Blackhole Networks an Underestimated Source for Information Leaks

Alexandre Dulaunoy CIRCL -TLP:WHITE

Team CIRCL - Team Restena

FIRST2017

Motivation and background

- IP darkspace or black hole is
 - **Routable non-used address space** of an ISP (Internet Service Provider),
 - incoming traffic is unidirectional
 - and unsolicited.
- Is there any traffic in those darkspaces?
- If yes, what and why does it arrive there?
 And on purpose or by mischance?
- What's the security impact?
- What are the security recommendations?

4 years in the life of a printer

from a series of packets hitting our darkspace

Printer sending syslog to the IP darkspace

```
2014-03-12 18:00:42
SYSLOG lpr.error printer: offline
or intervention needed
2014-03-23 21:51:24.985290
SYSLOG lpr.error printer: paper out
...
2014-08-06 19:14:57.248337
SYSLOG lpr.error printer: paper jam
```


Syslog: printer activity (single source)

date

Business days based on the printer activity

Syslog: printer activity per week starting on Monday

6 of 33

Printer activity and business hours

7 of 33

- Attackers (and researchers) scan networks to find vulnerable systems (e.g. SSH brute-force)
- Backscatter traffic (e.g. from spoofed DoS)
- Self-replicating code using network as a vector (e.g. conficker, residual worms)
- Badly configured devices especially embedded devices (e.g. printers, server, routers)
 - $\circ \to \text{Our IP}$ darkspace is especially suited for spelling errors from the RFC1918 (private networks) address space

Why is there traffic

Typing/Spelling errors with RFC1918 networks

• While typing an IP address, different error categories might emerge:

Hit wrong key	19 2 .x.z.y \rightarrow	19 3 .x.y.z
	172.x.y.z	1 5 2.x.y.z
Omission of number	1 9 2.x.y.z $ ightarrow$	12.x.y.z
Doubling of keys	10.a.b.c $ ightarrow$	10 0 .a.b.c

Research activities related to spelling errors

Spelling errors apply to text but also network configuration

- 34% omissions of 1 character
 Example: Network → Netork
- 23% of all errors happen on 3rd position of a word \circ Example: Text \rightarrow Test)
- 94% spellings errors are single errors in word
 - And do not reappear

References

- Pollock J. J. and Zamora A., Collection and characterization of spelling errors in scientific and scholarly text. J. Amer. Soc. Inf. Sci. 34, 1, 51 58, 1983.
- Kukich K., Techniques for automatically correcting words in text. ACM Comput. Surv. 24, 4, 377-439, 1992.

What are the most common antivirus software?

by using the DNS queries hitting your darkspace

Sample subset of DNS queries towards antivirus vendors domains

- 1 0.0.0.16a8.20ae.2f4a.400.7d.igkhab8lsrnzhj726ngu8gbsev. avgs.mcafee.com A INET 127.161.0.128
- 2 0.0.0.16a8.20ae.2f4a.400.7d.sdszgsg5a6j516p9nui9jfz5mj. avgs.mcafee.com A INET 127.161.0.128
- 3 40.ucp-ntfy.kaspersky-labs.com
- 4 46.ucp-ntfy.kaspersky-labs.com
- 5 6.ucp-ntfy.kaspersky-labs.com
- 6 dnl-06.geo.kaspersky.com.<COMPANYNAME>.local
- 7 shasta –mr–clean.symantec.com
- shasta mrs. symantec. com
- 9 shasta -nco-stats .symantec .com

Scripting your statistics for antivirus installations

- Extract a list of words from VirusTotal (antivirus products supported)
- Match the DNS queries with extracted words (e.g. be careful with fake antivirus)
- Filter per source IP address (or aggregated subnets) to limit the result per organisation
- Plot the number of hits per aggregated words using in a single antivirus product name

A/V Statistics from Misconfigured Resolvers

14 of 33

How do we collect all this crap?

by listening to the void

15 of 33

Collection and Analysis Framework

Collection and Analysis Framework

Collection and Analysis Framework

or to keep the collection as simple as possible

- Minimal sensor collecting IP-Darkspace networks (close to RFC1918 address space)
- Raw pcap are captured with the full payload
- Netbeacon¹ developed to ensure consistent packet capture
- Potiron² to normalize, index, enrich and visualize packet capture

¹https://github.com/adulau/netbeacon/ ²https://github.com/CIRCL/potiron

- From 2012-03-12 until Today (still active)
- More than 700 gigabytes of compressed raw pcap collected
- Constant stream of packets from two /22 network blocks
 o no day/night profile.
- Some peaks at 800kbit/s (e.g. often TCP RST from backscatter traffic but also from typographic errors)

- A large part of traffic is coming from badly configured devices (**RFC1918 spelling errors**)
 - $\circ\;$ Printers, embedded devices, routers or even server.
 - Trying to do name resolution on non-existing DNS servers, NTP or sending syslog messages.
- Even if the black hole is passive, payload of stateless UDP packets or even TCP (due to asymmetric routing on misspelled network) datagrams are present
- Internal network scanning and reconnaissance tool (e.g. internal network enumeration)

Observation per AS

Traffic seen in the darknet

Ν	Frequency	ASN
1	4596319	4134
2	1382960	4837
3	367515	3462
4	312984	4766
5	211468	4812
6	166110	9394
7	156303	9121
8	153585	4808
9	135811	9318
10	116105	4788
20 of 33		

- Occurrences of activities related to the proportion of hosts in a country
- The Great Firewall of China is not filtering leaked packets
- Corporate AS number versus ISP/Telco AS number

How to build your "next" network reconnaissance tools?

by listening to the void

21 of 33

Network reconnaissance (and potential misuse): DNS

```
1 3684 _msdcs.<companyname>.local
2 1232666 time.euro.apple.com
3 104 time.euro.apple.com.<mylocaldomain>
4 122 ocsp.tcs.terena.org
5 50000+ ocsp.<variousCA>
```

- DNS queries to an incorrect nameserver could lead to major misuse
- A single typographic error in a list of 3 nameservers is usually unnoticed

Software Updates/Queries from Misconfigured Resolvers

- Discovering software usage (and vulnerabilities) can be easily done with passive reconnaissance
- Are the software update process ensuring the integrity of the updates?

Network Reconnaissance - A source for your smart DNS Brute-Forcer

ASTTE NET HELP.163.COM ASUEGYLINEO HP CLIENT1 ASUS1025C MACBOOKAIR-CAD7 DEFAULT MACBOOK-B5BA66 DELICIOUS.COM MACBOOKPRO-5357 DFL MAIL.AFT20.COM And many more ... **DELL1400** S3.QHIMG.COM DELL335873 SERVERWEB DELL7777 SERVEUR DELL-PC SERVICE.QQ.COM DELLPOP3 SMTP.163.COM

- Smart DNS Brute-Forcer³⁴ uses techniques from natural language modeling with Markov Chain Models
- The processor relies on passive DNS data to generate the statistics and extract the features.
- The DNS queries seen in the **IP darkspace can be considered as a passive DNS stream** with a focus on internal network.
- Providing a unique way to create internal DNS brute-forcers from external observations.

³https://www.foo.be/papers/sdbf.pdf ⁴https://github.com/jfrancois/SDBF

Network Reconnaissance: NetBios Machine Types (1 week)

- 23 Browser Server
- 4 Client?
- 1 Client? M <ACTIVE>
- 21 Domain Controller
- 1 Domain Controller M <ACTIVE>
- 11 Master Browser
- 1 NameType=0x00 Workstation
- 1 NameType=0x20 Server
- 105 Server
- 26 Unknown
- 1 Unknown <GROUP> B <ACTIVE>
- 5 Unknown <GROUP> M <ACTIVE>
- 1322 Workstation
- $1_{26 \text{ of } 33}$ Workstation M <ACTIVE>

Building your credentials brute-forcer/database

• Many usernames, passwords are released in the void:

```
1 2017-04-04 11:59:56.572914 IP c.207.39.102.13752 > a.b
.65.185.161: C="mifibo13#" GetRequest(41)
.1.3.6.1.2.1.1.3.0 .1.3.6.1.2.1.1.1.0
2 2017-04-04 12:59:59.887658 IP c.207.39.102.62681 > a.b
.65.185.161: C="mifibo13#" GetRequest(41)
.1.3.6.1.2.1.1.3.0 .1.3.6.1.2.1.1.1.0
3 2017-04-04 13:00:00.690714 IP c.207.39.102.62681 > a.b
.65.185.161: C="mifibo13#" GetRequest(41)
.1.3.6.1.2.1.1.3.0 .1.3.6.1.2.1.1.1.0
```

• Building a password brute-forcer database for internal networks from the misconfigured devices leaking SNMP or Syslog.

How to configure your router (without security)

Enable command logging and send the logs to a random syslog server

Aug 13 10:11:51 M6000-G5 command-log:[10:11:51 08-13-2012
VtyNo: vty1 UserName: XXX IP: XXX ReturnCode: 1
CMDLine: show subscriber interface gei-0/2/1/12.60
Aug 13 10:46:05 M6000-G5 command-log:[10:46:05 08-13-2012
VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1
CMDLine: conf t]
Aug 13 10:46:10 M6000-G5 command-log:[10:46:10 08-13-2012
VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMD
Line: aaa-authentication-template 1100]

We will let you guess the sensitive part afterwards...

. . .

Classifying traffic origin by TCP sequence analysis

The straight line...

	<pre>iph->id = rand_next();</pre>
	iph->saddr = LOCAL_ADDR;
	<pre>iph->daddr = get_random_ip();</pre>
214	iph->check = 0;
	<pre>iph->check = checksum_generic((uint16_t *)iph, sizeof (struct iphdr));</pre>
216	
	if (i % 10 == 0)
218	(
219	<pre>tcph->dest = htons(2323);</pre>
220)
	else
	(
	tcph->dest = htons(23);
224)
	tcph->seq = iph->daddr;
226	<pre>tcph->check = 0;</pre>
	tcph->check = checksum_tcpudp(iph, tcph, htons(sizeof (struct tcphdr)), sizeof (struct tcphdr));
228	
229	<pre>paddr.sin_family = AF_INET;</pre>
230	paddr.sin_addr.s_addr = iph->daddr;
	paddr.sin_port = tcph->dest;
	sendto(rsck, scanner_rawpkt, sizeof (scanner_rawpkt), MSG_NOSIGNAL, (struct sockaddr *)&paddr, sizeo
234	}

 Ongoing research at CIRCL to improve the classification of the sources (e.g. separating backscatter, worm activities or typographic errors)

Recommendations for operating an IP darkspace

- Capture raw packets at the closest point, don't filter, don't try to be clever, just store it as it.
- Test your network collection mechanisms and storage. Send test network beacons. Check the integrity, order and completness of packets received.
- You never know in advance which features is required to distinguish a specific pattern.
- Did I mention to store RAW PACKETS?

Conclusions

- Security recommendations
 - $\circ~$ Default routing/NAT to Internet in operational network is evil
 - Use fully qualified domain names (resolver search list is evil too)
 - Double check syslog exports via UDP (e.g. information leakage is easy)
 - Verify any default configuration with SNMP (e.g. enable by default on some embedded devices)
- Offensive usage? What does it happen if a malicious "ISP" responds to misspelled RFC1918 addresses? (e.g. DNS/NTP requests, software update or proxy request)

- Some research idea on the IP darkspace topic? Contact us mailto:info@circl.lu
- Twitter: @circl_lu @adulau
- If you have some unused IP spaces, don't hesitate to contact us.