COUNTERING INNOVATIVE SANDBOX
EVASION TECHNIQUES USED BY MALWARE

Frederic Besler, Carsten Willems, and Ralf Hund

Introduction

State of the Art malware analysis systems use hybrids of static and
dynamic analysis

Dynamic analysis usually in form of behavior based detection aka.
sandbox

Malware tries to detect and evade sandbox

We need to talk about sandbox evasion and anti-evasion

Evasion Techniques - Categories

SANDBOX X

1. Detect the 2. Defeat the 3. Context
Sandbox Monitor Awareness

* Categories are fuzzy and overlap

1. Detect the Sandbox

>

1. Detect the Sandbox

Actively detect the analysis environment
If in analysis environment: Quit or act benign

Else: Execute the malicious code

Most commonly used methods:
Detect underlying technology, e.g. hypervisor or emulator

Detect specific sandbox product, e.g. check for files or processes
Detect artificial environments, e.g. check for “clean” system

1. Detect the Sandbox — Virtualization Artifacts

Detect Virtualization via Artifacts

Examples. REG BLACKLIST = ["vbox", "vmware", "bochs",
= Registry, Files (Software, Drivers), Processes ::qefgt"'::red-??at"' "virt.?10%, “kvmnet®,
netkvm -, ...
= Device Names, Device IDs, MACs PROC BLACKLIST = ["vbox.*\.exe",
"vmware.*\.exe", "prl .*\.exe", ...]
= SMBIOS, ACPI tables VENDOR IDS = {
Oxla71: "XenSource, Inc."
= 10 Ports (VMWare, KVM/QemU) Ox5853: "XenSource, Inc."
oxfffd: "XenS , Inc."
» Large attack surface Oxloads “yMumrer o
£ - Essential virtual devices are hard to hide Oxfffe: “VMWare Inc (temporary ID)*
fg Ox80ee: "InnoTek Systemberatung GmbH"
: : Oxlaf4: "Red Hat, Inc."
- Clean registry, remove files, ... DOie e ik, dte”
- Don't use paravirt. Devices } |

* Use custom hypervisor

Counterm.

1. Detect the Sandbox — Virtualization

CPUID struc‘_c { int EAX; int EBX; int ECX; int EDX; } out;
.. T7cpl|11dex((1nt*)&out, 1, 0);
CPU tells guest that it is s =
virtualized

char out[4 * 4 + 1] = { 0 };
. __cpuidex((int*)out, 0x40000000, 0);
ExampleS. if (strlen(out + 4) >= 4)
()

= CPUID Hypervisor Bit N
= CPUID Hypervisor Brand String
HV Bit: @ HV Bit: 1

= Other CPUID Artifacts (e.g. Function N Brand: '@’ HV Brand: 'VBoxVBoxVBox'
0x80000009) .

No false positives
Can be disabled (requires support of HV)

Real System Virtualized System

- Disable where possible

Counterm. Malware

1. Detect the Sandbox — Virtualization

Side Channels

long long s, acc = 0;

HV consumes CPU cycles for Zg;ﬂ;r;ti’é(if 100 ++i) 1
HV and VM(s) share resources } e
Examples: 17 tacc / 100 < 20)
Time instructions
Time caching side effects Real System Virtualized System

CPUID avg. time: 145 CPUID avg. time: 4581

Very hard to prevent
Specific to hardware
Can be noisy

Malware

Heuristics to detect specific attacks
Spoof timer values

Counterm.

1. Detect the Sandbox — Artificial Environment

Unusual Hardware Characteristics

Examples:
CPU type, number cores
HD space Ram wmic cpu get NumberOfCores
’ wmic memorychip get capacity
Printers wmic diskdrive get size
: : wmic printer get name
USB devices/sticks wmic desktopmonitor get screenheight, screenwidth

. . wmic path win32 VideoController get name
Display resolution

Huge attack surface
Expensive to fake

Malware

Give VM realistic resources
Fake values

Counterm.

1. Detect the Sandbox — Artificial Environment

User Artifacts

Examples: REG_KEYS = [
"SOFTWARE\\Microsoft\\Office\\VERSION\\PRODUCT\\File MRU",

= |nstalled software "SOFTWARE\\Microsoft\\0ffice\\VERSION\\PRODUCT\\Place MRU",
"SOFTWARE\\Microsoft\\Office\\VERSION\\PRODUCT\\User MRU",

. o

COOkIeS; entered URLS "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\TypedPaths"
. "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\WordWheelQuery"

] FQEE(:(ar]tl)/ LJE;(E(j f||(3£; "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMRU"
"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\ComD1g32*",

= Entered commands "SOFTWARE\\Microsoft\\Internet Explorer\\TypedURLs",

"SOFTWARE\\Microsoft\\Internet Explorer\\TypedURLsTime",

Huge attack surface
Can be faked (laborious but not complex)

Malware

- Add random data

Counterm.

2. Defeat the Monitor

&R

»

2. Defeat the Monitor

Exploit weaknesses in the monitor

Most attacks only work against a single product or underlying
technology

Some methods only effective vs. in-guest monitoring (i.e. Hooking)
Others more generic and work in all sandboxes

2.

Malware

Counterm.

Defeat the Monitor — Hooking

Remove Hooks

Examples:

Restore instructions from disk
(check signature ©)

Restore |IAT, EAT

Noticeable
Can cause instability

Check hook integrity

API

Hook Function

Regular

0x00: call API

0x00: mov edi, edi
0x02: push ebp
0x03: mov ebp, esp
0x05: push ecx
0x07: .. more ..
Oxff: ret

API

Hooked

0x00: call APIT

0x00: jmp Hook

0x05: push ecx
0x07: .. more ..
Oxff: ret

Reconstruct Instructions

2. Defeat the Monitor — Hooking

Circumvent Hooks

Examples:
Use System calls

Use undocumented APIs

Unaligned function calls ,2Unaligned Call”

0x00: push 0x0c

Regular Call Hooked Call

0x00: call API 0x00: call API 0x02: di, edi
2~ Hard to counter on0t: oen eop
2 c ' 0x05: mov ebp, esp
= Can cause instability x0T o meetons
=
E MOVG hOOkS deeper IntO 0x00: mov edi, edi 0x00: jmp Hook 0x00: jmp Hook
O 0x02: push ebp
= the SyStem N 0x03: mov ebp, esp T T
- <t 0x05: push ecx <t 0x05: push ecx <t 0x05: push ecx
ég 0x07: .. more .. 0x07: .. more .. 0x07: .. more ..

Oxff: ret Oxff: ret Oxff: ret

2. Defeat the Monitor — Generic

Delay Execution

Malware

Execute malicious code after timeout

Implementations range from simple to
complex

Problems:
Multitude of different time sources

= GetTickCount, RDTSC, SharedUserData, internet, ...

Multitude of timer functions

= Sleep, WaitFor*Object, SetTimer, timeSetEvent, ...

Hard to counter (if done right)
Easy to implement

Effective Analysis Time

Malware
Execution

Sleep(10 * 60 * 1000);
do evil();

Sandbox Timeout

Time

2. Defeat the Monitor — Generic

Delay Execution

Fast Forward Sandbox Execution
Patch particular calls
Problems: Risk of inconsistent state, e.g., all time sources need to be synced

Manipulate timer behavior
Problems: Could cause system instabilities, not trivial to implement

Counterm.

Manipulate whole system time

Problems: Could cause system instabilities, increases system load
DWORD evil thread(void *p) {
Sleep(10 * 60 * 1000);
do evil();

}

CreateThread(..., &evil thread,
Sleep(10 * 3600 * 1000);
TerminateProcess(-1, 0);

)

2. Defeat the Monitor — Generic

Exploit Monitoring Costs
Monitoring consumes CPU time = malware execution takes longer
Use code that is computationally intensive for the monitor

Postpone malicious behavior until after sandbox timeout

Examples: Effective Analysis Time
APl hammering

Easy to implement
) Normal
Generally very noisy execution

Malware

Monitored
execution

- Adaptively (de) activate
the monitor

Counterm.

2. Defeat the Monitor — Case Study

Probabilistic JS decoding
Decoder is generated in brute-force fashion

Without monitoring, payload is generated in one minute
With monitoring:

= Monitoring the interpreter costs time

= eval() calls are expensive for analysis environments

= Result: Execution time increases by an order of one magnitude

function e37b0(){

return new Array('a7493','ret', 'ec468')[Math.floor(Math.random()*3)];
}
function b32eb(){

return new Array('a7493', 'arCode(parseln', 'ec468')[Math.floor(Math.random()*3)];

}
function ed6ef(){

return new Array('a7493','.substr(2,2),1','ec468', 'ec468', 'ec468')[Math.floor(Math.random()*5)];
}
function eb6e0(aad69){

return (new Function('ec071',''+e37bO()+''+'urn'+''+"' String'+''+'.fromCh'+b32eb()+'t(ec071'+ed46ef()+'6)"6)"') (aad69));
}

3. Context Awareness

>

3. Context Awareness

Neither detect nor defeat sandbox
Instead execute payload only in certain context

Different variants:
Wait to trigger condition, e.g., user interaction

Check for specific environment, e.g., company domain

3. Context Awareness — User Interaction

Malware

Counterm.

Specific User interaction

Automated Sandboxes can not interact
meaningfully

Examples:

= Fake installers

= Documents requiring interaction

= Only interact with an opened browser

Hard to fake ‘meaningful’ interaction
Makes the malware visible
Requires user ‘cooperation’

Locate and click buttons
Automatic mouse movement

i

Setup - SpyShelter Free Anti-keylogger

Select Destination Location
Where should SpyShelter Free Anti-keylogger be installed?

Setup will install SpyShelter Free Anti-keylogager into the following folder.

To continue, didk Next. If you would like to select a different folder, dick Browse.

3. Context Awareness — Explicit Checks

Context checks SYSTEMTIME st;
GetSystemTime (&st);
. if (st.wYear == 2017 && st.wMonth == 6
Examples' && st.wDay == 13)
Date do evil();
Time zone e

short loc_4B%915C

U S e rn a m e cn) [ehp+Syste.mTime.Weal‘] . 7DRh

short loc_ 48915C

Easy to implement

Malware

Use symbolic execution to find constraints
Problems: Very costly, hard to resolve
complex scenarios

Counterm.

3. Context Awareness — Implicit Checks

Environmental keying
Malicious payload is encrypted

Decryption key derived from environment markers

Examples:
Gauss: A characteristic combination of path and folder were for path in PATH:
chosen to generate EMBEDDED_HASH for folder in PROGRAMFILES:
, . if hash(path + folder) == EMBEDDED HASH:
Ebowla: Framework to build environmental keyed payloads decrypt and do evil(path, folder)

Very hard to detect and defeat automatically
o Inhibits spreading

Implement heuristics which are looking for
use of cryptography
Detonate malware in target(like) environment

Counterm. Malware

Summary

There is no silver bullet = each technique requires specific handling

Many evasion attempts are noisy, therefore detectable (at least from ring -1)

We should
Use realistic environments, e.g. cookies, MRU, ...
Use non fingerprint-able environments, e.g. randomize files, usernames, ...
Detonate in expected target environment, e.g., golden image
Other:

Analyze within different environments, e.g., OS patch level, network config
Constantly adapt new anti evasion techniques

Thank you for your attention!

fbesler@vmray.com

https://github.com/LordNoteworthy/al-khaser
https://github.com/AlicanAkyol/sems
https://github.com/Th4nat0s/No_Sandboxes
https://github.com/Genetic-Malware/Ebowla
https://github.com/a0rtega/pafish
https://github.com/CheckPointSW/InviZzzible
https://github.com/hfiref0x/VMDE

J/Www.vmray.c
JL/WWW.vmray.
J/WWW.vmray.
J/WWW.vmray.

//WWW.joese

//www.bg

L/ WWW.

LW

A
A

ce/protected-files/:

014/12/2014-2.7-Bypassing-San
., :

amber/vb2016-paper-defeating-s

https://www.joesecurity.org/blog/3660886847485093803
https://www.joesecurity.org/blog/3660886847485093803
https://www.joesecurity.org/blog/3660886847485093803
https://www.joesecurity.org/blog/3660886847485093803
https://www.joesecurity.org/blog/3660886847485093803
https://www.botconf.eu/2015/sandbox-detection-for-the-masses-leak-abuse-test/
https://www.blackhat.com/docs/asia-15/materials/asia-15-Chubachi-Slime-Automated-Anti-Sandboxing-Disarmament-System.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/sec14_slides_shi-hao.pdf
https://aurelien.wail.ly/publications/hip-2013-slides.html
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
https://www.virusbulletin.com/blog/2016/december/vb2016-paper-defeating-sandbox-evasion-how-increase-successful-emulation-rate-your-virtualized-environment/
https://www.securitee.org/files/wearntear-oakland2017.pdf
https://securelist.com/33561/the-mystery-of-the-encrypted-gauss-payload-5/

