
Build Automated Malware Lab 
with CERT.PL Open Source Tools

34th Annual FIRST Conference
27th June 2022, Dublin

Paweł Srokosz
Paweł Pawliński



Automated malware lab - why?



● Established in 1996

● National CERT role formalized in the cybersecurity law in 2018

● Constituency: everything in Poland (*)
(*) except government, military, critical infrastructure

● Part of NASK (research institute & .pl registry)

CERT.PL: who are we



We are in threat intelligence business

● Monitoring threats to millions of users

● Malware incidents: 2nd most common (after phishing)

● We want to:

○ detect malware campaigns

○ warn potential victims

○ mitigate

as early as possible



Evolution of our malware tooling

● Initially: tools developed case-by-case

● Early 2010s: rise of the banking trojans

● Mid 2010s: first automated malware analysis pipeline

● Late 2010s: live tracking of multiple botnets

● 2020s: era of open source analysis tools



Basic ingredients of malware analysis lab

● Collect: repository to collect and search samples, IoCs, etc. from various 
sources (internal and external)

● Analyze: framework to integrate analytical tools focused on specific threats

● Share: provide threat intelligence to constituents / peers / customers



Main components of our lab



Collect: MWDB Core



What is MWDB Core?

● Central component of our lab

● Repository for organizing and sharing malware intelligence

● Open-source

● Easy integration with other tools:

○ plugins

○ Karton

● Supported by CERT.PL and (small) community



MWDB Data model

● MWDB is made by analysts for analysts

● Not really a general purpose threat information sharing system

● Three basic object types:

○ Files

○ Configurations

○ Blobs

● Structured metadata for all objects



MWDB: Files

● The most basic object type

● Tags: file type, source, 
classification, …

● Attributes: source URL, Yara 
matches, AV detection, …



MWDB: Configurations

● Embedded in binary (static)

● Downloaded from C2 (dynamic)

● JSON

● Well-defined keys per malware 
family

● Structure determined by internal 
configuration format

● End-goal of a typical malware 
analysis task (automated by us for 
families of interest)



Packed malware executable

Memory dump with unpacked 
core

Static
malware

configuration

Packed malware executable

Packed malware executable

Packed malware executable

Memory dump with unpacked 
core

Memory dump with unpacked 
core

Basic processing pipeline
sandbox configuration

extractor



MWDB: Blobs

● Unstructured

● Decrypted data, webinjects, 
commands, lists of peers, …

● Stored for later processing or 
human inspection

● Full-text search



Static
malware

configuration

Dynamic
malware

configuration

next stage
malware

commands

webinjects

Unparsed static 
configuration

parts

Pipeline for botnet monitoring

sandbox

configuration
extractor

emulated bot



Data model
Real-life example:
ISFB (Gozi) graph



Metadata: tags



Metadata: attributes



Analyze: Karton



● 20% efforts, 80% effect

writing an actual script to process a malware feed

● 80% efforts, 20% effect

polling for data, queueing, integration with other scripts, logging, proper 
error handling, maintenance…

Pareto rule



● 20% efforts, 80% effect

writing an actual script to process a malware feed

● 80% efforts, 20% effect

(handle all of the common things with some common approach)

Pareto rule



● Queue-based data processing pipelines

● Data-driven routing of tasks

● Lightweight

● Based on Redis (KV store) and S3-compatible object stores

● Built for microservices:

○ each processing module is focused on one task

○ “Plug and Play”, researcher should be able to easily add a new service

● Management interface

Karton design

Inspiration: Assembly Line by 
Canadian Centre for Cyber Security







Example: consumers of Office documents





Share: mwdb.cert.pl



● Making our know-how & data available for defenders

● Access to our MWDB instance

○ samples

○ configurations

○ output of our private analyzers

● Free service: https://mwdb.cert.pl/

● Open registration + manual vetting

Providing threat intelligence

https://mwdb.cert.pl/


Statistics

● 1000+ accounts

● Extractors for 133 families (*)

(*) not all work with current variants

● 2.4M+ samples

● 67k+ configurations

● 700/day avg new samples



Working with the community



Plugin showcase: malware similarity



Finding similar samples

● Objectives:

○ classify malware family

○ discover clusters

● Can be used to detect new variants

● No reversing & development of analysis modules necessary

● Better understanding of the development of threats

● Common use case: support attribution



Sample

Memory dumps

ApiVectors

Drakvuf Sandbox: dynamic analysis and gathering memory dumps

ApiScout: finding informative Windows API calls

Final malware 
family

Dump classification: nearest cluster
Detected 

families (labels)
Sample classification: aggregation of labels 

Tool by Daniel Plohmann
http://byte-atlas.blogspot.co
m/2017/04/apiscout.html

Using Windows API for classification

http://byte-atlas.blogspot.com/2017/04/apiscout.html
http://byte-atlas.blogspot.com/2017/04/apiscout.html


Classification results



Upcoming integration: msource

● Finding similar code in malware binaries

● Function-level comparison

● Flexible backend: currently multiple disassemblers

● Internal web interface for analysts and administrators

● PoC plugin for MWDB in 2021, improved version coming soon



msource: behind the scenes



How to get started



https://mwdb.readthedocs.io/

MWDB Core: official docs

https://mwdb.readthedocs.io/


https://training-mwdb.readthedocs.io/

Online training materials

https://training-mwdb.readthedocs.io/


mwdblib: automation library for MWDB

https://github.com/CERT-Polska/mwdblib 

https://github.com/CERT-Polska/mwdblib


malduck: supports malware analysis

● Open-source configuration extractor engine, written in Python

● Collection of common algorithms and utilities for extracting data from binaries



pawel.srokosz@cert.pl
pawel.pawlinski@cert.pl

info@cert.pl

https://github.com/CERT-Polska/

Contact:

The contents of this presentation are 
the sole responsibility of CERT.PL / 
NASK and do not necessarily reflect 
the opinion of the European Union.

This project has received funding 
from the European Union's 
Horizon 2020 research and 
innovation programme under grant 
agreement No 830892.

https://github.com/CERT-Polska/

