
AIL Framework for Analysis of Information Leaks
From a CSIRT use-case towards a generic analysis open source software

Team CIRCL - TLP:WHITE

info@circl.lu

FIRST 2017

Leaks and CSIRT day-to-day operations

• Analysing and notifying about information leaks can be time
consuming (e.g. national/sectoral CSIRT level)

• Notification can be challenging (e.g. what kind of trusted channels
do you have to communicate with a victim?)

• When leaks are publicly known, interaction with media/press
can be significant

• Analysis of mixed structured and unstructured data from
untrusted sources (e.g. fake and duplicate leaks)

2 of 29

A source of leaks: Paste monitoring

• Example: http://pastebin.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & configuration information

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerability (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials (3rd party)
→ Credit card details

◦ ... more and more ...

3 of 29

http://pastebin.com/

Paste monitoring at CIRCL: Key numbers

• Monitored paste sites: 27

• Keywords - Search terms: 420

• Keywords - Constituency related: 90

• Time for one ticket: 5 min - 1 hour

Table : Key numbers for 2016

Pastes 2016 Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec

Fetched pastes 1 439 453 1 537 186 1 719 646 1 622 674 1 595 881 1 561 700 1 422 628 1 443 938 1 519 026 1 581 793 1 656 985 1 464 214
Keywords hits 5394 4407 4072 11 455 4722 4158 4083 3796 4235 3970 4155 4350
Constituency hits 1792 1402 741 1273 1146 795 598 644 717 953 736 643
Security related (TR-46) 30 22 28 19 15 13 16 8 13 22 38 28

Incidents & investigations 65 55 76 44 31 36 40 21 39 59 104 79

4 of 29

Paste monitoring: Statistics

Table : Statistics for 2016

Pastes 2016 Monthly average Total

Fetched pastes 1 547 094 18 565 124
Keywords hits 4900 58 797
Constituency hits 953 11 440
Security related (TR-46) 21 252

Incidents & investigations 54 649

5 of 29

Paste monitoring: TR-46 approach

https://www.circl.lu/pub/tr-46

6 of 29

https://www.circl.lu/pub/tr-46

Paste monitoring: TR-46 approach

• How to deal with numerous requests from press/media or potential
victims. The TR-46 document includes:
◦ Risks with stolen email addresses
◦ Risks with stolen (hashed) passwords
◦ How to mitigate the risks
◦ How to prevent collateral damage
◦ How do we find leaks
◦ Reference of leaks (with the number of affected users in CIRCL’s

constituency)

• We don’t provide any form for validation of email/credential leaks.
This can be conflictual with general security awareness (e.g.
entering email/credentials on unknown websites).

7 of 29

Paste monitoring: TR-46 approach

8 of 29

AIL Framework

• AIL initially started as an internship project (2014) to evaluate the
feasibility to automate the analysis of (un)structured information
to find leaks.

• In 2017, AIL framework is an open source software in Python. The
software is actively used (and maintained)1 by CIRCL.

• Extending AIL to add a new analysis module can be done in 50
lines of Python.

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import.

1To follow our mantra: to ”eat our own dogfood”
9 of 29

AIL Framework

10 of 29

AIL

11 of 29

AIL

12 of 29

AIL

13 of 29

AIL

14 of 29

AIL

15 of 29

AIL

16 of 29

AIL

17 of 29

AIL

18 of 29

AIL

19 of 29

AIL

20 of 29

AIL

21 of 29

AIL - Sentiment Analysis

22 of 29

AIL - Run your own instance

https://github.com/CIRCL/AIL-framework

23 of 29

https://github.com/CIRCL/AIL-framework

AIL - Run your own instance: With pystemon

https://github.com/CIRCL/pystemon

24 of 29

https://github.com/CIRCL/pystemon

AIL - Run your own instance: Use CIRCL feed

Request access at: info@circl.lu

25 of 29

mailto:info@circl.lu

AIL - Add your own module

Choose where to locate your module in the data flow:

26 of 29

AIL - A sample module structure

import time

import re

from pubsublogger import publisher

from packages import Paste

from Helper import Process

if __name__ == ’__main__ ’:

Port of the redis instance used by pubsublogger

publisher.port = 6380

Script is the default channel used for the modules.

publisher.channel = ’Script ’

Section name in bin/packages/modules.cfg

config_section = ’Cve’

Setup the I/O queues

p = Process(config_section)

Sent to the logging a description of the module

publisher.info("Run CVE module")

Endless loop getting messages from the input queue

while True:

message = p.get_from_set ()

if message is None:

publisher.debug("{} queue is empty , waiting".format(config_section))

time.sleep (1)

continue

cveextract(message)

27 of 29

Conclusion

• Building AIL helped us to find additional leaks which cannot be
found using manual analysis and improve the time to detect
duplicate/recycled leaks.

• → Therefore quicker response time to assist and/or inform
proactively affected constituents.

• Separating collection and analysis parts allowed us to extend the
models in the CSIRT services.

• The modular architecture helped us to use the extracted data to
feed Passive DNS or crawl Tor .onion.

• Ongoing work: Integrating AIL leak into MISP to curate, share
and collaborate on leaks.

28 of 29

• Q&A

• https://github.com/CIRCL/AIL-framework

• Don’t hesitate to contact us for feed access/exchange or ideas at
mailto:info@circl.lu

29 of 29

https://github.com/CIRCL/AIL-framework
mailto:info@circl.lu

