

BIST ANNUAL FIRST CONFERENCE **EDINBURGH JUNE 16-21** 2019

Applying Security Metrics for Quality Control and Situational Awareness

Jan Kohlrausch / Eugene A Brin DFN-CERT

Introduction and Motivation

- A large quantity of technical threat intelligence feeds is available
- Threat intelligence platforms share technical threat intelligence data: MISP, ACDC "Central Clearing House (CCH)"
- But:
 - How to measure and assure <u>data quality</u>?
 - How to achieve an *overview* of the data?
 - Does this data contribute to strategical threat intelligence (<u>situational</u> <u>awareness</u>)?

Security Metrics: What is a "good" Metric?

- Quantification of data characteristics
 - Number of incidents per month
 - Number of IDS alerts per day
- SMART or foolish?
 - Measurement should be well-defined
 - Measurement should contribute achieving a specific aim:
 - ⇒ Quality control
 - Situational awareness

EDINBURGH

Security Metrics: Classes of Metrics

- Performance vs effectiveness (Marika Chauvin and Toni Gidwani, FIRST TI Symposium, March 2019, London):
 - <u>Performance</u>: Reasonable to maintain technical systems and develop software. Easy to measure
 - <u>Effectiveness</u>: Indication if a purpose has been accomplished (e.g. number of incidents). Harder to measure, but usually more expressive!

Security Metrics: Classes of Metrics

- Classification by use cases:
 - Quality metric: Assessment of data quality (effectiveness)
 - Operational metric: Gain insight into data properties (contributes to situational awareness)
 - Malware metric: Metrics focusing on Malware

Security Metrics: Types of Metrics

- Divided by methods of quantification:
 - <u>Counter</u>: Counting number of events (e.g. number of submitted reports)
 - [°] <u>Uniqueness</u>: Counting unique items in the data set (e.g. IP addresses)
 - <u>Histogram</u>: Grouping data into bins (e.g. for real numbers and time spans)
 - <u>Statistics</u>: Measuring statistical properties of the data

Quality Metrics: 6 Dimensions

- <u>Accuracy</u>: Is the information correct?
- <u>Uniqueness</u>: Are duplicates in the data set?
- <u>Timeliness</u>: The time span between detection and submission
- <u>Consistency</u>: Do different partitions of the data have similar properties?
- <u>Completeness</u>: Are all submitted reports in the data set or are any reports missing?
- <u>Validity</u>: Are syntax and structure of reports correct?

Quality Metrics: Accuracy

- Hard if not impossible to measure:
 - Often data itself does not contain relevant information about correctness: e.g. Proxy / NAT gateways
- Mitigation:
 - Focus on "low hanging fruits": IP addresses from private address spaces or Bogons.
 - Interaction of participating sites: "sightings" in MISP

Quality Metrics: Timeliness

- Time spans (e.g. difference between detection and submission) can be quantified as follows:
 - Histogram: E.g. one-hour bins
 - Statistical values: mean time (average) and standard deviation
- An acceptable delay depends on use case:
 - Incident handling

EDINBURGH IUNE 16-21 2019

31st ANNUA

Blocking of attacks \rightarrow fast reaction required

Quality Metrics: Completeness

- Completeness on a data set is hard to guarantee:
 - Often no central instance can measure completeness
- What we can do:
 - Measurement of numbers of reports to find significant gaps
 - Is there a significant difference between the expected and measured number of reports/events?
 - Give participating sites feedback pertaining to their data submissions

Quality Metrics: Uniqueness

- Not easy to define:
 - Identical events or duplicate features?
- Use case:
 - Count reports (e.g. DDoS): duplicates might be valuable
 - Incident reporting: rather avoid duplicates

Metrics for situational awareness

- Spot new emerging threats (*strategic* threat intelligence): Internet worms, IoC botnets, large scale attacks
- Is a baseline in the data?
- Are there:
 - Outliers?
 - Anomalies?
 - Change points?

Operational Metrics: Unique IP Addresses

- Number of unique IP addresses being submitted in a specific time span
- Special challenge: dynamically assigned IP addresses
- Contribution to situational awareness:
 - Reasonable to assume a "base line" if the number of events is sufficiently large
 - Significant increase over time points to large scale incident (e.g. new Internet worm or IoC Botnet)
 - May point to an incident in a network of a participating site

Operational Metrics: Novelty and Intersection of IP Addresses

- Number of unique IP addresses that are not present in the last time slice
- Special challenge: dynamically assigned IP addresses
- Contribution to situational awareness:
 - Number of newly compromised or suspicious systems (novelty)
 - Time span a system is compromised (intersection): Indication for incident handling effectiveness

Operational Metrics: Other important features

- Number of IP addresses (unique, intersection, and novelty) per ASN
 - Be aware of "political" issues (e.g. worst ASN)
- Number of connections targeting TCP/UDP ports
- Port TCP/3389:
 - Emerging Windows RDP worm?
- Specific metrics (e.g. Sources targeting tcp/3389) on demand?
 - Number of metrics may explode

What comes next?

- Malware metrics: normalization of naming required
- Automation of baselining (*consistency*) and anomaly detection
- Test of statistical approach based on ARIMA

EDINBURGH JUNE 16-21 2019

31st ANNUA

Thanks for your attention!

Questions?

