DNS Abuse Techniques

From the **DNS Abuse SIG**

SIG Goals

Accomplished

- · Common DNS abuse language for incident response (IR) teams
- · Guidance to incident analysts on routing known DNS abuse

Next targets

- Improve situational awareness of DNS abuse for FIRST community
- Document triage or detection practices
- · Improve common language based on your feedback

A bit of history

The DNS Abuse SIG

- · Formed in 2019 after a BOF
- · Kicked off by Carlos Alvarez and Merike Kaeo, chaired by Michael Hausding and Jonathan Matkowsky
- · Representatives from all over the industry
- CERTs, Threat intelligence, Protective DNS services, Law Enforcement / device makers, ICANN, Registries, ...

What we published in https://www.first.org/global/sigs/dns/DNS-Abuse-Techniques-Matrix_v1.1.pdf

The Document: A Matrix

Covering

- · 21 DNS Abuse Techniques
- 15 Stakeholders
- · 3 Activities Detection, Mitigation, Prevention
- 9 Pages in landscape of the matrix itself

IR activities * DNS abuse types * Stakeholders

For each **activity** in:

- Detect
- Mitigate
- Prevent

For each **abuse type** in:

- Domain name compromise
- 0 ...
- Local recursive resolver hijacking
 For each stakeholder in
 - Registrars
 - **...**
 - End users

We answer the question:

Can the **stakeholder** successfully do

the activity for the abuse type?

We published this matrix as a series of tables

Detection

- (8): The entity lacks the capability to detect

	Registrars	Registries	Authoritative Operators	Domain name resellers	Recursive Operators	Network Operators	Application Service Provider	Hosting Provider	Threat Intellige nce Provider	Device, OS, & Application Software Developers	Domain Registrants	End User	Law Enforcement and Public Safety Authorities	CSIRTs / ISACs	Incident responder (internal)
DGAs	(eSLDs only, w/ analysis at point of creation and during the lifetime of the domains)	(eSLDs only)	(eSLDs only, w/ analysis of customer domains)	(eSLDs only)	(Logs/ Passive DNS logging & analysis)	©	⊗	•	⊗	•	N/A (Registrant is Threat Actor Itself)	©	(Can engage registries and/or PSWG GAC)	•	(if outgoing queries logged)
Domain name compromise	⊚	©	•	0	(DNS RPZ + threat intelligence feeds)	0	•	•	Ø	•	(w/ proactive monitoring)	•	⊗	0	(Assuming external domain)
Lame delegations	•	©	•	•	©	0	•	•	Ø	•	(w/ proactive monitoring)	•	•	•	(without historical delegation info)
DNS cache poisoning	©	©	©	•	(Validating DNSSEC at the recursive and enabling extended errors - RFC 8914)	(Flow analysis - NetFlow, Zeek)	0	0	⊗	0	(w/ proactive monitoring)	©	©	•	(Assuming external resolver is poisoned)
DNS rebinding	©	©	©	•	(pDNS analysis - DNS responses varying from public to RFC 1918)	(Flow analysis - NetFlow, Zeek)	•	•	⊗	•	(w/ proactive monitoring)	©	©	•	⊗
DNS server compromise	⊚	⊚	(if the compromise is of the authoritative server)	•	(if the recursive resolver is itself compromised)	®	⊗	•	⊗	•	©	©	•	•	(If no passive DNS logs from before the compromise)

Where to access

Read the PDF here:

- https://www.first.org/global/sigs/dns/DNS-Abuse-Techniques-Matrix_v1.1.pdf Also available as MISP galaxy:
- https://github.com/MISP/misp-galaxy/blob/main/clusters/first-dns.json Join the SIG:
- https://portal.first.org/g/DNS%20Abuse%20SIG

Questions?

Peter Lowe

- peter.lowe@first.org
- https://twitter.com/pgl https://infosec.exchange/@pgl

Jono

· Actual first name . Last name @cisa, we're also on the FIRST Slack.

Resources

- · dns-abuse-sig@first.org
- https://www.first.org/global/sigs/dns/
- https://www.first.org/global/sigs/dns/DNS-Abuse-Techniques-Matrix v1.1_pdf