitive data
–Login credentials, passwords,

etc.
–Credit card data often found

here
Stored in a SQLite database
–Encrypted using hardware

AES with derived key

13

Copyright© 2015 KRvW Associates, LLC

Jailbreaks

Apple’s protection architecture
is based on a massive digital
signature hierarchy
–Starting from bootloader
–Through app loader

Jailbreak software breaks that
hierarchy
–Current breaks up to 8.1.2

DFU mode allows USB vector
for boot loader
–Older iPhones mostly, but…

14

Copyright© 2015 KRvW Associates, LLC

Keyboard data

All “keystrokes” are
stored
–Used for auto-correct

feature
–Nice spell checker
Key data can be harvested
using forensics
procedures
–Passwords, credit cards...
–Needle in haystack?

15

Copyright© 2015 KRvW Associates, LLC

Screen snapshots

Devices routinely grab
screen snapshots and store
in JPG
–Used for minimizing app

animation
– It looks pretty
WHAT?!
– It’s a problem
–Requires local access to

device, but still...

16

Copyright© 2015 KRvW Associates, LLC

Let’s consider the basics

We’ll cover these (from
the mobile top 10)
–Protecting secrets

At rest
In transit

– Input/output validation
–Authentication
–Session management
–Access control
–Privacy concerns

17

Copyright© 2015 KRvW Associates, LLC

Examples

Airline app
–Stores frequent flyer data in

plaintext XML file
Healthcare app
–Stores patient data in plist file

But it’s base64 encoded for your
protection…

Banking app
–Framework cache revealed

sensitive account data
Consumer ticket app
–Accepted SSL from self signed key
–Exposed credit card data

18

Copyright© 2015 KRvW Associates, LLC

SQLlite example

Let’s look at a database
app that stores sensitive
data into a SQLite db
–We’ll recover it trivially by

looking at the unencrypted
database file

19

Copyright© 2015 KRvW Associates, LLC

Protecting secrets at rest

Encryption is the answer,
but it’s not quite so simple
–Where did you put that key?
–Surely you didn’t hard code it

into your app
–Surely you’re not counting on

the user to generate and
remember a strong key

Key management is a non-
trivially solved problem

20

Copyright© 2015 KRvW Associates, LLC

Static analysis of an app

Explore folders
– ./Documents
– ./Library/Caches/*
– ./Library/Cookies
– ./Library/Preferences
App bundle
–Hexdump of binary
–plist files
What else?

21

Copyright© 2015 KRvW Associates, LLC

Tools to use

Mac tools
–Finder
– iExplorer
–hexdump
–strings
–otool
–otx (otx.osxninja.com)
–class-dump

(iphone.freecoder.org/
classdump_en.html)

–Emacs (editor)
Xcode additional tools
–Clang (build and

analyze)
Finds memory leaks and
others

22

Copyright© 2015 KRvW Associates, LLC

Exercise - coffee shop attack

This one is trivial, but
let’s take a look
In this iGoat exercise, the
user’s credentials are sent
plaintext
–Simple web server running

on Mac responds
– If this were on a public

WiFi, a network sniffer
would be painless to launch

23

Copyright© 2015 KRvW Associates, LLC

Most common SSL mistake

We’ve all heard of CAs
being attacked
–That’s all important, but...
– (Certificate pinning can

help.)
Failing to properly verify
CA signature chain
–Biggest SSL problem by far
–Study showed 1/3 of

Android apps fell to this

24

Copyright© 2015 KRvW Associates, LLC

Testing for SSL problems

Goal is to ensure client performs
strong certificate verification
MITM on the net setup
–App proxy on laptop (e.g.,

Burpsuite)
–Generate SSL cert signed by your

own CA
–Put your CA cert on test iOS

device

Remember to remove fake CA
before leaving lab environment!

25

Copyright© 2015 KRvW Associates, LLC

But that’s not enough

26

Copyright© 2015 KRvW Associates, LLC

ObjC Run-time is flawed

Unlike in C, “functions”
are not called
–Messages are passed
–Objects dynamically

allocated
Within process space,
dynamic tampering also
possible
–Message traffic
–Objects

27

Copyright© 2015 KRvW Associates, LLC

Reverse engineering

Attacker wants to learn
how your app works
–Deep internal details
Attacker wants to attempt
to trick your app into
misbehaving
–Tamper with runtime
How? Jailbroken device
and some free tools
–And a lot of time

28

Copyright© 2015 KRvW Associates, LLC

Prerequisite tools and env

Mac with OS X and Xcode
Jailbroken device
–evasi0n works great

Cydia and friends
–Cydia installed with evasi0n
–Shell access

OpenSSH - install with Cydia
–Debugger

gdb - install with Cydia

Bare minimum essentials
29

Copyright© 2015 KRvW Associates, LLC

Analysis techniques

Static analysis
–Observe attributes of the

executable, app files
–Yes, encrypted (app store)

apps too
Dynamic analysis
–Run the app and learn how

it works
Tampering
–Trick the run-time env

30

Copyright© 2015 KRvW Associates, LLC

Static analysis

Any binary can be
examined
–Usually reveal a map to

classes, objects, text,
symbols, etc.

Common tools
–otool
–class-dump-z
–nm

Examples
–Linked libs, methods

otool -L appname
otool -l appname

–List of classes
class-dump-z appname

–Symbol table
nm appname

31

Copyright© 2015 KRvW Associates, LLC

It’s C underneath the hood

Beneath that nice OOP ObjC layer lies a C
foundation
–Pretty much everything in ObjC can be done in C

Primitives for doing all the OO stuff
objc_msgSend(), objc_getClass() are prime examples

This matters to us when analyzing statically or
dynamically

32

Copyright© 2015 KRvW Associates, LLC

Encrypted binaries too

Basic process
–Use app loader to decrypt
–Calculate memory offsets
–Store process to disk

dd is your friend
Will also need plutil and gdb

HOWTO available
–http://

www.mandalorian.com/
2013/05/decrypting-ios-
binaries/

33

Copyright© 2015 KRvW Associates, LLC

Let’s take a look

34

Copyright© 2015 KRvW Associates, LLC

Dynamic analysis

What can we learn from
observing it running?
–A lot
–All those messages
–Memory contents
–CPU registers

You don’t have anything
to hide, right?

35

Copyright© 2015 KRvW Associates, LLC

Attacking a running app

Man in the app (MITA)
–The most dangerous form of

on-host dynamic attack
– Internal access to everything

That ObjC run-time
messaging architecture is

going to haunt us

36

Copyright© 2015 KRvW Associates, LLC

A few more tools

For these, you’ll want
–gdb
–Cycript (see slide)
–Network proxy (e.g.,

Burpsuite)
–SSLstrip (optional)

37

Copyright© 2015 KRvW Associates, LLC

Message eavesdropping

Use gdb to build a simple
but effective message
eavesdropper
–Example
 gdb -q -p PID
 break obj_msgSend
 commands
 x/a $r0
 x/s $r1
 c

38

Copyright© 2015 KRvW Associates, LLC

Cycript

“Cycript allows developers to explore and modify
running applications on either iOS or Mac OS X
using a hybrid of Objective-C++ and JavaScript
syntax through an interactive console that features
syntax highlighting and tab completion”
— From http://www.cycript.org

It is an amazing utility for dynamically probing a
running app

39

Copyright© 2015 KRvW Associates, LLC

Fun with Cycript

Basics
 # cycript
 cy# var myString = [[NSString alloc]
 cy> initWithString: @“Hello world”];
 “Hello world”
 cy# [myString length];
 11

Combination of JavaScript and ObjC syntax gives
amazing capabilities

40

Copyright© 2015 KRvW Associates, LLC

Cycript (2)

Safari example
 # cycript -p PID
 cy# var app = [UIApplication sharedApplication];
 “<UIApplication: 0x22f050>”
 cy# [app openURL: [NSURL URLWithString:
 cy> @“http://www.first.org”]];
 1
 cy# app.networkActivityIndicatorVisible = YES

41

Copyright© 2015 KRvW Associates, LLC

Cycripting for fun and profit

Break client-side logic
–Alter PINs, booleans, semaphores
–Replace methods
Probe running app data
–Can be verbose, but you get everything in an object
 cy# function appls(a){ var x={};
for(i in *a){ try{ x[i] = (*a)[i]; }
catch(e){}} return x; }
 cy# appls(object);

42

Copyright© 2015 KRvW Associates, LLC

Client-side logic

You didn’t think you could
trust client-side logic, did

you?

43

Copyright© 2015 KRvW Associates, LLC

Tampering

Now let’s go beyond mere
observation
Replace existing methods
–Change address in gdb
–Dynamic linker attack

Put your library in
DYLD_INSERT_LIBRARIES

Automate dynamic
linking
–MobileSubstrate

44

Copyright© 2015 KRvW Associates, LLC

Nothing is what it appears

Now we can change the
entire universe your app
runs in

(If this doesn’t seem bad,
go watch The Matrix)

45

Copyright© 2015 KRvW Associates, LLCCopyright© 2013 KRvW Associates, LLC

Resources

Hacking and Securing iOS Applications, Jonathan
Zdziarski, O’Reilly, 2012
Evasi0n, popular jailbreaking tool, http://
www.evad3rs.com/

46

Copyright© 2015 KRvW Associates, LLC

Hardening

User actions and client
configurations
Architectural
considerations
Hardening tips

But remember, nothing is
perfect.

47

Copyright© 2015 KRvW Associates, LLC

User actions and configurations

Strong passcodes help
MDMs can manage
configurations of entire
fleets

48

Copyright© 2015 KRvW Associates, LLC

Architectural considerations

Design choices make a
huge difference
–Client cannot be trusted

Sensitive data
Sensitive functions
Security controls

–Client should provide
presentation layer

Minimal functionality
Processing should be server

49

Copyright© 2015 KRvW Associates, LLC

Hardening tips

Non-obvious names
–Obfuscate functional

purpose
Disable debugging
 #define DENY_DEBUG 31
 ptrace(DENY_DEBUG,0,0,0);

Complicate disassembly
–Compiler optimizer
–Strip symbols

50

Copyright© 2015 KRvW Associates, LLC

Hardening tips (2)

Sensitive code
–On server, but…
–Write in C or ASM
–Compile + link in-line
–Expand loops manually
Force your attacker to
single step through
Don’t give away anything

51

Copyright© 2015 KRvW Associates, LLC

Hardening (3)

Data storage
–Encrypt

DataProtection API for
consumer grade
Keys on server

–Common Crypto Lib
Secure file wiping
SQLite data wiping
–Update before delete

52

Copyright© 2015 KRvW Associates, LLC

Tamper detection

How do we know?
–Run-time integrity checks

Memory offsets of sensitive objects

–Sandbox integrity
Attempt to fork
Size and checksum of /etc/fstab
Symbolic links in /Applications
Common jailbreak files and apps

– /Applications/Cydia.app

–Honeypots in app

There ain’t a horse that can’t be rode or a man that
can’t be throwed.

53

Copyright© 2015 KRvW Associates, LLC

Tamper response

What to do?
–Remote wipe
–Phone home
–Log everything
–Wipe user data, keys
–Disable network access
–Et cetera

54

Copyright© 2015 KRvW Associates, LLCCopyright© 2014 KRvW Associates, LLCCopyright© 2015 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

@KRvW

55

