I opened Pandora’s box and it was full of obfuscation
~# whoami

Geri Revay 🇮🇱 🇩🇪
Security Researcher at FortiGuard Labs

Ethical Hacking
Malware Research
Threat Intelligence
Twitter: @geri_revay
Agenda

• Introduction
• Obfuscation Techniques in Pandora
• Control-Flow Flattening
• Emulation
• The End
Introduction
Background

CRIME SERVICES ENABLERS

Quality Assurance
Crypters / Packers
Scanners

Hosting
Infections / Drop Zones
Management

Botnet Rentals
Installs / Spam / SEO / DDoS

Money Mules
Accounts Receivable

Consulting

COMPOUNDED CYBERCRIME

Affiliates

Affiliate Programs
Ransomware / Botnets

Victims

Criminal Organizations

Sales, Licensing,
Maintenance

Partnerships

CRIMEWARE PRODUCERS

Exploits
Packers
Special Platforms
Mobile

Source Code

Copy & paste

Junior Developers

Senior Developers

Bank Accounts

Credentials & Data

Digital Real Estate

Victims

Criminal Organizations

Sales, Licensing,
Maintenance

Partnerships

CRIMEWARE PRODUCERS

Exploits
Packers
Special Platforms
Mobile

Source Code

Copy & paste

Junior Developers

Senior Developers

Bank Accounts

Credentials & Data

Digital Real Estate

Victims

Criminal Organizations

Sales, Licensing,
Maintenance

Partnerships

CRIMEWARE PRODUCERS

Exploits
Packers
Special Platforms
Mobile

Source Code

Copy & paste

Junior Developers

Senior Developers

Bank Accounts

Credentials & Data

Digital Real Estate
FortiEDR shows how malware is getting better

Figure 9 - Top malware tactics and techniques in EDR data for 2022-H1
Why Obfuscation?

• No Silver Bullet rather a Ball and Chain
• Cheap for the adversary
• Expensive for the analyst
• Different techniques and different levels of obfuscation
• There are obfuscators for most programming languages
• We will focus on C++
Use Case: Pandora Ransomware

- Analysis: https://www.fortinet.com/blog/threat-research/looking-inside-pandoras-box
- Contains everything a modern ransomware should
- Multi-Threading
- Strong Encryption
- Disable AMSI
- Disable Event Logging
- Unlocking files with Restart Manager
- And all of the world’s Evils…
All of the World’s Evils

Obfuscation Techniques in Pandora
Overview

• Packed with custom UPX
• Strings encoding (14 different decoding functions)
• CALL addresses obfuscated with opaque predicates
• JMP addresses obfuscated with opaque predicates
• Control-Flow Flattening
• Windows API call obfuscation
Opaque Predicates for CALL and JMP addresses

\[\text{rax} = (*\text{address}_\text{table}_\text{base} + 0x260BB2E4) + 0xFFFFFFFFF97CA7C9] \]

- Static data that still calculated in runtime
- Obfuscates connections between basic blocks
Control-Flow Flattening
Control-Flow Flattening

• Obfuscation method

• Cheap for developer, expensive for reverse engineer

• Manipulates the control flow of functions

• Original Basic Block: contain the original logic of the function

• Dispatcher: decides which original basic block comes next

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
Control-Flow Flattening in Real Life
Control-Flow Flattening in Real Life

Gergely Revay @geri_revay - Sep 21
Welcome to Hell! All hail the Great Obfuscator!
How to deal with CFF?
How to deal with CFF?

Pack your stuff and run!
How to deal with CFF?

Statically
- Restore control-flow in IDA Pro
 - Emulation
 - Symbolic/Concolic Execution
 - Custom IDApython scripts
- .NET: Restore control-flow in MSIL
 - De4dot and other deobfuscators might be able to do it
 - Custom de4dot plugin

Dynamically
- Sandbox detonation
 - Finding IOCs
 - Next stage from memory/file dumps
- Debugging
 - Works but very tedious and slow
 - There might be other Anti-Analysis/Debugging measures in place
Restoring the Control-Flow

- Identify Dispatcher Basic Blocks
- Identify Original Basic Blocks
- Identify State variable
- Map States to OBBs
- Map Next States to OBBs
- Reconstruct code based on recovered paths

- Added fun in Pandora: Dispatcher is also spread around in multiple
Pandora: Dispatcher
Pandora: Some Heuristics

- Manipulate state variable with cmovX or setlX
- Dispatcher BB starts with cmp or xor
- In case of xor a cmp follows
- The cmp instruction has the state value

Original BB or Code BB ends in relative jump
Dispatcher BB ends in jump to register
Decision in OBBs

- If OBB would end in a decision, that is moved to another BB
- Some comparison (here test ecx, 1) sets the next state
- These decisions needs to be tracked to learn potential next states
Emulation

Encouragement and cautionary tale
Emulation: the good and evil

• As many complex analysis technique, emulation can be a great help and an enormous time waster

• In practice, the goal is to find the places where it is useful

• Problems with emulation:
 • It does not really run
 • Dependency on other functions
 • Dependency on APIs and libraries

https://www.previewsworld.com/SiteImage/MainImage/STL120308.jpg
Pandora: where emulation worked well

• Opaque Predicates
 ‘Static’ calculated in run-time
Pandora: Opaque Predicates

```python
import flare_emu
from ida_funcs import *

def call_hook(address, arguments, functionName, userData):
    print(f"[+] CALL at 0x{hex(address)}")
    #check if call target a register
    if eh.analysisHelper.getOpndType(address, 0) != eh.analysisHelper.o_reg:
        return

    operand_name = eh.analysisHelper.getOperand(address, 0)
    operand_value = eh.getRegVal(operand_name)
    print(f"[+] {} = 0x{operand_value}"

if __name__ == '__main__':
    ea = get_screen_ea()
    print('[+] Starting emulation')
    eh = flare_emu.EmuHelper()
    function = get_func(ea)
    eh.emulateRange(function.start_ea, callHook=call_hook)
```
Pandora: where emulation worked well

- String decryption
- 14 different decryption functions, same algorithm different constants
- Iterative process
 - First debugging, later 'visual inspection'
def call_hook(address, arguments, functionName, userData):
 print("[+] CALL at 0x{}").format(eh.hexString(address))
 # check if call target a register
 if eh.analysisHelper.getOpndType(address, 0) != eh.analysisHelper.o_reg:
 return
 # comment to call function: args, function addr
 operand_name = eh.analysisHelper.getOperand(address, 0)
 operand_value = eh.getRegVal(operand_name)

 fname = ""
 res = ""
 # check if points to the jump table
 if eh.analysisHelper.getMnem(operand_value).lower() == "jmp":
 fname = eh.analysisHelper.getName(eh.analysisHelper.getOpndValue(operand_value, 0))
 print("[+] API call found: {}".format(fname))
 else:
 fname = eh.analysisHelper.getName(operand_value)
 if "mw_decrypt_str" in fname:
 res = decrypt(arguments, fname)
 print("[+] Decrypted string: 0x{} {}".format(eh.hexString(address), res))

 # if call target is not a start of a function then turn it to a function
 # 00007FF6B6F947A0
 if idaapi.get_func(operand_value) == None:
 print("[+] Creating function at 0x{:x}".format(operand_value))
 ida_funcs.add_func(operand_value)
Pandora: String decryption

def decrypt(argv, fname):
 print([+] Decrypting ...)
 myEH = flare_emu.EmuHelper()
 myEH.emulateRange(myEH.analysisHelper.getNameAddr(fname), registers = {"arg1":argv[0], "arg2":argv[1], "arg3":argv[2], "arg4":argv[3]})
 return myEH.getEmuString(argv[0])

00007FF68F96770 mov rdx, cs:qword_7FF68F9AC0
00007FF68F9676D add rdx, rbp
00007FF68F96770 call rax

Decrypted str: 'ThisIsMutexa'

100.00% (2032,1229) (3,359) 0000E670 00007FF68F96770: main+80 (Synchronized with Hex)
Pandora: I wasted my time so you don’t have to

• I worked on CFF resolution for pandora

• Problem:
 • Emulation was not able to recover next states from decision OBBs
 • Emulating all function calls is risky
 • Decisions might depend on these calls
 • Pandora has a complex way to calculate the values of next states

• Conclusion
 • In practice (where time is money) it is not worth the time
 • Analysis can be done in a debugger in less time
 • In other malware with less complex obfuscation might worth is
Thanks and Q’n’A

Geri Revay 🇵🇸 🇩🇪 Security Researcher at FortiGuard Labs

Ethical Hacking
Malware Research
Threat Intelligence
Twitter: @geri_revy
References

https://www.fortinet.com/blog/threat-research/looking-inside-pandoras-box

https://www.fortinet.com/blog/threat-research/Using-emulation-against-anti-reverse-engineering-techniques

https://research.openanalysis.net/pandora/ransomware/malware/unpacking/dumpulator/emulation/2022/03/19/pandora_ransomware.html

https://github.com/mandiant/flare-emu