27th ANNUAL

FIRST

CONFERENCE

EEEEEEEEEE

Incident Response
Programming with R

Eric Zielinski
Sr. Consultant, Nationwide

iz

Nationwide’

About Me?

* Cyber Defender for Nationwide
e Over 15 years in Information Security

o Speaker at various conferences FIRST, CEIC,
FS-ISAC etc.

 Focus on blue team activities such as
Forensics, Incident Response, and Data
Exfiltration

41 most punctual guy | know

el

Agenda

« Why R?

e Overview of R

 Reading data sets

e Case Study

* Extending R with packages

el

Disclaimer

This presentation will not teach you how to
become an expert programmer in R in under
45min

Plic

So What Will This Teach Me?

« How we can use data analytics to speed up our
response and for post lessons learned

 How we should leverage programming
anguages more often in incident response

 How we can develop our own tools and
analytics

 This Is not trying to replace your current
practices. Just simply giving you another tool In
your toolbox, it's really up to you on how you
use it.

el

Frequently Asked Questions

L)
>~

Evolution

6000 B.C.

WWW.USERFRIENDLY.ORG
COPYRIGHT (C) 1292 |LLIAD

Issues...

* Incident response has been very *nix focused for
years. This'is not a bad thing, *nix rocks!

* The problem is that we are just not that good at
detecting incidents

e S0 how can we get better?
Do we need to speed up response times?
« Do we need better tools?
Do we need better talent?
« Do we need more skills?

« S0 for IR there must be a different way, right?

* \We must Chanqe our ways of thinking and try
something new!

el

The good news

e Often times we are dealing with the same data
sets

* We see a lot of the same log files, config files, data
sets, etc...

e Shouldn’t we be able to streamline these?

 What if we take more time to understand the
data so future responses can be faster!

e Think post incident work!!

el

Incident Response

Neanderthal method Sophisticated Neanderthal Method

Bang on keyboard and mouse Let the data work for you,
until you find something organize your data,
combine, analyze, and
respond

L

Lifecycle

Preparation

ADVERSARY

Post Incident

Activity Detection

CAPABILITIES | — INFRASTRUCTURE

VICTIM

Containment

Post Incident Evolution

» Analysts often spend over 80% of their time
preparing and exploring data sets before they
begin more formal analysis work

ed 36064 [BEM] (c) www.visualphotos.com

L

Why R?

* R runs quickly
e |t's intuitive
 Vectorized programming

e |[t's Interactive!
* View(LogQs)

Quirks

Nerd Quirk #1

”)ﬂ'r \
Knowing the difference between
al acrohym aid an iniktialism.

L

Where to begin?

e Installing R

e R Studio vs R Project

R Project - http://cran.r-project.org/
R Studio - http://www.rstudio.com/

* There are thousands of packages!

gl “

http://www.rstudio.com/

R Project

® OO

e’ “&EEE !ﬂﬂﬂ r = """ "=
~/Desktop/R

R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet"

Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl®.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or '"licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q(O" to quit R.

[R.app GUI 1.65 (6833) x86_64-apple-darwinl@.8.0]

[Workspace restored from /Users/zieline/Desktop/R/.RData]
[History restored from /Users/zieline/Desktop/R/.Rapp.history]

> |

RStudio

[CHSNS] K3TUalo "
Ql~ g~ =" K Project: (None) ~
@7 test.R* @] weblogs.R logs2 | logs5 | checkpointl Environment History
306 observations of 64 variables T =5 # Import Dataset= 3 Clear List~

v7 V8 va V10 V11 V12 Vi3 V14 V15 V16 V17 V18 Global Environment =

192.168.99.1 Checkpoint NA NA 3sep20@7 15 18 28 accept 192.168.95.1 > eth2 Data

192.168.99.1 Checkpoint NA NA 35ep2ea7 15 1@ 28 accept 192.168.99.1 > eths checkpoint 274 obs. of 1 variables

192.168.99.1 Checkpoint NA NA 3Sep2ea7 15 18 28 accept 192.168.99.1 > eths checkpointl 306 obs. of 64 variables

192.168.99.1 Checkpoint NA NA 3sep20@7 15 18 29 accept 192.168.95.1 > eths df 1 obs. of 1 variables

192.168.99.1 Checkpoint NA NA 35ep2ea7 15 1@ 35 accept 192.168.99.1 > eth2 1ogs 276 obs. of 75 variables

192.168.99.1 Checkpoint NA NA 3Sep20a7 15 i@ 35 accept 152.168.9%.1 > eth2 logs? 2248 obs. of 19 variables

192.168.99.1 Checkpoint NA NA 3sep20@7 15 12 a accept 192.168.11.7 > eths)

192.168.99.1 Checkpoint NA NA 35ep2007 15 12 8 drop 192.16¢ logs5 2250 obs. of 6 Varlab?es

192.168.99.1 Checkpoint NA NA 3sep2087 15 18 49 accept 192.168.95.1 > eths sourcel il LA e e

- source2 1278350 obs. of 1 variables
Files Plots Packages Help Viewer
Console Install @ Update
> Name Description Version
User Library
colorspace Color Space Manipulation 1.2-6
dichromat Color Schemes for Dichromats 2.0-0
ggplot2 An Implementation of the Grammar of Graphics 1.0.1
gtable Arrange grobs in tables. 0.1.2
htmitools Tools for HTML 0.2.6
httpuv HTTP and WebSocket server library 1.3.2
labeling Axis Labeling 0.3
manipulate Interactive Plots for RStudio 0.98.1091
mime Map Filenames to MIME Types 0.3
munsell Munsell colour system 0.4.2
plyr Tools for Splitting, Applying and Combining 1.8.2
Data

proto Prototype object-based programming 0.3-10
R6 Classes with reference semantics 2.0.1
RColorBrewer ColorBrewer Palettes 1.1-2

Memory

« How much memory is required to store data set in
memory?

« How many rows and columns does your dataset
contain?

e 1,500,000 rows & 120 columns (all numeric data)

each number requires 8bytes of memory
numbers are stored using 64bit numbers
8bits per byte, so 8 bytes of memory per numeric object
» 1,500,000x120x8 bytes/numeric
« 144000000 bytes
« 1373.29 MB
» 1.34GB Memory required.

Need a lil more than this to run, but not much more.

el

Up and Running

e Set your path for R to read your data sets from
e Installing packages (thousands of packages)

o Swirl - http://swirlstats.com/

 Lets see some commands!

Overview of R

e Syntax example (storing numbers)
e X<-¢(10.4, 5.6, 2.3, 4.5 or whatever)

Console

> x <- c¢(1,2,3,4,5,6,7,8,9,10)

> X

[1] 1 2 3 4 5 6 7 8 910

>

» Syntax example (storing strings)
e X <- “String” Console

> X <- "string"
> X

[1] "string"

> |

el

Quick Overview of R

e Data Types
* Objects

e Control structures — uses standard control structures

e If else
e For
 While
e Switch

e Functions
 Fundamental building blocks of R
* Functions are objects

e 3 main objectives
* Body ()
e Formals ()
* Environment ()

el

Getting started on reading Data

 Multiple ways to read data into R
 Read.table, read.csv
e readLines
e Source
e Dget
e Load
o Unserialize

el

Reading Data

Import an entire log file into a variable
data <- read.table(“logfile.txt”)

* File — where to get the data
 Header — indicates header line
 Sep — how columns are separated
o StringsAsFactors

» colNames — Names of the columns

el

Connections

 File — opens connection to file

» Gzfile — opens connection to gzip

» Bzfile — opens connection to bzip2
 url — opens connection to webpage

“ul
-_—
o

Cleaning up the memory mess

Your friends:

rm(list=Is()) — removes everything from
memory

ctrl + L — clears the console

Now it's time to dance!

Case Study

Web logs

8 LT @10 50
- HeER]

i HT-E/.,
T L T
AT,
amcgleboe i Ly
F Lowh o]

ATTRAL 07 B

r o AU LSS FArar
mape Syt oy e, | = i L
AT T v '

= o]
-rafonss. oL

Step 1. Gather the logs

Step 2: Parse the logs

Ambition
Is the first
step to
success.

The second
step is
action.

Step 3: Analyze the datain R

Reason’s last step is the recognition that there are
an infinite number of things which are beyond it.

(Blaise Pascal)

izquotes.com

Case Study: Reading the data

apachelogs <- read.csv(
file = "other_vhosts access.log"
,sep=""
, header = FALSE
, stringsAsFactors=FALSE)

Console

> apacheweblogs <- read.csv(

+ file = "other_vhosts_access.log"
+ , sep="",

+ , header = FALSE

+ , StringsAsFactors=FALSE)

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html

gl “

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html

Example of log files

e Apache weblogs without column names

V1 V2 V3 V4 V5 V6 V7

1 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +@00@] GET / HTTP/1.1

2 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:36 +0000] GET /css/base.css HTTP/1.1

3 127.9.1.1:80 192.168.72.137 - - [14/May/2015:10:14:36 +0000] GET /css/ui.tabs.css HTTP/1.1

4 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0000] GET /js/ui.core.js HTTP/1.1

5 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0000] GET /js/ui.tabs.js HTTP/1.1

6 127.9.1.1:80 192.168.72.137 - - [14/May/2015:10:14:36 +0000] GET /images/webmin.png HTTP/1.1

7 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0000] GET /images/phpmyadmin.png HTTP/1.1
8 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +@080] GET /js/jquery-1.2.6.js HTTP/1.1

9 127.9.1.1:80 192.168.72.137 - - [14/May/2015:108:14:360 +0000] GET /images/tab.png HTTP/1.1
10 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0000] GET /images/shell.png HTTP/1.1
11 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0000] GET /favicon.ico HTTP/1.1
12 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:18 +@0@@] GET / HTTP/1.1
13 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:18 +0000] GET /database-offline.php HTTP/1.1
14 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:18 +0000] GET /styles/global-styles.css HTTP/1.1
15 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:18 +0000] GET /favicon.ico HTTP/1.1
16 127.6.1.1:80 192.168.72.137 - - [14/May/2015:15:18:32 +0000] GET /set-up-database.php HTTP/1.1
17 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:38 +@000] GET /index.php HTTP/1.1
18 127.0.1.1:80 192.168.72.137 - - [14/May/2015:15:18:39 +0000] GET /database-offline.php HTTP/1.1

Diving deeper
e Understand your log format

e Apache log format

127.0.1.1:443 192.168.72.1 - - [17/May/2015:17:41:02 +0000] "GET
/images/cage.png HTTP/1.1" 200 4792
"https://192.168.72.151/index.php?page=capture-data.php"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10 9 5)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.152

Safari/537.36"

el

Case Study: Reading the data

apachelogs <- read.csVv(

fille = "other_vhosts_access.log”

,sep=""

, header = FALSE

, stringsAsFactors=FALSE

, col.names = c("Remote Host","Destination
Host", "NULL1", "NULL2", "Date", "Zone", "Url

Request”, "Response Code", "Bytes",
"Response”, "User Agent"))

Console

> apachelogs <- read.csv(

+ file = "other_vhosts_access.log"

+,sep="",

+ , header = FALSE

+ , stringsAsFactors=FALSE

+ , col.names = c("Remote Host","Destination Host", "NULL1", "NULL2", "Date", "Seconds™, "Url Request", "Response Code", "Bytes", "Respone", "User Age

nt"))

Example of log files

e Apache weblogs without column names

Remote.Host Destination.Host NULL1 NULL2 Date Zone Url.Request

1 127.@.1.1:8@ 192.168.72.137 - - [14/May/2015:18:14:30 +0eea] GET / HTTP/1.1

2 127.@.1.1:8@ 192.168.72.137 - - [14/May/2015:18:14:30 +0eea] GET /css/base.css HTTP/1.1

3 127.@.1.1:8@ 192.168.72.137 - - [14/May/2015:18:14:30 +0eea] GET /cssfui.tabs.css HTTP/1.1

4 127.@.1.1:8@ 192.168.72.137 - - [14/May/2015:18:14:30 +0eea] GET /js/ui.core.js HTTP/1.1

5 127.8.1.1:8@ 192,.168.72,137 - - [14/May/2015:108:14:30 +2088] GET /js/ui.tabs.js HTTP/1.1

6 127.e.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +@008] GET /images/webmin.png HTTP/1.1

7 127.e.1.1:80 192.168.72.137 - - [14/May/2015:18:14:30 +0000] GET /images/phpmyadmin.png HTTP/1.1
8 127.@.1.1:8@ 192.168.72,137 - - [14/May/2015:18:14:30 +0008] GET /js/iquery-1.2.6.3s HTTP/1.1

9 127.e.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0008] GET /images/tab.png HTTP/1.1

10 127.e.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +@008] GET /images/shell.png HTTP/1.1

11 127.0.1.1:80 192.168.72.137 - - [14/May/2015:10:14:30 +0008] GET /favicon.ico HTTP/1.1

12 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:18:18 +0988] GET / HTTP/1.1

13 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:18:18 +0988] GET /database-offline.php HTTP/1.1
14 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:18:18 +@@8@8] GET /styles/global-styles.css HTTP/1.1
15 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:18:18 +0988] GET /favicon.ico HTTP/1.1

16 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:18:32 +2088] GET /set-up-database.php HTTP/1.1
17 127.@.1.1:88 192.168.72.137 - - [14/May/2015:15:18:38 +0288] GET /index.php HTTP/1.1

18 127.9.1.1:88 192.168.72.137 - - [14/May/2015:15:18:39 +0098] GET /database-offline.php HTTP/1.1
19 127.9.1.1:88 192.168.72.137 - - [14/May/2015:15:18:56 +0098] GET /index.php HTTP/1.1
20 127.9.1.1:88 192.168.72.137 - - [14/May/2015:15:18:56 +0098] GET /database-offline.php HTTP/1.1
21 127.9.1.1:88 192.168.72.137 - - [14/May/2015:15:19:14 +0098] POST /database-offline.php HTTP/1.1
22 127.9.1.1:88 192.168.72.137 - - [14/May/2015:15:19:14 +0098] GET /index.php HTTP/1.1
23 127.8.1.1:88 192.168.72.137 - - [14/May/2815:15:19:17 +0@@@] GET /index.php HTTP/1.1

1
2
3
4
5
6
7

Clean up

« Remove the columns
apachelogs$Zone <- NULL

Remote.Host

127.
127.
127.
127.
127.
127.
127.

9.

e
e
e
Q.
e
e

1.

1
1
1
1.
1
1

1:
1:890
1:89
1:89
1:
1

1

80

80

:80
;80

Date

[14/May/2015:
[14/May/2015:
[14/May/2015:
[14/May/2015:
[14/May/2015:
[14/May/2015:
[14/May/2015:

10:
10:
10:
10:
10:
10:
10:

14:
14:
14:
14:
14:
14:
14:

30
30
30
30
30
30
30

Url.Request

GET
GET
GET
GET
GET
GET
GET

/ HTTP/1.1

/css/base.css HTTP/1.1
/css/ui.tabs.css HTTP/1.1
/js/ui.core.js HTTP/1.1
/js/ui.tabs.js HTTP/1.1
/images/webmin.png HTTP/1.1
/images/phpmyadmin.png HTTP/1.1

Packages

* Lots of functionality not delivered in the basic R
install

* Bring on the packages

 Where can | find packages?
R Cran or Bioformatics or Github

« install.packages("ggplot2")
 library(ggplot2)

el

Is that all?

Visualize

» Ggplot2 allows for plotting information in a
graph

LLLLLLLLLLL
nnnnnnnn

©
=
©
o
—
7]
©
2
©
=
£

Let’s try It!

« Back to our web logs

 What would be interesting to graph?
 How about Remote Hosts and Bytes? Why Not?

p <- gplot (Remote.Host, Bytes, color = Bytes, data =
apachelogs)

But we need to clean it up a bit as always:

p + theme(axis.text.y=element_text(hjust=0,
angle=0), axis.text.x = element_text(hjust=0,
angle=90))

L

And we now have value

BBBBB

BO000

Shiny

 Let’s get creative!
 Shiny allows us to build our own dashboard
* R programs embedded into a web page

 Prediction algorithms — Shiny can call your
algorhithm and display the results

e Uses bootstrap (looks nice and mobile friendly)

el

We can build Web Apps!

806 Basic widgets x

cC f 127.0.0.1:4733

Basic widgets

Buttons Single checkbox Checkbox group Date input
Action o Choice A ¥ Choice 1 2014-01-01
Choice 2
m Choice 3
Date range File input Help text Numeric input
2014-01-24 4o 2014-01-24 Choose File | W0 file chosen Note: help text isn't a true widget, but it 1
provides an easy way to add text to
accompany other widgets.
Radio buttons Select box Sliders Text input
* Choice 1 Choice 1 3 Enter text... ?"5“’“'“' Publish
Choice 2 25 5
Choice 3 e

—/

Number of bins:
1 37}

25

=

2 -

T

3

o

=

L o
0

Histogram of x

50

B0

&0

Case Study with R

e Again understand what your log format is
 Know how you want to organize your data
 Know what field headers they contain
e Cleaning up your data can be teadious but worth it

e There is much more to cleaning up the data than
time allows

* R allows for RegEX’s,

el

Now Lets Maximize!

 Merge multiple data sets into one
e Clean out the garbage data

Tidy it up!

e How about this scenario?

* Web application is suspected of being
compromised?

 What do we need to investigate?
* Web Application Logs

Web Server Logs

Firewall Logs

Server Logs

What other logs are available?

el

Tidyr & dplyr

e The tidyr package makes it easy to reshape
the layout of your data sets while retaining the
relationships embedded in the data

 Makes your data “Tidy”

e Group your data with dplyr

el

Putting 1t all together

R allows us to pull the data directly from the sources
- pull out the interesting information
- create a script for the following:
- reading the logfiles
- pulling data (website, web crawling of data)

- once data sets are pulled we need to clean them (remove
columns, null data, unnecessary fields)

- next script them to merge into one giant data set

- Factors to consider
- many to many relationships
- need to understand data to validate the merges and joins
- multiple sets of code for graphics and visualization

el

End Results

 One massive data set that can be scripted,
searched, and visualized

e Create algorithms to determine normal

 Show us the outliers, strange data, things not
expected

o Activity of certain data sets

el

Data Exploration

How to Apply in Real World?

What if we were to take data from a bad
reputation IP list and map it?

Yes We Can!

By using libraries such as ggplot, lattice, googleVis,
ggmap and calling the URL we can download a
reputation list and plot the locations on the map!

Baselines

« Baseline 7 days Database logs
o - Take 1 hr of SQL Queries or 1 Day or 1 Week

- TimeStamps

- Server Type (which servers accessed the most)
- Client IP / Server IP

- DB Usernames

- Source Program (to help identify client source)
- SQL guery

el

How about Netflow data

Top Talkers
- Who is talking to whom?
- what date/time
- volume

Bottom Talkers

Can we build our own SIEM?
- Live Data vs Archived Data issues

el

Feed your animal

Behavior based analysis
Recon analysis
Indicators of Compromise
Vulnerability Scanning

Unlimited Possibilities

How does this scale?

* [t won't always scale on your desktop
» Good for incident response analysis

e Long term need to move to big data Hadoop
type solution

* Big R runs on Hadoop

el

cheatsheets

 Plenty of cheatsheets available from Rstudio
 http://www.rstudio.com/resources/cheatsheets/
* R Dir
 http://r-dir.com/reference/crib-sheets.html

* R Bloggers

 http://www.r-bloggers.com/the-data-table-
cheat-sheet/

L

http://www.rstudio.com/resources/cheatsheets/
http://r-dir.com/reference/crib-sheets.html
http://www.r-bloggers.com/the-data-table-cheat-sheet/

Thank you!

Questions?

	Slide Number 1
	Incident Response Programming with R
	About Me?
	Agenda
	Disclaimer
	So What Will This Teach Me?
	Frequently Asked Questions
	Evolution
	Issues…
	The good news
	Incident Response
	Lifecycle
	Post Incident Evolution
	Why R?
	Quirks
	Where to begin?
	R Project
	RStudio
	Memory	
	Up and Running
	Overview of R
	Quick Overview of R
	Getting started on reading Data
	Reading Data
	Connections
	Cleaning up the memory mess
	Now it’s time to dance!
	Case Study
	Step 1: Gather the logs�
	Step 2: Parse the logs
	Step 3: Analyze the data in R
	Case Study: Reading the data
	Example of log files
	Diving deeper
	Case Study: Reading the data
	Example of log files
	Clean up
	Packages
	Is that all?
	Visualize
	Let’s try it!
	And we now have value
	Shiny
	We can build Web Apps!
	Case Study with R
	Now Lets Maximize!
	Tidy it up!
	Tidyr & dplyr
	Putting it all together
	End Results
	Data Exploration
	How to Apply in Real World?	
	Yes We Can!
	Baselines
	How about Netflow data
	Feed your animal
	How does this scale?
	cheatsheets
	Thank you!

