|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

"Moving to the Left":

Getting Ahead of Vulnerabilities
by Focusing on Weaknesses

Jim Duncan, Juniper Networks SDL Program

Agenda

* Problem Statement

* Vulnerabilities vs. Weaknesses
* The Common Weakness Enumeration (CWE)

* Example CWE Entry: CWE-119
* \Weaknesses as Bug-Tracking Data

* Tips'n’Tricks for assigning CWE labels
 Futures, Prognostications, Recommendations

e Questions?

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

Juniper’s Secure Development Lifecycle

* Mission: Improve the resilience of Juniper products
through the application of distinct practices within

Juniper’s existing engineering processes

* Intended to be lightweight and minimally disruptive
e “Self-inserting” with low impact

* Broad mission across all Juniper development
* Program formally started in 2013

* The SDL is not simply desirable

e Required by a growing number of our customers
* An obligation on behalf of the Internet community

SDL Functional Goal: Vulnerability Containment

* Keep product security vulnerabilities jnside Juniper

* Vulnerabilities are much more expensive after they escape

JUNIPER
SECURE

DEVELOPMENT
LIFECYCLE

cecurity in
aseod

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Problem
Statement

Vulnerability Chasing is “Whack-a-Mole”

FORRESTER
Army of Adversaries R g KLl L LG e I

Vulnerability Management
Wh ac k_a_ Mole g a Joseph Blankenship, Senior Analyst
Stop one, another pops up
DATA SECURITY

August 18, 2016
DoD wants to be |
more pro-active | SNSRI

Cyber Intel.

“the'moles in
alphabetical
order!'Have Eun

* This is a common thread; that probably means something important.
* (By the way, those are gophers, not moles. But | digress...)

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

June 24-29, 2018

Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

Hazardous to IR Teams and Our Community

—y * No surprise that endless
VULNERABILITY e reactive work wears us down

Midtiladll - * Causes long-term damage

e Staff health, relationships

* Team dynamics

* Team-to-team relationships
* Personal burn-out

_ s ieseeaisicinistalis e Career burn-out
EXHAUSTING: leocecvevess * Industry burn-out?
S « Which did you choose?

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

Weakness Mitigation is Proactive

”Work smarter, not harder.”

* Weaknesses are the constituent elements of vulnerabilities.
* Weakness resolution eliminates multiple vulnerabilities.
* Resolution of weaknesses contributes to persistent resilience.

e Unfortunately, it brings its own challenges to the effort:

* No immediately obvious result; difficult to measure effectiveness.
* Pays no direct dividend; difficult to justify resources.
* Immature area of study; nascent topic, much remains to be figured out.

* More to follow on all these points...

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Vulnerabilities
VS.
Weaknesses

Essential Terminology & Key Concepts

* A vulnerability depends upon one or more weaknesses.
* |n other words, weaknesses are the constituent elements of vulnerabilities.

* The existence of a weakness does not constitute a vulnerability.

* A weakness may be provably identified in some code, but it may not be
vulnerable for various reasons. (e.g., unreachable instruction)

* A vulnerability is actionable; it violates a security policy.

* But a weakness only has the potential to violate a security policy.
* There are more, but these are essential

* Any questions before we continue?

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

Implications and Misunderstandings

* \Weaknesses are an abstraction; they are not well understood.

* Multiple weaknesses may be identified in one snippet of code.
 Various disparate weakness labels may all be correct; never exclusive.
* Many individual weaknesses can be argued to be the best possible label.

* Weakness is similar, but not identical, to the concept of root cause.

* This conflict causes enormous confusion (and occasional conflict)
* Root cause is generally unitary, atomic, exclusive.
* Weaknesses are multiplex.

* Code runs fine with weaknesses, but fails with a vulnerability.
* Not confined to code; weaknesses happen in design and elsewhere.

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

The Common
Weakness
Enumeration (CWE)

Common Weakness Enumeration

W A Community-Developed Dictionary of Software Weakness Types
e Virtual smorgasbord of weakness labels, both discrete and abstract.

* Discrete labels, e.g.: CWE-193: Off-by-one Error or CWE-369: Divide by Zero
* Both are members of CWE-682: Incorrect Calculation

e CWE-682 is a member of CWE-189: Numeric Errors
* CWE-189 is a member of CWE-699: Development Concepts

* These parent-child relationships are not exclusive
* It’s more like “It takes a village...”: aunts, uncles, grandparents, neighbors!

* Which one do you use? It depends on the goal you have in mind.

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
T June 24-29, 2018

Weakness Classification and Heirarchy

* Weakness Base is the fundamental entity in the compendium.
* CWE-552: Files or Directories Accessible to External Parties

* Weakness Variant is more specific.

* CWE-553: Command Shell in Externally Accessible Directory
* Weakness Class is a higher-level abstraction.

* CWE-668: Exposure of Resource to Wrong Sphere

* Category is a broad set of weaknesses with a common characteristic.
 CWE-361: 7PK — Time and State

« “7PK" is The Seven Pernicious Kingdoms, a foundational reference for CWE.

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

Additional Weakness Groupings & Terms

* Compound Elements: Closely associated independent weaknesses
* Based on interaction or co-occurrence, e.g., Composite or Chain weaknesses

e Composite: Simultaneous weaknesses that create a vulnerability.
 CWE-352: Cross-Site Request Forgery (CSRF)

* [oose Composite: Appears to be individual, but isn’t. (Ilgnore for now.)
* Chain: Serialized weaknesses that create a vulnerability.

* Named Chain: A chain so frequent that it deserves its own moniker.
* CWE-692: Incomplete Blacklist to Cross-Site Scripting

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

And More Weakness Groupings & Terms

 View: A useful way of considering CWE content, e.g., a Slice or Graph

* Implicit Slice: membership based on common shared characteristic:
* CWE-919: Weaknesses in Mobile Applications

* CWE-701: Weaknesses Introduced During Design

* Explicit Slice: membership based on some external criterion:
* CWE-604: Deprecated Entries
* CWE-630: DEPRECATED: Weaknesses Examined by SAMATE

* Graph: membership based on heirarchical relationships:

* CWE-1026: Weaknesses in OWASP Top Ten (2017)
* CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
ne 24-29, 2018

Confusing Adjectives: Primary v. Resultant

* Primary Weakness: Initial critical error (possibly a root cause) that
exposes subsequent weaknesses after it.

* Resultant Weakness: Exposed following an earlier weakness.

* Example:
* CWE-190: Integer Overflow may cause a size error allocating a buffer.
* CWE-120: Buffer Overflow occurs because of the preceding size error.

* This relationship is described as
* "CWE-190 is primary to CWE-120,” or
* “CWE-120is resultant from CWE-190".

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

What’s The Purpose of All This?

* For immediate resolution/mitigation, focus on Base Weaknesses.

 Nitpick with Variants if necessary, maybe Chains and Composites.
* For long-term improvement/refinement, look at Class and Category.

* Constrain with Views, especially Slices. Important! (more on this later)

* What does all this look like in practice?

™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Example
CWE Entry:
CWE-119

. CWE and SANS Institute
Common Weakness Enumeration ToP T———
A Community-Developed List of Software Weakness Types 25 SOF‘I’%:?

Home > CWE List > CWE- Individual Dictionary Definition (3.1)

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Weakness ID: 119 Status: Usable
Abstraction: Class
Structure: Simple

Presentation Filter: Complete B

¥ Description
The software performs operations on a memory buffer, but it can read from or write 1o a memory location that is outside of the intended boundary of the buffer.
¥ Extended Description

Ceortain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write
operations 10 be performed on memory locations that may be associated with other variables, data structures, or internal program data,

As a result, an attacker may be able 10 execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system 10 crash,
¥ Alternate Terms

Memory Corruption: The generic term "memory corruption” is often used to describe the consequences of writing to memory outside the bounds of a buffer, when the root cause is something other than
a sequential coples of excessive data from a fixed starting location (i.e., classic buffer overflows or CWE-120). This may include issues such as incorrect pointer arithmetic,
accessing invalid pointers due to incomplete initialization or memory release, etc.

V¥ Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may
exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

7 Relevant to the view *Research Concepts” (CWE-1000)

7 Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities” (CWE-1003)

7 Relevant to the view "Development Concepts” (CWE-699)

7 Relevant to the view *Seven Pernicious Kingdoms" (CWE-700) CWE-119, 1/8

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

¥ Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name

ChildOf C) 118 Incorr f Indexabl R 'Ran rror’'
ParentOf B 120 Buffer with heckin f In lassic Buffer rflow’
ParentOf B 123 Wri,t,e;wh.aj;whe,[@,QqngmQn

ParentOf @ 125 Out-of-bounds Read

ParentOf B 466 Return of Pointer Value Outside of Expected Range
ParentOf oo 680 Integer Overflow to Buffer Overflow

ParentOf B 786 Access of Memory Location Before Start of Buffer
ParentOf B 787 Out-of-bounds Write

ParentOf @ 788 Access of Memory Location After End of Buffer
ParentOf @ 805 Buffer Access with Incorrect Length Value

ParentOf B 822 Untrusted Pointer Dereference

ParentOf @ 823 Use of Out-of-range Pointer Offset

ParentOf B) 824 Access of Uninitialized Pointer

ParentOf B 825 Expired Pointer Dereference

CanFollow C) 20 Improper Input Validation

CanFollow B 128 Wrap-around Error

CanFollow @ 129 Improper Validation of Array Index

CanFollow o 19 Incorrect Calculation of Buffer Size

CanFollow B 190 Integer Overflow or Wraparound

CanFollow B 193 Off-by-one Error

CanFollow ‘9 195 Signed to Unsigned Conversion Error

CanFollow B 839 Numeric Range Comparison Without Minimum Check
CanFollow B 843 Access of Resource Using Incompatible Type (Type Confusion’)

CWE-119, 2/8

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

Y Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities” (CWE-1003)

Nature Type ID Name

ChildOf \9 118 Incorrect Access of Indexable Resource ('Range Error’)
ParentOf @ 123 Write-what-where Condition

ParentOf @ 125 Out-of-bounds Read

ParentOf @ 787 Qut-of-bounds Write

ParentOf @ 824 Access of Uninitialized Pointer

V¥ Relevant to the view "Development Concepts” (CWE-699)

Nature Type ID Name

MemberOf 19 Data Processing Erors

ParentOf Q 120 Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)
ParentOf @ 123 Write-what-where Condition

ParentOf @ 125 Out-of-bounds Read

ParentOf @ 1% Improper Handling of Length Parameter Inconsistency
ParentOf 'B) 786 Access of Memory Location Before Start of Buffer
ParentOf @ 787 Qut-of-bounds Write

ParentOf 0.-) 788 Access of Memory Location After End of Buffer
ParentOf @ 805 Buffer Access with Incorrect Length Value

ParentOf Q 822 Untrusted Pointer Dereference

ParentOf B 823 Use of Out-of-range Pointer Offset

ParentOf Q 824 Access of Uninitialized Pointer

ParentOf B 825 Expired Pointer Dereference

CanFollow B) 131 Incorrect Calculation of Buffer Size

Y Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature) Name -
ChildOf 7)':; 20 Improper Input Validation CWE-119, 3/8

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

¥ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the
Note provides a typical scenario related 1o introduction during the given phase.

Phase Note
Architecture and Design
Implementation

Operation

V¥ Applicable Platforms

The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such
platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages
C (Often Prevalent)
C++ (Often Prevalent)
Class: Assembly (Undetermined Prevalence)

¥ Common Consequences
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the impact describes the negative technical
impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected 10 be seen relative 1o the other consequences in
the list. For example, there may be high likelihood that a weakness will be exploited 10 achieve a certain impact, but a low likelihood that it will be expioited 10 achieve a different impact.
Scope Impact Likelihood
Technical Impact: Execute Unauthorized Code or Commands; Modify Memory

Integri
Con ld‘:miallty If the memory accessible by the attacker can be effectively controlied, it may be possible 10 execute arbitrary code, as with a standard buffer overfiow. if the attacker can

Availability overwrite a pointer's worth of memory (usually 32 or 64 bits), they can redirect a function pointer 10 their own malicious code. Even when the attacker can only modity a single
byte arbitrary code execution can be possible, Sometimes this is because the same problem can be exploited repeatedly to the same effect. Other times it is because the
attacker can overwrite security-critical application-specific data -- such as a flag indicating whether the user is an administrator.

Availabilty Technical Impact: Read Memory; DoS: Crash, Exit, or Restart; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory)
v

Confidentiality Oyt of bounds memory access will very likely result in the corruption of relevant memory, and perhaps instructions, possibly leading o a crash. Other attacks leading o lack of
availabilty are possible, including putting the program into an infinite loop.

Technical Impact: Read Memory

Confidentiali
2 In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the sensitive information contains system details, such as the current bufiers

position in memory, this knowledge can be used to craft further attacks, possibly with more severe consequences.

V¥ Likelihood Of Exploit CWE-119, 4/8
High

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

V¥ Demonstrative Examples

Example 1
This example takes an |P address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.

Example Language: C

void host_lookup(char *user_supplied_addr}{
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);

/routine that ensures user_supplied_addr is in the right format for conversion */

validate_addr_form(user_supplied_addr);

addr = inet_addr(user_supplied_addr);

hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strepy(hostname, hp->h_name);

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves 1o a very
large hostname, then we may overwrite sensitive data or even relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).
Example 2
This example applies an encoding procedure 1o an input string and stores it into a buffer.

Example Language: C

char * copy_input(char *user_supplied_stringy{
int i, dst_index;
char *dst_buf = (char*)malioc(4 sizeofl(char) * MAX_SIZE);
if (MAX_SIZE <= strien(user_supplied_string) X
die("user string too long, die evil hacker!™);

)
dst_index = 0;
for (| = 0; | < strien(user_supplied_string); i++ X
if(‘&' == user_supplied_string[i] §
dst dst_index++] = '&';
dst_bul[dst_Index++] = 'a’;
dst dst_index++] ='m’,;
dst dst_index++] = 'p';

dst_bufldst_index+-+] = CWE-119, 5/8

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

Example 4
In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method
Example Language: C
int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index Is less than the maximum

/ length of the array
if (index < len) {

get the value at the specified index of the array
) value = array{index];

/ if array index is invalid then output error message
//‘ am{! relurn value indicaling evror
else

print!(*Value Is: %d\n", array{index]);

value = -1;

)

roturn value,;

However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value 10 be accepted as
the input array index, which will result in a out of bounds read (CWE-125) and may allow access 10 sensitive memory. The input array index should be checked 10 verify that is within the maximum and minimum
range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.

Example Language: C

/# check that the array index is within the correct

/ range of values for the array
if (index >= 0 && index < len) {

CWE-119, 6/8

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

¥ Observed Examples

Reference Description
CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a playlist
CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist
CVE-2009-0689 large precision value in a format string triggers overflow
CVE-2009-0690 negative offset value leads to out-of-bounds read
CVE-2009-1532 malformed inputs cause accesses of uninitialized or previously-deleted objects, leading to memory corruption
CVE-2009-1528 chain: lack of synchronization leads to memory corruption
CVE-2009-0558 attacker-controlled array index leads to code execution
CVE-2009-0269 chain: -1 value from a function call was intended to indicate an error, but is used as an array index instead.
CVE-2009-0566 chain: incorrect calculations lead to incorrect pointer dereference and memaory corruption
CVE-2009-1350 product accepts crafted messages that lead to a dereference of an arbitrary pointer
VE- 191 chain: malformed input causes dereference of uninitialized memory
CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive information
CVE-2003-0542 buffer overflow involving a regular expression with a large number of captures
CVE-2017-1000121 chain: unchecked message size metadata allows integer overflow (CWE-190) leading to buffer overflow (CWE-119).

¥ Potential Mitigations

Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness 1o occur or provides constructs that make this weakness easier to avoid,

For example, many languages that perform their own memory management, such as Java and Perl, are not subject 1o buffer overflows. Other languages, such as Ada and C#, typically provide overflow
protection, but the protection can be disabled by the programmer,

Be wary that a language's Interface 1o native code may still be subject to overflows, even if the language itself is theoretically safe.

Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier 1o avoid.

Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57), and the Strsafe.h library from Microsoft [REF-56). These libraries provide safer versions of overflow-prone string-
handling functions.

Note: This is not a complete solution, since many buffer overflows are not related to strings.

Phase: Build and Compilation
Strategy: Compilation or Bulld Hardening
Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Stu
Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice. CWE-119, 7/8

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

¥ Taxonomy Mappings

Mapped Taxonomy Name Node 1D Fit Mapped Node Name

OWASP Top Ten 2004 A5 Exact Buffer Overflows

CERT C Secure Coding ARRQ0-C Understand how arrays work

CERT C Secure Coding ARR30-C CWE More Abstract Do not form or use out-of-bounds pointers or array subscripts

CERT C Secure Coding ARR38-C CWE More Abstract Guarantee that library functions do not form invalid pointers

CERT C Secure Coding ENVO1-C Do not make assumptions about the size of an environment variable

CERT C Secure Coding EXP39-C Imprecise Do not access a variable through a pointer of an incompatible type

CERT C Secure Coding FIO37-C Do not assume character data has been read

CERT C Secure Coding STR31-C CWE More Abstract Guarantee that storage for strings has sufficient space for character data and the null terminator
CERT C Secure Coding STR32-C CWE More Abstract Do not pass a non-null-terminated character sequence to a library function that expects a string
WASC 7 Buffer Overflow

Software Fault Patterns SFP8 Faulty Buffer Access

V' Related Attack Patterns

CAPEC-ID Attack Pattern Name

CAPEC-10 Buffer Overflow via Environment Variables

CAPEC-100 Overflow Buffers

CAPEC-14 Client-side Injection-induced Buffer Overflow

CAPEC-24 Filter Failure through Buffer Overflow

CAPEC-42 MIME Conversion

CAPEC-44 Overflow Binary Resource File

CAPEC-45 Buffer Overflow via Symbolic Links

CAPEC-46 Overflow Variables and Tags

CAPEC-47 Buffer Overflow via Parameter Expansion

CAPEC-8 Buffer Overflow in an API Call

CAPEC-9 Buffer Overflow in Local Command-Line Utilities
V¥ References

[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The Buffer Overrun® Page 127; Chapter 14, "Prevent 118N Buffer Overruns" Page 441. 2nd Edition,
Microsoft Press, 2002-12-04, <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>,

(REF-56) Microsoft. *Using the Strsafe.h Functions". <htip.//msdn.microsoft.com/en-us/ibrary/ms647466,aspx>.
[REF-57) Matt Messier and John Viega. "Safe C String Library v1.0.3", <http:/Awww.zork.org/safestr/>,

[REF-58] Michael Howard. "Address Space Layout Randomization in Windows Vista". <http./blogs msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-windows-
[REF-59] Arjan van de Ven. "Limiting buffer overflows with ExecShield®. <http.//www.redhat.com/magazine/009jul05features/execshield/>.

CWE-119, 8/8

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

June 24-29, 2018

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Weaknesses as
Bug-Tracking Data

Case Study: CWE Implemented in GNATS

* [nitial implementation: One drop-down field next to SIRT data.

* Advantage: match-as-you-type provides rapid lookup and completion.

* Disadvantages: only one possible label, feeble support for novices.
 Better implementation supports a list of CWE labels with priority.

* Constrained to one value, lots of time spent on finding best possible CWE.
* Multiple values provides cache and depth, better holistic understanding.

* Also would include a grouping function for trending support and refinement.
* Immediate benefit: CWE link helps developer understand flaw.

* Varies among entries, but many have deep, broad explanations, suggestions.

* Includes recommendations for recognizing good and bad examples.

30™ ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

Weakness Data as SDL Deliverable

* Roll-up of weakness groups produces trends in pentest findings

* Exposes areas of good performance and others needing remediation
* Feeds back into Training practice, Security in Design practice

* |dentifies areas for focus by development teams and leadership
* Annual internal “Top Ten Weaknesses” Report
* Long-term trending of bug reports across all products
 Data is compared and contrasted with industry results (OWASP, SANS/CWE)

 Future goal: automatic reporting of CWEs from static code analysis
» Caveat: to be tagged; static analyzers produce “stilted” results

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Tips'n’Tricks
for Assigning
CWE Labels

Researcher? Or Developer? Start Here!

* |f you are the executive of some organization, you care about impact.

 E.g., denial of service, data exfiltration, log errors causing compliance failures
» “Research Concepts” provides a useful constraint for filtering selections

* |f you are a software/hardware vendor, you care about cause.

* E.g., buffer overflow, trust boundary failure, poor entropy, authorization flaw
* “Development Concepts” should be your default constraint (but not solid)

* [f | had this to do over again, | would have started with this emphasis.

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

Use the Search and Filter Functions Well

* Prefix search terms with “inurl:definitions” to constrain to CWEs only.
e E.g., “Search: inurl:definitions entropy<”
* Otherwise, you'll hit matches from all over the CWE web site.

* Select the appropriate “Presentation Filter” near the top, left side.

* | almost always use “Complete”, but that may be overwhelming.
* Other choices are “Basic”, “High Level”, “Mapping-Friendly”.

* Or simply jump directly to the CWE of interest.
* The jump field is located in the top-right corner of every page.
* Enter only the numeric part of the CWE identifier.

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

Can’t Decide on the Best CWE?

* Try widening your search, then narrowing again.

* Move up to one of the parents, then peruse the children.

* No result? Move back and try a different parent. “Lather, rinse, repeat.”
* Apply reverse engineering to CWE itself.

* Browse the CVE and CAPEC links; both have links back into CWE.
* Warning: NVD/CVE links to CWE are alarmingly general, sometimes wrong!

* Note that just like CVSS, different vendors correctly have different CWEs.
* Don’t forget the References; sometimes a deeper study is needed.
* Third-party tools, e.g., CWEvis, may be helpful.

* | have no current experience with CWEvis due to browser issues

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Futures,
Prognostications,
Recommendations

Why Fix Weaknesses? The Code Works Fine!

* Consider this conversation:

* Development Manager: “How did you spend your day?”

e Developer: “l found and resolved two weaknesses in our main code.”

* Manager: “Did you finish your feature requests?”

* Developer: “No, but | fixed these two weaknesses.”

* Manager: “Was the code running fine before?”

* Developer: “Yes, of course, but it was weak. | fixed these weaknesses!”

* Manager: “I11117 ...
* Major awareness is needed all across the industry.

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses

Customers/Auditors Shifting Focus to CWE

e Customers (and specifically their auditors) are moving beyond

requirements that specific CVEs be fixed; they are now tracking CWEs.
* Considerable confusion; recall that this is all new to most participants.
* Note that “CVE/CWE” may be an example of “CWE-193: Off-by-one Error”. ;-)

* This brings up a whole new set of complications.
* How do we audit this? How do we measure compliance?
* What about multiple weaknesses? Do we look at chains and composites, too?

* When does this become legally important, as in “acceptable to the trade”?

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

What’s Next?

* We should expect/request better metrics, more exploration of trends.

* PhD dissertation ideas? FIRST Metrics SIG? Other SIGs? Maybe a CWE SIG?
 Better input/management of label determination, parentage, peers.

* Awareness needed for weakness science and improvement of terminology.

* CWE needs broader community support and more infrastructure.
* How do | suggest a new CWE label with sensitivity implications?

* Broad areas are missing, e.g., IP violations; What else should be addressed?
* More ideas? Email me! jduncan@juniper.net

30" ANNUAL FIRST CONFERENCE
KUALA LUMPUR Duncan, "Moving to the Left": Getting Ahead of Vulnerabilities by Focusing on Weaknesses
S June 2429, 2008

|

30" ANNUAL FIRST CONFERENCE

KUALA LUMPUR

s June 24-29, 2018 m—

30 YEARS OF INCIDENT HANDLING

Questions?

Thank You!

