222 FIRST CONFERENCE FIGHTING PIRATES AND PRIVATEERS

WWW.FIRST.ORG

Marvin – Automated Incident Handling at DFN-CERT

Jan Kohlrausch, Eugene Brin, Christian Keil

Introduction DFN-CERT

- Started 1993 as a research project at the University of Hamburg
- Computer Emergency Response Team for the German research network (DFN)
- Activities:
 - CERT services: Incident handling and coordination, vulnerability management, protection of the DFN network infrastructure (DDoS)
 - Consulting, training, and risk management
 - Participation in research projects
 - Provision of PKI services

Introduction DFN

- DFN: German Research network
 - Serves all German universities and research institutions
 - Operates global infrastructure: X-WiN
 - Comprises 27 ASN (largest is AS680)
 - Very large number of constituent sites and networks

Incident handling at DFN-CERT

- Before 2000: Compromised UNIX servers and workstations for fun; e.g. portscans, IRC-bots
 - Manual reaction to incidents
- After 2001: Appearance of Internet worms and MS Windows incidents
 - Significant increase in incident numbers
- Current situation: Large number of security events
 - Manual incident handling is unfeasible

Incident handling: (R)Evolution

- 1) Shell and PERL scripts to handle security events
 - Register incidents, acquire contact data, compile report
- 2) Import of data into SQL database

Start of security events categorization

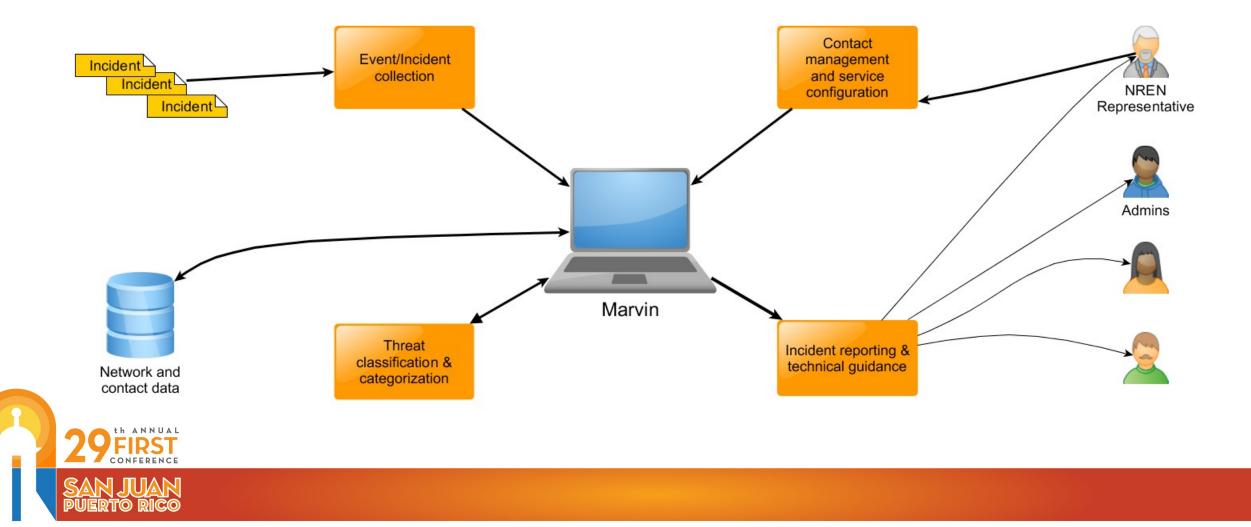
- 3) Starting to send incident reports (monolithic PERL script) Manual maintenance of contact information and administration
- 4) Development of Marvin

Early experiences with automated IH

- Security skills at universities vary from part-time administrator to security researcher (e.g. malware analysis)
- It is important to support administrators with limited experience
 - Provide as much as possible helpful information regarding to the threat: what happened, how to detect, and how to resolve
 - Avoid imprecise reports
 - Send report to appropriate contact; e.g. not an unspecific group accounts
 - Actively involve constituency

Lessons learned and take aways

- Share insights and experiences with an automated incident handling platform "Marvin":
 - How to make actionable incident reports from security events
 - Demonstrate architectural requirements for such platform
 - How to ensure data quality
 - Applies to all teams coordinating incidents for their constituency
- Importance of integrated application combining all aspects of IH



Incident handling automation

Internet worms and viruses Well-known malware Portscans Brute-force attacks	Automation of CSIRT handling process	Marvin
Malware or forensic analysis Web-server compromise	Complex Manual actions required	Stop!

Marvin: Integration of components

Ensure quality

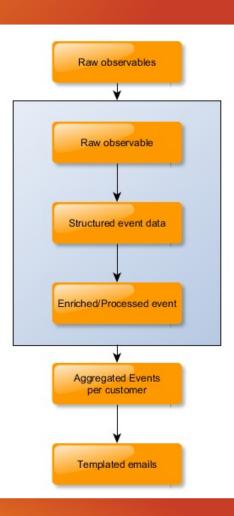
- Select reliable sources of information
 - Security teams and CSIRTs with good reputation
- Specify and monitor processes:
 - **Ensure precise reports**: Avoid reports without further direction: e.g. *"your system might eventually be compromised, but we're not sure."*
 - Prevent erroneous reports: e.g. false positives
 - Provide informational value: What information must be present to understand the issue? (e.g. exact timestamp, target ip/port, ...)

Maintain contact information

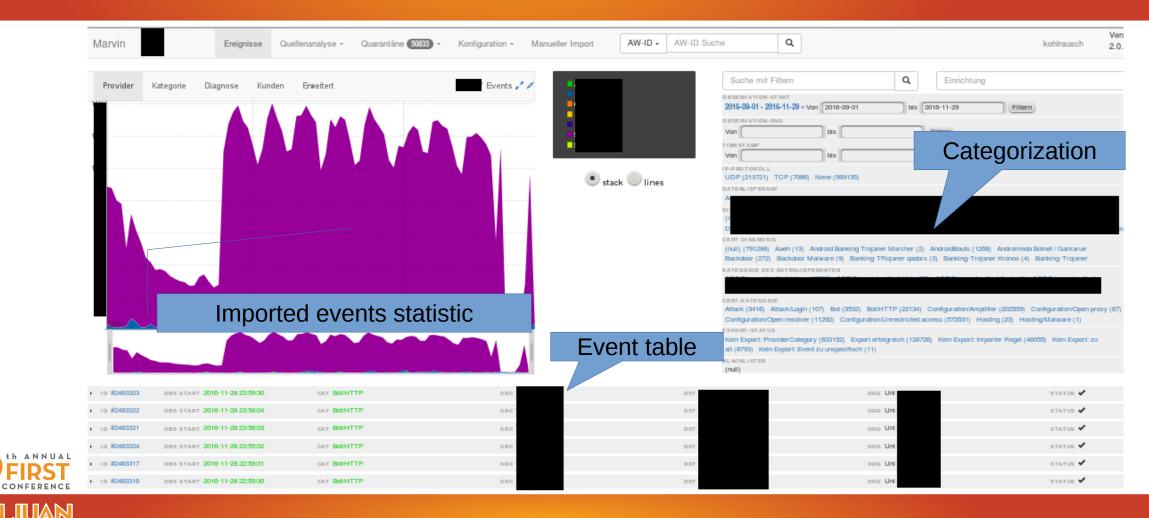
- Assign administrative contact to each DFN member site
 - Provide credentials for web-portal account
- Assign network data (netblocks) to each member site
- Allow administrative contact to setup:
 - Sub-networks belonging to the site
 - Assign contact data to sub-networks

Make events actionable

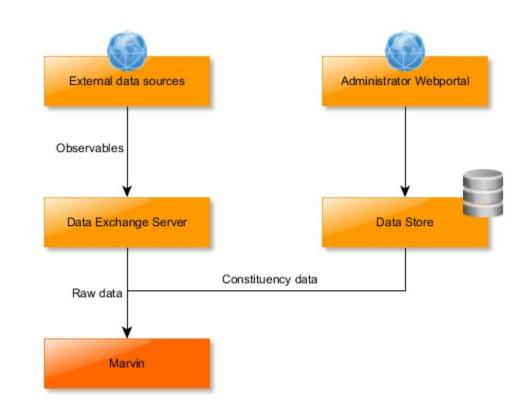
- Each data provider uses a private naming convention and data format
- Normalize events: assign "DFN-CERT" category and diagnosis:
 - Category (and subcategory): Type of attack
 - Attack/Login, Scan
 - Bot/HTTP, Bot/IRC
 - Configuration/Open Resolver, Amplifier
 - Diagnosis: Type of malware
 - w32.sality, WannaCry, ...


Make events more actionable

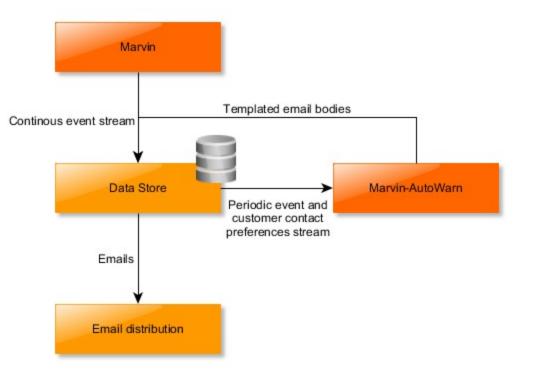
- Add background information and recipe to resolve incident:
 - How to detect
 - How to resolve
 - General information detailing incident handling for major OS
- Produce comprehensible report


Marvin architecture: Data flow

- Marvin Processing I/O
 - From raw observables to templated emails
 - Email based auto warn infrastructure
- Marvin Webservice
 - Webbased analysis toolkit
 - All seen events are saved for analysis purposes
 - Privacy: Limited timeframe for sensitive data



Marvin: Application


Marvin architecture: Security

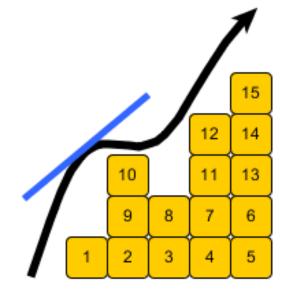
- Automation ensuring privacy and security
- Privacy of information providers
 - Traffic Light Protocol
- Security
 - Isolation
- Privacy of constituency
 - All data sources internalized, e.g. no
 WHOIS, DNS queries

Marvin architecture: Reporting

- Marvin Output
 - Large constituency spanning a variety of requirements, e.g. no reports on weekends, empty notification mails, human-readable, machine-interpretable, etc.
 - Distribution according to admin preferences

QA through statistical models

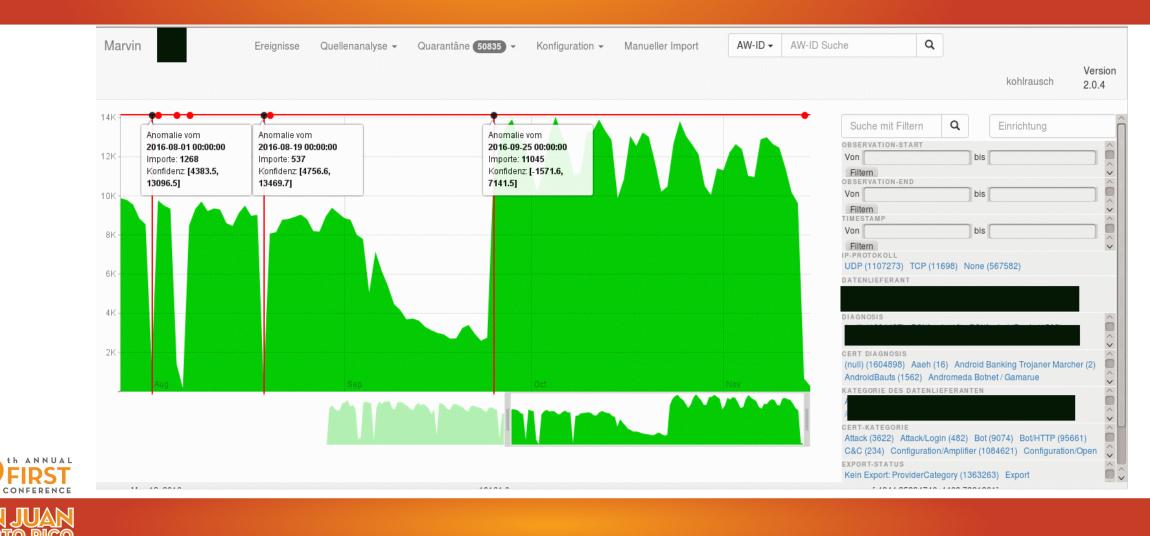
- Data providers may fail to send data
- Servers may fail
- Importers may fail
- Critical situations occur by new attacks, worms, or malware
- University networks may suffer from large scale attack


Data properties

- Number of events vary, but if the number of events is sufficiently high:
 - Fluctuations are randomly distributed
 - Average number of events is quite stable
 - Large-scale disturbances are only caused by significant anomalies (e.g. software failures or significant attacks)

Mathematical model: ARIMA

- ARIMA (autoregressive integrated moving average) is used to model time series of events in Marvin
- Approach assumes that time series is stationary:
 - Average is constant
 - Fluctuations are time-independent



ARIMA: Results

- Currently deployed to monitor overall number of events
- Model is applied to moving time window
- Model data is used to predict future data
- Anomaly is detected if the measured value is outside of confidence interval (95%)
- Implementation is based on Python statsmodels and pandas

ARIMA: Results

Summary and lessons learned

- Marvin became fundamental tool for automated Incident Handling
 - Important to integrate all previously mentioned aspects
- Excellent acceptance in constituency
- So far, only reliable and precise data sources reach the enduser
- Quality assurance is important

Future work

- Deploy incident handling automation beyond DFN
- Integration of new sources
 - For instance: MISP and IntelMQ
- New processes for unreliable data:
 - Finer-granular filtering and data checks enables the adoption of less reliable data sources
 - Monitoring and classification of anomalies
 - Make use of threat criticality

Thank you!

