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Automated malware lab - why?



● Established in 1996

● National CERT role formalized in the cybersecurity law in 2018

● Constituency: everything in Poland (*)
(*) except government, military, critical infrastructure

● Part of NASK (research institute & .pl registry)

CERT.PL: who are we



We are in threat intelligence business

● Monitoring threats to millions of users

● Malware incidents: 2nd most common (after phishing)

● We want to:

○ detect malware campaigns

○ warn potential victims

○ mitigate

as early as possible



Evolution of our malware tooling

● Initially: tools developed case-by-case

● Early 2010s: rise of the banking trojans

● Mid 2010s: first automated malware analysis pipeline

● Late 2010s: live tracking of multiple botnets

● 2020s: era of open source analysis tools



Basic ingredients of malware analysis lab

● Collect: repository to collect and search samples, IoCs, etc. from various 
sources (internal and external)

● Analyze: framework to integrate analytical tools focused on specific threats

● Share: provide threat intelligence to constituents / peers / customers



Main components of our lab



Collect: MWDB Core



What is MWDB Core?

● Central component of our lab

● Repository for organizing and sharing malware intelligence

● Open-source

● Easy integration with other tools:

○ plugins

○ Karton

● Supported by CERT.PL and (small) community



MWDB Data model

● MWDB is made by analysts for analysts

● Not really a general purpose threat information sharing system

● Three basic object types:

○ Files

○ Configurations

○ Blobs

● Structured metadata for all objects



MWDB: Files

● The most basic object type

● Tags: file type, source, 
classification, …

● Attributes: source URL, Yara 
matches, AV detection, …



MWDB: Configurations

● Embedded in binary (static)

● Downloaded from C2 (dynamic)

● JSON

● Well-defined keys per malware 
family

● Structure determined by internal 
configuration format

● End-goal of a typical malware 
analysis task (automated by us for 
families of interest)
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MWDB: Blobs

● Unstructured

● Decrypted data, webinjects, 
commands, lists of peers, …

● Stored for later processing or 
human inspection

● Full-text search
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Data model
Real-life example:
ISFB (Gozi) graph



Metadata: tags



Metadata: attributes



Analyze: Karton



● 20% efforts, 80% effect

writing an actual script to process a malware feed

● 80% efforts, 20% effect

polling for data, queueing, integration with other scripts, logging, proper 
error handling, maintenance…

Pareto rule



● 20% efforts, 80% effect

writing an actual script to process a malware feed

● 80% efforts, 20% effect

(handle all of the common things with some common approach)

Pareto rule



● Queue-based data processing pipelines

● Data-driven routing of tasks

● Lightweight

● Based on Redis (KV store) and S3-compatible object stores

● Built for microservices:

○ each processing module is focused on one task

○ “Plug and Play”, researcher should be able to easily add a new service

● Management interface

Karton design

Inspiration: Assembly Line by 
Canadian Centre for Cyber Security







Example: consumers of Office documents





Share: mwdb.cert.pl



● Making our know-how & data available for defenders

● Access to our MWDB instance

○ samples

○ configurations

○ output of our private analyzers

● Free service: https://mwdb.cert.pl/

● Open registration + manual vetting

Providing threat intelligence

https://mwdb.cert.pl/


Statistics

● 1000+ accounts

● Extractors for 133 families (*)

(*) not all work with current variants

● 2.4M+ samples

● 67k+ configurations

● 700/day avg new samples



Working with the community



Plugin showcase: malware similarity



Finding similar samples

● Objectives:

○ classify malware family

○ discover clusters

● Can be used to detect new variants

● No reversing & development of analysis modules necessary

● Better understanding of the development of threats

● Common use case: support attribution



Sample

Memory dumps

ApiVectors

Drakvuf Sandbox: dynamic analysis and gathering memory dumps

ApiScout: finding informative Windows API calls

Final malware 
family

Dump classification: nearest cluster
Detected 

families (labels)
Sample classification: aggregation of labels 

Tool by Daniel Plohmann
http://byte-atlas.blogspot.co
m/2017/04/apiscout.html

Using Windows API for classification

http://byte-atlas.blogspot.com/2017/04/apiscout.html
http://byte-atlas.blogspot.com/2017/04/apiscout.html


Classification results



Upcoming integration: msource

● Finding similar code in malware binaries

● Function-level comparison

● Flexible backend: currently multiple disassemblers

● Internal web interface for analysts and administrators

● PoC plugin for MWDB in 2021, improved version coming soon



msource: behind the scenes



How to get started



https://mwdb.readthedocs.io/

MWDB Core: official docs

https://mwdb.readthedocs.io/


https://training-mwdb.readthedocs.io/

Online training materials

https://training-mwdb.readthedocs.io/


mwdblib: automation library for MWDB

https://github.com/CERT-Polska/mwdblib 

https://github.com/CERT-Polska/mwdblib


malduck: supports malware analysis

● Open-source configuration extractor engine, written in Python

● Collection of common algorithms and utilities for extracting data from binaries



pawel.srokosz@cert.pl
pawel.pawlinski@cert.pl

info@cert.pl

https://github.com/CERT-Polska/
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