
A Framework for Collection and Management of Intrusion Detection Data Sets

Benjamin D. Uphoff
Los Alamos National Laboratory

bduphoff@lanl.gov

Paul J. Criscuolo
Los Alamos National Laboratory

pcrscl@lanl.gov

Abstract

Two areas in intrusion detection research
receive little attention: data collection and data
management. Gigabit Ethernet is becoming
widely deployed, with ten gigabit Ethernet not
far behind. Many current solutions strain
under such bandwidth rates, resulting in data
loss. This is unacceptable for accurate, reliable
intrusion detection systems. Data management
solutions vary greatly from product to product.
Typically, older data is periodically migrated
to some archived format. Once archived, the
data set cannot be easily queried or analyzed
without being imported back into the original
tool. This makes forensics and trend analysis
extremely difficult.

This paper addresses data collection and
management for intrusion detection by
providing a framework designed to
accommodate high-volume, heterogeneous
data sets. This framework solves many of the
problems of conventional approaches to
intrusion detection. Distributed computing is
leveraged to assure scalability. Data can be
captured, queried and analyzed in real-time;
data set sizes are limited only by available
storage. Benchmarks of the initial prototype
are also provided.

1 Introduction

Two areas in intrusion detection research
receive little attention: data collection and data
management. These areas have become
increasingly important with the prevalence of
Gigabit Ethernet. Ten gigabit Ethernet is also
growing in popularity, resulting in even larger
data sets to collect and manage. Current
solutions deployed in large networks strain
under such bandwidth rates, resulting in data
loss and potentially missed intrusion events.
This is unacceptable for accurate, reliable
intrusion detection systems (IDSs).

In terms of data management, solutions
vary greatly from product to product. Often,
older data is archived to ensure adequate
performance and minimize storage overhead.
Once archived, it becomes difficult to query
and analyze the data, making forensics and
trend analysis extremely difficult.

This paper addresses data collection and
management for intrusion detection by
providing a framework designed to
accommodate high-volume, heterogeneous
data sets. This framework solves many of the
problems of conventional approaches to
intrusion detection and network traffic data
collection. Distributed computing is leveraged
to assure scalability. Data can be captured,
queried and analyzed in real-time; data set
sizes are limited only by available storage.

The remainder of the paper is as follows:
Section 2 establishes the motivation behind the
research and summarizes the contributions.
Section 3 discusses related work in the area.
Next, section 4 describes the intrusion
detection framework and the various modules
therein. Section 5 gives a high-level
description of the implementation being
developed at Los Alamos National Laboratory.
Section 6 provides some preliminary
benchmarking results. Section 7 discusses
future work while section 8 concludes the
paper.

2 Motivation and contributions

The motivation for this work was provided

by the network security demands at Los
Alamos National Laboratory (LANL). At
LANL, a network intrusion detection system
(NIDS) is used to monitor the laboratory’s
high throughput network. Data collected by
the NIDS is similar to technologies such as
Cisco’s NetFlow and Riverstone’s LFAP,
reducing hundreds of gigabytes of packet data
into a more manageable size. Like these other
products, the NIDS collects data on source and
destination IP addresses, source and

destination ports, byte totals, timestamps and
various supporting flags. On a given day at
LANL, the NIDS can capture as many as 30
million records for a total of over three
gigabytes of data.

The NIDS data set is used to perform long-
term analysis on network activity along with
network forensics. To achieve this, the data is
often analyzed with custom Perl scripts and
more rudimentary tools like grep. When
working with large subsets of the data, this
process can be very inefficient. To avoid this
problem, analysis typically begins with a “data
slicing” operation. These operations are
typically of the form get all record for IP
address a.b.c.d for May or get all port xyz
traffic for the last six months. After
performing the initial operation, the resulting
subset is analyzed to answer more complicated
questions about the data set. With a reduced
data set, custom Perl scripts can be very
effective analysis tools.
 Given the nature of the data analysis being
performed, it became clear that the data-
slicing problem was the most pressing issue to
be resolved. A flexible, extensible data
management solution was needed. The first
and most obvious solution was to place data in
a relational database. Clearly, the data-slicing
problem would be solved by this approach.
However, there were some fundamental
drawbacks to this solution. One gigabyte of
network traffic data does not translate into a
one-gigabyte relational database. In most
cases, raw data formats will result in a smaller
footprint when compared to a relational
database. Section 6.2 examines this issue in
detail. Although the cost of storage continues
to drop, one of the main design goals was to
avoid keeping redundant copies of data. Using
a relational database would result in keeping
two copies of the data: one in relational tables
and another in raw format. This was not
acceptable due to the economic reality of
maintaining multi-terabyte data sets.

In the end, it was decided that the raw data
files would be indexed on several key fields
commonly used in data slicing operations. The
index structure chosen was a b+ tree with fully
filled pages. This data structure provides fast
look-ups and low overhead. Each page in the
tree if fully filled, because the index is bulk
loaded and no inserts will ever be made, as the
data is static. The end result is a small, fast
mechanism for information retrieval.

One last motivator for this work was the
desire to have instantaneous access to records
gathered by the NIDS. In the past, this data
would be made available in six-hour segments,
which would sometimes have a lag in
processing of twelve hours. Thus, it was
impossible to analyze network activity in real-
time using this data set. To solve this problem,
records can be streamed to the system as they
are recorded by the NIDS. The incoming data
items are stored and indexed using Berkeley
DB. These dynamic indices are periodically
converted into static b+ trees for permanent
storage. By using this model, the large lag
times in data availability are eliminated,
making analysts more effective and timely
when dealing with this data set.

3 Related Work

Research into the area of abstraction for
intrusion detection data sets has been ongoing
for some time. The Common Intrusion
Detection Framework (CIDF) is one such
project [12]. The CIDF specifies protocols for
IDS to interact with one another. The
protocols are concerned with how individual
tools interoperate, allowing for the detection
of sophisticated attacks. A shortcoming of this
project is that data management is not
adequately addressed. When dealing with
multiple data sources on large networks, data
capture and management become very
difficult. One primary goal of the work
presented in this paper is to address this issue.

Additionally, a specification language,
Common Intrusion Specification Language
(CISL), is defined within the CIDF to allow
the modeling of intrusions. This language
shares many traits with the Intrusion Detection
Message Exchange Format (IDMEF), a means
of representing intrusion alerts using XML for
interoperability [13]. These languages can be
seen as complementary to the framework
defined herein. Intrusion alerts represented in
either form can be manipulated like any other
data set within the system.

In another paper, Ning et al propose an
extension to CISL to add query capabilities
across CIDF modules [11]. This work is
similar to the query language proposed in this
paper. However, by the authors’ admission,
this extension is outside the scope of the
original CIDF design. The query language
defined herein is a fundamental aspect of the

system, not an extension as in the case of the
CIDF.

Performance and scalability are often
afterthoughts in intrusion detection research.
In many cases, projects are evaluated on a
small, canned data set [1,5]. Real world
analysis is typically a second step in the
evaluation process [2]. Even if real-world
analysis is performed, the size of the data sets
used for testing are small relative to the data
rates seen in large network installations.

4 Architecture

The framework architecture can be broken
down into the following modules: the data
provider module, the data server module, the
dynamic index module, the static index
module and the query module. These modules
can reside on the same nodes or can be
distributed across several nodes, allowing the
system to scale. The data provider module is
implemented by any application that wants to
input data into the system. The data server
module handles data capture from the data
provider sends data items to the dynamic
index module. The dynamic index module
builds an index structure dynamically,
allowing for data items to be inserted and
retrieved in real-time. The static index module
takes indices generated by one or more
dynamic index modules and merges them into
a static index structure. Lastly, the query
module allows transparent data access to both
dynamic and static indices. These modules
form a powerful framework for collecting and
managing intrusion detection and network
traffic data sets. Multiple heterogeneous
sensors can feed information into the system
in real-time. The larger the cluster used to
implement the framework, the more data that
can be captured and analyzed. Both data
capture and information retrieval are
distributed, ensuring scalability.

Figure 1 illustrates a typical intrusion
detection framework (IDF) configuration. An
intrusion detection system (IDS) implementing
the data provider module sends data,
represented by the black arrow, to a node
running a data server. This node is considered
the master node, as it will be responsible for
processing the data stream from the IDS. In
this case the data server can send data to one
or more subordinate nodes, labeled Sub1
through Subn, in the cluster running the

dynamic index module. When the operation is
complete, the master node migrates the
dynamic indices to a static structure using the
static index module. Also note that all of the
nodes have implemented the query module,
allowing for distributed queries across the
cluster.

Although only one IDS is shown in figure

1, numerous input streams can be handled by
the data server at once, allowing the system to
capture data from a variety of data sources.
This allows the system to meet the needs of
large, complex network installations. In many
cases multiple sensors and data sources will be
present and will need to be captured by the
data server. Each data source or sensor must
implement the data provider module to feed
into the IDF. Scalability can be ensured by
instantiating multiple data server modules,
static index modules and dynamic index
modules across a cluster.

The remainder of this section details the
high-level concepts of the framework. Section
5 describes the implementation of the various
modules in the prototype being developed at
LANL.

4.1 Data provider module

A data provider is defined as any
application that inputs data into the system.
This could be a traditional IDS like Snort,
sending IDMEF alerts, or a server sending
system call traces. There are two conceptual
requirements for a data provider: data
registration and interface implementation.

Data
Provider
Module

Dynamic
Index

Module

Query
Module

Data
Server

Module
Static
Index

Module

Query
Module

Query
Module

Dynamic
Index

Module

IDS

Master

Sub1

Subn

Figure 1. System architecture

Before a data provider can input data, it
must register the type of data it will be sending
to the system. Each data type must have its
own unique description in the system’s
metadata. For instance, IDMEF alerts would
have one entry. Linux system call traces would
have an identifier, as would traces from a
Windows machine. The metadata must be
flexible enough to accommodate a wide range
of data types. The requirements for the
metadata vary for different data types. XML
based data, like IDMEF, needs little more than
the location of the DTD. Data such as system
call traces requires a description of the fields
that includes information like field lengths,
field types and delimiters.

The second requirement, interface
implementation, is rather straightforward. The
data server, discussed in the following section,
defines an application-layer header for data
providers connecting to the data server. The
data provider simply opens a socket
connection to the data server, writes the
application-layer header to the socket and
starts sending data items. When the data
provider is finished sending data, it simply
closes the connection, signaling the data server
that it has completed its operation.

One caveat is that the data server may deny
the connection attempt from the data provider.
If this happens, the data provider must either
wait or attempt to connect to a different data
server.

4.2 Data server module

The data server is the mechanism that
provides scalable, high-throughput data
capture. It allows applications implementing
the data provider module to send data to the
system without worrying about how or where
the data will be stored. In a typical
configuration, most of the nodes will be
running a data server module so that one
single node does not become a bottleneck,
handling all data input.

The data server must listen for new
connections from data providers. When a new
connection is opened, the process must fork to
allow additional data providers to connect. It is
suggested that the data server redirect data
providers to another node if the data server has
become overloaded. If the number of currently
connected data providers exceed a certain
threshold additional data providers should be

denied. An overloaded data server should
suggest a different data server node for the
data provider to interact with in its reply.

The data server processes an application
layer header upon each connection from a data
provider. This header includes the data type of
the data being processed, the sensor that is
sending the data and the date of the data set.
This information must be recorded in the
system metadata for use in other modules
within the IDF.

The date information imposes the following
restriction on the data provider: data streams
must not span multiple days. Thus, the data
provider must periodically (i.e. at midnight)
close the data stream and restart it by
reconnecting to the data server. This
restriction is necessitated by the requirements
of the query module. Although it may seem
prohibitive in some cases, this type of data is
time series data and can be easily segmented
in this manner.

As data items are received from the data
provider, they must be immediately sent to a
local or remote dynamic index module. If
remote index modules are involved, a load
balancing function is applied to the data item
to determine where to send the data item.
Implementation of this algorithm is left up to
the implementer, however it is suggested that
system status and metadata be used to
dynamically load balance the system.

4.3 Dynamic index module

After the data server processes data items,
the dynamic index module must process them
immediately to make data available in real-
time. This module is responsible for storing
the data items and making them accessible to
the query module. The data items stored and
indexed can be thought of as transient. That is,
eventually the data and indices will be
migrated to a permanent location by way of
the static index module.

Upon entering the dynamic index module, a
data item must be made accessible locally.
Exactly how the data is stored is dependent on
the needs of the implementation. Potential
storage methods include relational databases,
flat files or embedded databases. Next, the
data item must be made accessible to the query
module. How this is achieved is influenced by
the means of storage. For instance, the query
module would be easy to implement if the

dynamic index module stored all its data items
in a relational database; the dynamic index
module would not need to perform any
additional processing. However, if flat files
were used as the storage medium, additional
processing would be needed to provide the
query module with enough information to
retrieve individual data items.

4.4 Static index module

 Data sets used in network traffic analysis
and intrusion detection are append-only in
nature. Once data is recorded, it will not
change over time. This allows for various
optimizations that are not possible when
dealing with dynamic data sets. In the IDF, the
static index module is where these
optimizations can be implemented to leverage
the properties of the data.

The static index module is used to migrate
the data items collected by the dynamic index
module to permanent storage. This process
involves merging the data items from one or
more dynamic index modules into one static
result. This result contains two parts: the data
and the access method. The data items are
merged, if necessary, to create one master data
set. After the data set is built, the static access
methods must be generated. The static index
module is an optional module in the IDF, as
some access methods implemented in the
dynamic index module may be sufficient for
permanent data access. In this case, the static
index module is not necessary and can be
ignored.

To begin processing, the static index
module on a designated master node must
send a notification to any remote nodes in the
cluster that have data items relating to the data
set being processed. These nodes will become
subordinate nodes in the static index building
process. The subordinates must have some
means of returning data to the master node, for
example NFS or TCP/IP sockets.

Once all the data is received and the access
methods are built, the static index module can
migrate them to permanent storage. At this
point, the module performs some clean up
functions, including clearing out the dynamic
index module’s data sets, as they are no longer
needed. Also, the module is required to update
the system’s metadata. The location, size and
time information are updated in the metadata
so that the query module, described below, can

find the access method for the newly
processed data.
 Although this module is optional, it is
useful in most situations. Even if a relational
database was used in the dynamic index
module as the storage mechanism, there is still
much to gain from implementing a static index
module. For example, the database used in the
dynamic index module would be tuned for fast
inserts. The static index module could migrate
the records to a different database that was
tuned for query performance.

4.5 Query module

The final and most important module in the
IDF architecture is the query module. The
purpose of this module is to search data sets
using the access methods built and maintained
and by the static and dynamic index modules.
When a query is submitted to the query
module, it divides the query into sub-queries if
possible. These sub-queries can be executed
sequentially or sent to query modules in
remote nodes. In either case, all query results
must be returned to the originating query
module.

Queries submitted to the query module
must be submitted as XML in adherence to the
DTD shown in appendix A. This
representation defines the IDF query language
(IDF-QL). The schema described herein
should be seen as a preliminary definition of
the IDF-QL. Defining the query language is a
driving factor in the current research direction
of the IDF.

The IDF-QL is not tailored to any
particular data set. However, it is apparent in
appendix A that the attributes defined by the
DTD are fields common to a variety of
intrusion detection and network traffic data
sets.

Date information must be provided in each
query. At least one Date element or date
attribute must be specified. This information is
found in the system metadata and is recorded
when a data provider connects to a data server.

To support the time attribute, time
information must be indexed by an access
method in both the static and dynamic index
modules. This is the only attribute that is
required of data sets within the IDF. If time
information is not available within the data,
the data provider module must modify the data

stream in some way to include this
information.

In addition to adhering to the schema
defined in appendix A and the date/time
requirements, some additional rules must be
enforced by the query module when
processing queries. Appendix B provides
example queries to illustrate these rules. The
first rule is that overlapping date (or time)
elements (or attributes) cannot be nested in
sub-queries. For example, the user cannot
submit a query specifying a date range of
March through April at the root Query element
and then specify another date range in a nested
query. Rule 1 is stated as follows:

 Rule 1: Nested queries adhere to the

date/time ranges specified in the parent,
unless the parent has no recursively specified
date/time range

The next set of rules deal with the handling
of multiple data types within a single query.
The optional Type element allows the user to
specify what data types to return in the result
set. Omission of the Type element implies that
all data types across all sensors should be
included in the result set. Also, like Rule 1,
nested queries cannot have conflicting Type
definitions. Rules 2 and 3 are stated as
follows:

 Rule 2: Omission of the Type element

implies that all data types and all sensors
should be queried

 Rule 3: Nested queries adhere to the type
specification in the parent, unless the parent
has no recursively specified type

 The next rule deals with mapping attributes
in the Query element to the data sets being
searched and returned in the result set. Not
every data set has the search attributes for a
given query. For instance, one data set may
not have a MAC address field. When a query
on MAC address is requested, that data set
cannot be queried. Rule 4 is stated as follows:

 Rule 4: In order to be returned in a
result set, a data set must contain all the
search attributes in some form

Finally, the result elements must follow the
same property as defined for time and type:
nested result types cannot conflict with the

result type of the parent. Also, there is no
default result type and some result type, or
types, must cover the query. Rules 5 and 6 are
stated as follows:

 Rule 5: Nested queries adhere to the

result specification in the parent, unless the
parent has no recursively specified result

 Rule 6: A result element, or elements,
must cover the query

In summary, the query module is a critical

component in the IDF and drives the design of
many of the system’s other modules. The
static and dynamic index modules must
provide access methods that support the
functionality of the query module. As defined
here, the query module provides analysts with
a powerful means of accessing heterogeneous
data sets with an intuitive, yet powerful, query
language. Further definition of the IDF-QL is
ongoing and will undoubtedly have impact on
the system architecture. Refer to appendix B
for example queries.

5 Implementation

As of the writing of this paper, all of the
modules described in section 4 have been
implemented to provide data capture and data
access to the NIDS data set. As shown in
Figure 1 above, the system architecture is a
distributed environment, however this is not a
requirement. Section 5.3 explains how the
system functions in a single-node
environment. This approach allows the
framework to scale from one to many nodes,
depending on the user’s needs. In most cases,
the distributed approach is preferable.

Three entities are represented in Figure 1:
the data provider, the master node and the
subordinate nodes. The data provider,
described in section 5.1, connects to the data
server on the master node. The master
distributes the load amongst the subordinates.
Any tool generating intrusion detection data
can become a data provider. Potential data to
be collected could include IDMEF alerts, web
server logs, system call traces or network
connection summary data like LFAP or
Netflow. Each tool is associated with system-
wide metadata describing the data format.
Some of this information includes field
lengths, delimiters and data types (i.e. long,
integer, string). The metadata allows other

entities in the system to properly parse and
manipulate incoming data.

The master node performs much of the
critical processing of the data stream. As data
items are read from the data provider, the
master distributes them to the subordinate
nodes, which are responsible for maintaining
the dynamic indices. Currently round robin
scheduling has proven sufficient for load
balancing the system. Whenever a data
provider closes its connection to the master
without error, the master begins to migrate the
data to static index structures. This process is
explained in section 5.4. The static indices are
currently implemented as b+ trees with fully
filled pages. The keys are user-defined field
contents, while the data values are file offsets.

As subordinate nodes receive data items
from the master, they must parse the data item
and update the dynamic indices. The current
framework prototype utilizes Berkeley DB to
serve as the dynamic data store. This allows
for high data capture throughput and fast,
flexible data access as shown in section 5.1.
Because the indices are updated in real-time,
the current query module implementation can
retrieve data as soon as the subordinate
processes it. The choice of what fields to index
is left to the user and is defined in the system
metadata and configuration parameters.

At this point it is worth commenting on the
use of static b+ trees and Berkeley DB as the
data access methods. Clearly, the use of a
relational database provides much more
flexibility than the approach used in this case.
However, as shown in section 6.1, the
throughput suffers considerably when a
relational database is used as the data store.
This is a critical factor when dealing with
high-speed networks with high data volumes.
Also, section 6.2 shows that storage overhead
is higher compared to the approach
implemented. The desire to avoid data
redundancy and to keep the data in its original
format was a crucial design factor in the
framework as well. Often, custom tools have
been written to access the data in its raw state.
The user might then be forced to choose
between discontinuing the use of these tools
and having redundant data. In most cases,
having two copies of a terabyte-sized data set
is impractical and expensive.

5.1 Data provider

There are currently two implementations of
the data provider module, both designed to
send NIDS data to a data server. The first
implementation is a simple, 136 line Perl
script which reads in a NIDS data file, opens a
connection to a data server and sends the file
contents over the socket. The primary purpose
of this script is to illustrate how easy it is to
implement a data provider module. Aside from
some information in the IDF metadata, this is
the only aspect of the implementation that the
data provider need be concerned with.

The second implementation has been tested
in a development and is built into the NIDS
application. As soon as a record is created by
the NIDS, it is written to a socket. This data
provider module, written in C, takes fewer
than 100 lines of code. When deployed in
production, NIDS records will be available in
real-time allowing for accurate and timely
analysis of network activity.

5.2 Data server

In the current IDF configuration, all of the
nodes run a data server so that one single node
does not become a bottleneck. Each data
server listens for connections and spawns a
new process for each successful connection.
At this point, the data server processes an
application layer header that contains
information about the operation type, either an
insert or a dump request, and the data type, a
global identifier tying the data type to
information in the system metadata.

After processing the first portion of the
header, a function specific to the data type and
operation is called to perform the majority of
the processing. The purpose of the dump
request is discussed in sections 5.5 and 5.6
below. Insert operations are handled by
application-specific functions, one for each
data type. Currently, only NIDS data is
supported, however it is easy to add support
for other data types with similar properties
such as router logs or system logs.

Before data can be processed, the
application-specific function must process any
additional header information. Seven
additional parameters are processed when
performing insert operations on NIDS data:
three integers that tell how to distribute the
processing and four time-related integer
parameters. The state of the first three integers
will result in one of the following three cases:

single-node server, master server or
subordinate server. Sections 5.3, 5.4 and 5.5
deal with these three cases respectively. The
next three parameters are date information for
the incoming data: month, day and year. The
final parameter is the “run” number, which
allows for multiple builds of data from the
same day. This is used for high volume
situations when the user wants to cap the
number of data items in a particular index
structure. For example, the user could decide
that once 10 million data items are sent that a
new run should be started. The application
implementing the data provider simply closes
the socket and opens a new one after
incrementing the run number.

The current data server prototype is written
in Java and supports TCP or UDP sockets,
optionally using SSL for secure data
transmission. These decisions are left largely
up to the developers based on the needs of
their environment. It is recommended that SSL
be used within a secure network to ensure
information safety and system reliability.

5.3 Single node server

In some cases, it is desirable to only use a
single node to handle data capture. For
instance, a low-bandwidth network feed might
only need a single server to manage incoming
data. The single node server performs four
primary functions: reading data items from the
client application, parsing the data items,
inserting into the temporary data store and
migrating to the permanent data store. The
first three functions commence whenever a
client application connects to the data server
and continue as long as the connection
remains open. Migration takes place when the
connection is closed, or at the data server’s
discretion.

Upon client connection, the data server
must prepare the various data stores needed to
build the dynamic indices. First the server
must check to see if a database environment
has already been instantiated. Berkeley DB
was chosen for the current implementation
because it is open source, embedded and
provides high throughput. The database
environment in Berkeley DB has several
functions including buffer pool management,
transaction logging and disaster recovery. If
no database environment exists, one must be
created. Once an environment is instantiated,

the server can create the new dynamic indices.
Each field in the data set being indexed needs
its own database. The field values become the
database keys in the b+ tree while the data
values become the offsets of a temporary data
file. This data file is appended to as new data
items are received. A delimiter, in the case of
NIDS records a new line character, signals the
end of a data item. Finally, a parser must be
instantiated based on the data type metadata.

Once the above steps are completed, the
node can begin performing inserts into the
dynamic indices. As data is received, it is sent
to the parser, which returns the fields of the
data item as an array of strings. The data item
is appended to the temporary data file at this
point as well. Next, each field being indexed is
inserted into its corresponding database along
with the current file offset. Once these
operations complete, the data item can be
discarded and a new one can be processed.
Also, at this point the data item is available to
be retrieved through the query module.

When the data provider closes the
connection, the node can begin the migration
process, which will result in the generation of
static b+ trees, one for each dynamic index. In
the case of the single-node server, this process
is very simple. For each dynamic index, the
node simply traverses the database in
ascending order and writes the key/data pairs
to a temporary file that will be used to build
the static b+ tree.

Once this operation is completed, the node
calls the index builder application and waits
for it to complete. The index builder is written
in C++ and implements b+ trees [14] in flat
files. Upon successful completion, the node
can clear out the dynamic indices and any
temporary files that are no longer needed.

5.4 Master server

The master server mode of operation is
similar to the single-node case with the
addition of distributed data processing on
remote subordinate nodes. Generally speaking,
the master reads data items from the provider
and sends the record to a subordinate.
Currently, round robin scheduling has proven
sufficient as the machines are essentially
identical in performance and perform the same
set of tasks. When the connection from the
data provider closes, the master gathers the

results from the various nodes, merges them
together and builds a static b+ tree index.

The initial steps for the master node are
somewhat different from the single-node case.
Depending on the application layer connection
header, the master may or may not record data
items. If not, the master becomes a “splitter
node” that simply reads the data in and round
robins data to the subordinates. This mode is
typically used when dealing with very high
data rates. In practice, the splitter node has
shown to out-perform a configuration with the
master recording data items.

Whether or not the master is acting as a
splitter, it needs to open a connection to a data
server on each of the subordinate nodes. If the
master node is also recording data items then it
must follow the same initialization steps as a
single-node server. At this point the server can
start receiving data from the data provider
application.

The scheduling algorithm, in this case
round robin, determines the next step taken by
the master server for a given record. If the
scheduler maps a record to the master node it
must update the dynamic indices and write the
data item to disk, as in the single-server case.
Otherwise, the data item is sent to the
corresponding node’s dynamic index module
via the node’s data server.

Data items are processed until the data
provider closes its connection to the master.
Then, the master closes its open connections to
the subordinates. At this point, the master
enters the merge phase, which is described in
section 5.6. The process involves reopening
connections to the subordinates and sending a
“dump request” to each. The dump results are
then merged to yield one data set. After the
merge successfully completes, the master
behaves just as a single-node server and builds
the static b+ tree indices.

5.5 Subordinate

Each subordinate node has two forms of
operation: data capture mode and dump mode.
While in data capture mode, the subordinate
receives data, parses it and updates the
dynamic indices. This is no different than how
the single-node server case handles data.
Dump mode becomes important when the
master is ready to merge the data set and build
the static indices. The master reopens
connections to the subordinates, this time

specifying in the header that a dump of the
dynamic indices should be created. The
subordinate writes the contents of each
dynamic index to a temporary file accessible
to the master node over NFS. The details of
this process are described in the following
section.

5.6 Index building

When a data provider closes a connection to
the data server, dynamic Berkeley DB indices
can be migrated to static b+ tree data
structures. This operation potentially requires
three steps: merging data from subordinates,
running the index builder application and final
migration. Merging requires the raw data and
the dynamic indices of the subordinates, if
any, to be combined on one machine. This
phase prepares the data for the index builder
application. Optionally, the raw data and static
indices can be migrated to a final destination,
an NFS server for instance, to allow access to
the data and indices from multiple machines.

At the beginning of the merge phase, each
subordinate node, and optionally the master
node, holds a portion of the data set. First, the
master sends a dump request to each
subordinate. The subordinates then dump their
dynamic indices in parallel. In the prototype
implementation, these dumps are placed in
locally exported NFS partitions to which the
master has read access. The dump operation
writes the key/data pairs to a flat file, one pair
per line, while traversing the dynamic index in
ascending key order.

After dumping the dynamic indices, the
index builder application is executed to
generate the b+ trees. The input to the
application is a file containing the processing
parameters, which is generated by the data
server prior to calling the index builder. The
types of information in the input file include
date information, the data file path, the type of
data, fields to index and node information.

Given this information, the index builder
takes the temporary data files on the
subordinate nodes and concatenates them to
create one large data file. At this point, the
index dumps still need to be merged from the
subordinate nodes. For each index being built,
the corresponding dumps are merged into a
single file. The file offsets in the dump files
need to be adjusted to reflect the fact that the
records are now part of a single, larger file.

The resulting file contains one line for each
unique key value. A delimiter, if needed,
follows the key value and then the file offsets
of all the data items containing that key. This
“master dump” file will be stored permanently
and is used by the query module to retrieve
data items.

5.7 Query module implementation

At this time, the query module
implementation supports the features of the
IDF-QL as defined in section 4.5. A query
processor application handles query requests
from clients and returns the results. It also
performs validation checking and enforces the
rules defined by the IDF-QL. Once a query
has been validated, the query processor
translates the query into a call to an external
search application that feeds results back to
the query processor and ultimately to the
client. The search application is designed to
traverse the b+ tree data structures and the
Berkeley DB-based dynamic indices
transparently and return matching results. It
performs joins on search criteria using a
traditional sort-merge join [14] and has a
simple but effective caching mechanism. The
cache stores the results of elementary queries
and leverages these stored results to increase
query execution time. Information about what
results are cached is stored in the system
metadata. Data in the cache is periodically
flushed to avoid filling up a node’s local
storage. The cache is very effective when a
query is repeated in total, or with minor
modification. Initial performance results of the
query module implementation, as shown in
section 6.3, are encouraging.

6 Benchmarking

The primary motivation of this section is to
provide evidence to support the claim that a
relational database is not an adequate solution
to the problems inherent to large network
traffic data sets. Section 6.1 discusses system
throughput, first when using a relational
database as the backend data store a then when
using Berkeley DB-based indexing techniques.
Scalability is also discussed therein. In section
6.2, the overhead of storing network traffic
data is evaluated. Naturally, any sort of table
structure or index scheme imposes additional
overhead above what the raw data requires.

This section illustrates the storage savings
when comparing static indexing techniques to
relational databases. Lastly, section 6.3
provides initial query performance results,
comparing the static b+ tree data structure to
MySQL for a small set of queries.

6.1 Throughput and scalability

As discussed in Section 4.2, data capture is
a critical element in the system architecture. A
system attempting to capture large network
traffic data sets must be able to keep up with
the high volume and potentially bursty nature
of the data. Therefore, throughput becomes an
important metric when evaluating these
systems. Also, throughput is closely tied to
scalability. A scalable system is necessary to
meet the needs of a dynamic and rapidly
growing network.

NIDS data from two days was used to
evaluate the throughput of the system
prototype. The first data set was from April 1,
2002, containing approximately seven million
records. The second data set was from
September 14, 2003 and contained
approximately 20 million records. The large
difference in the number of records can be
attributed to an increase in network activity
coinciding with the Microsoft DCOM
vulnerability. These data sets were chosen
because they illustrate how rapidly the size of
the data sets grow. Due to the increase in port
135 and 445 scans, the number of NIDS
records tripled over a one-week period. Until
the number of DCOM scans increased so
dramatically in late August 2003, the April 1
dataset was very representative of a typical
day’s worth of NIDS data. Any system hoping
to perform data capture of network traffic data
must be able to handle rapid increases in data
volume of this sort.

The primary design decision that impacts
throughput is the backend storage mechanism.
The most obvious solution is to insert records
into a relational database. MySQL (version
3.23.53) was chosen in this case because it is
widely used in intrusion detection systems like
Sno
rt
and
thu
s
ma
ny

Figure 3. System throughput

intrusion detection analysts have experience in
its operation. For this evaluation, records were
inserted one by one into an empty table. No
optimizations were made to the database
environment. Two dual Pentium III 1 GHz
computers with 1 GB RAM and gigabit
Ethernet were used for the test. One machine
implemented the data provider module while
the other implemented the data server and
dynamic index modules. Figure 2 illustrates
the results of this benchmark.

Although the throughput rate was
acceptable for the 2002 data, the throughput
fell 46% on the 2003 data to an average of 135
records per second. At this rate, it took 1.6
days to load the data set into MySQL. By
comparison, the same test using Berkeley DB
(version 4.1.24) as the backend as described in
section 4 yielded superior throughput while
only showing a 24% degradation in
performance on the larger data set. By contrast
this data set took only 13 hours to load using
Berkeley DB.

Although using MySQL’s bulk data load
capabilities would yield better results, this
would not satisfy the real-time requirement of
the system. Also, it is certain that database
tuning would result in better throughput for
MySQL, although similar optimizations could
also be applied to Berkeley DB. The key point
made here is that MySQL’s additional
complexity and overhead results in reduced
throughput when compared to using Berkeley
DB as the backend data store.

Figure 3 illustrates scalability, another key
element in the system design. To deal with
rapidly growing data sets, the system must be
able to scale. For this benchmark, three
configurations were evaluated: single-node,
three-node and five-node. In each case there
was one master node implementing the data
server. In the one-node setup, the master
handled all the processing, implementing the
dynamic index module as well. In the three
and five node setups, each subordinate node
implemented the dynamic index module to
allow for distributed processing of the

incoming data. As shown, the system scaled
well over the 2002 data set. Resource and
time constraints limited the ability to test the
scalability of larger environments. The five-
node environment’s throughput has proven to
be more than sufficient for current data rates.

One additional point about Figure 3
requires clarification. The throughput
increased 138% from the single-node
environment to the three-node environment.
The throughput increase from the three-node
case to the five-node case was 180%. The
disparity here stems from the fact that the
three-node environment had only one more
dynamic index module implemented than the
single node case - one on the master for the
single-node configuration and one on each of
the subordinates for the three-node setup. The
five-node environment had two more indexing
modules than the three-node setup, accounting
for the 42% difference in performance. Thus
the initial results of the scalability benchmarks
show that adding one dynamic indexing node
results in around 40% increase in throughput.
This result is encouraging, although additional
research is needed to verify this claim on
multiple larger data sets and larger clusters.

6.2 Storage overhead

The desire to keep storage overhead at a
minimum was a key driver in the IDF design
and implementation. Two long-term storage
methods were examined: relational databases,
in this case MySQL, and static b+ trees. Both
approaches have advantages and
disadvantages. Relational databases provide
the user with a great deal of power in
manipulating the data. The drawback is that
the overhead is high and it introduces data
redundan
cy. One
of the
design
goals was
to keep
only one
copy of
each data
set
online.
Storing each record in a relational database
and storing the raw data essentially doubles
the size of the data set. To avoid this, static b+
trees were evaluated. The advantage of this

Figure 2. Backend data store performance

 Time (sec)
Query B+ Tree MySQL % Diff # Results

1 7.84 0.45 5.69% 18
2 0.37 0.03 6.94% 184
3 0.36 1.60 448.37% 758
4 98.16 1,012.94 1,031.93% 820,410
5 136.53 1,831.13 1,341.19% 369,186

Table 2. Query performance

approach is that the raw data itself is indexed,
eliminating the need for an additional copy of
the data. The disadvantage is that the analyst
no longer can leverage the power of a
relational database. However, given the nature
of the types of queries used by analysts, the b+
tree solution provides enough power to
compute the majority of these queries, while
maintaining a low overhead.
 For the purposes of this benchmark, three
cases were examined: a relational database
with raw data, a relational database without
raw data and static b+ trees with raw data.
MySQL 3.23.53 was used on Mac OS X
version 10.2.7. For both the b+ tree and
MySQL databases, four fields were indexed:
destination address, source address,
destination port and start timestamp. Table 1
shows the results of the benchmark.

As is evident in Table 1, using static b+
trees requires around 45% less overhead than
using MySQL as the access method without
storing the raw data. However, since it
necessary to save the data in many cases, the
overhead becomes substantial. These issues
led to the adoption of the b+ tree solution in
the current IDF implementation, although
other solutions could be implemented to meet
the needs of the user.

6.3 Query performance

A set of five different queries were run five
consecutive times on matching dual Xeon
servers with 2 GB of RAM to evaluate the
performance of the b+ tree index structure.
MySQL version 4.0.18 was used for
comparison in this test. Table 2 illustrates the
averaged results from each query.

The data set used was a single high volume
date from September of 2003. Since there are
four NIDS data files generated per day, four
MySQL databases were built to correspond
with this arrangement. Each database was
indexed on destination port and source
address.

For brevity, the actual query syntax used to
generate the above results is not included.
Query 1 returned results matching on a source
address and destination port. Query 2 returned
results from the same destination port as query
1 but with no restriction on source address.
Query 3 returned results matching on a small
range of destination ports. Query 4 returned
results matching a highly active destination
port. Query 5 returned results matching a
larger port range than Query 3.
 As is evident in table 2, the static b+ tree
structure performed well for cases generating a
large number of results. The results from
queries 1 and 2 were substantially better when
using MySQL, as the caching mechanism
helped consecutive runs perform very well.
Even so, the total time to return these queries
was low when using either system.
 These initial results support the decision to
use the b+ tree data structure as the underlying
data retrieval mechanism. Performance is very
good when dealing with large volumes of data,
as was the initial design goal of the system. It
is also reassuring that queries with small result
sets also return quickly, although not as fast as
when using MySQL in some cases.

7 Future Work

The most pressing task in the development
of the IDF at LANL is the inclusion of other
data types. Although the NIDS data set is an
interesting data source, it does not meet the
needs of all situations. Additional data sets
such as router logs and IDS alerts need to be
integrated to provide analysts with a more
comprehensive view of network activity.
Adding new data types may also lead to
creating new access methods other than the b+
tree solution.

The query module is an area of research
that will receive a large amount of attention.
The definition of the IDF-QL as defined here
is a preliminary definition. The current
implementation provides adequate
functionality for many task related to network
traffic analysis and intrusion detection but
requires additional research to realize its
potential. Once the query language is
complete, attention can be shifted to focus on
distributed query processing and optimization.

In addition, robustness and survivability
must be addressed. As with any distributed
system, there are many potential points of

Storage Method Size (MB) Ratio
Raw 858.41 100.00%
Raw + Index 1124.52 131.0%
MySQL 1523.60 177.49%
Raw + MySQL 2382.01 277.49%
Table 1. Storage overhead

failure. These areas must be better understood
so that the system can survive failures at
various levels. Currently, node failures are
addressed by simply ignoring the node until it
becomes available. A more robust fail-over
system needs to be implemented so that data
capture can continue unhindered when a node
fails.

Lastly, an exhaustive benchmark of the
system must be made. Areas to address
include throughput, scalability, robustness and
query performance. The results presented here
are encouraging but not comprehensive.
Additional research must focus on this aspect
of the system.

8 Conclusions

In this paper, a framework for the collection
and management of intrusion detection data
sets is proposed and initial results are reported.
The design of the system was driven by the
network security needs inherent in high-
volume network installations. Managing the
data sets associated with network traffic and
intrusion detection becomes very inefficient
using current techniques. Therefore, a uniform
mechanism for capture and retrieval of this
data is essential to enable security analysts to
effectively perform their duties. The initial
results of the IDF implementation being tested
at LANL have been encouraging. High
throughput data capture and retrieval has been
shown using the high volume NIDS data set as
a test case. Furthermore, the static b+ tree
indexing methods have shown promise in
minimizing storage overhead while still
providing analysts with a powerful
information retrieval tool. Additional work in
data set integration, query capability and
robustness need to be performed before the
IDF can be a viable solution for network
security at large installations.

References

[1] C. Taylor and, J. Alves-Foss, “NATE -
Network Analysis of Anomalous Traffic
Events, A low-cost approach”, Proceedings of
the 2001 workshop on New security
paradigms, ACM Press, New York, NY, 2002,
pp. 89-96.
[2] C. Taylor and, J. Alves-Foss, “An
empirical analysis of NATE: Network
Analysis of Anomalous Traffic Events”,

Proceedings of the 2002 workshop on New
security paradigms, ACM Press, New York,
NY, 2002, pp. 18-26.
[3] T. Lane and C. E. Brodley, “Temporal
Sequence Learning and Data Reduction for
Anomaly Detection”, Proceeding of the 5th
ACM conference on Computer and
communications security, ACM Press, New
York, NY, 1998, pp. 295-331.
[4] F. Cuppens, A. Miege, “Alert Correlation
in a Cooperative Intrusion Detection
Framework”, Proceedings of the 2002 IEEE
Symposium on Security and Privacy, 2002, pp.
187-200.
[5] W. Lee and S. J. Stofolo, “A framework
for constructing features and models for
intrusion detection systems”, ACM
Transactions on Information and Systems
Security, Volume 3, Issue 4, ACM Press, New
York, NY, 2000, pp. 227-261.
[6] X. Yang, J. Shen and Q. Liu. “A Novel
Clustering Algorithm Based on Weighted
Support and its Applications”, Machine
Learning and Cybernetics, Volume 1, 2002,
pp. 95-100.
[7] L. Teo, Y. Zheng, and G. Ahn, “Intrusion
detection force: an infrastructure for internet-
scale intrusion detection”, Proceedings of the
First IEEE International Conference on
Information Assurance, 2003, pp. 73-86.
[8] T. Bass, “Intrusion detection systems and
multisensor data fusion”, Communications of
the ACM, Vol 43, Issue 4, ACM Press, New
York, NY, 2000, pp. 99-105.
[9] F. Cuppens, “Managing Alerts in a Multi-
Intrusion Detection Environment”,
Proceedings of the 17th Annual Computer
Security Applications Conference, 2001, pp.
22-31.
[10] P. Ning, S. Jajodia and X. S. Wang,
“Abstraction-based intrusion detection in
distributed environments”, ACM Transactions
on Information and System Security, Volume
4, No. 4, ACM Press, New York, NY, 2001,
pp. 407-452.
[11] P. Ning, X. S. Wand and S. Jajodia, “A
query facility for common intrusion detection
framework”, Proceedings of the 23rd National
Information Systems Security Conference,
2000, pp. 317-328.
[12] M. Reilly and M. Stillman, “Open
infrastructure for scalable intrusion detection”,
IEEE Information Technology Conference,
1998, pp. 129-133.

[13] D. Curry and H. Debar, “Intrusion
Detection Message Exchange Format Data
Model and Extensible Markup Language
(XML) Document Type Definition”,
http://www.ietf.org/internet-drafts/draft-ietf-
idwg-idmef-xml-10.txt, 2003.
[14] R. Ramakrishnan and J.D. Ice (ed),
Database Management Systems, The
McGraw-Hill Companies, Inc., USA, 1997.

Appendix A: IDF-QL DTD

 A preliminary document type definition
(DTD) for IDF-QL is provided below. The
IDF-QL is currently being enhanced and thus
this DTD should not be seen as a definitive
specification of the language.

<?xml version="1.0"?>
<!ELEMENT Query (Query*, TCPResult?,
DBResult?)>
<!ELEMENT SocketResult EMPTY>
<!ELEMENT DBResult EMPTY>
<!ATTLIST Query srcip CDATA>
<!ATTLIST Query srcmac CDATA>
<!ATTLIST Query srcport CDATA>
<!ATTLIST Query dstip CDATA>
<!ATTLIST Query dstmac CDATA>
<!ATTLIST Query dstport CDATA>
<!ATTLIST Query date CDATA>
<!ATTLIST Query time CDATA>
<!ATTLIST Query dataset CDATA>
<!ATTLIST Query sensor CDATA>
<!ATTLIST SocketResult host CDATA>
<!ATTLIST SocketResult port CDATA>
<!ATTLIST SocketResult type CDATA>
<!ATTLIST DBResult host CDATA>
<!ATTLIST DBResult port CDATA>
<!ATTLIST DBResult db CDATA>
<!ATTLIST DBResult database CDATA>
<!ATTLIST DBResult table CDATA>

Appendix B: IDF-QL examples

The following examples illustrate several
correct and incorrect queries specified in IDF-
QL.

<Query srcip=”1.2.3.4” dstip=”5.6.7.8-
9.8.7.6” dstport = “1-1024” date=”1/1/2002-
12/31/2002”>
 <SocketResult type=”tcp” host=”3.4.5.6”
port=”10000”/>
</Query>

<Query>
 <Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”>
 <DatabaseResult host=”3.4.5.6”
port=”3306” db=”MySQL”
database=”temp” table=”results1”>

<Query/>
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”>
 <DatabaseResult host=”3.4.5.6”
port=”3306” db=”MySQL”
database=”temp” table=”results2”>
 </Query>
</Query>

 The two queries above adhere to the DTD
specified in appendix A and do not violate any
of the rules from section 4.5. The first query
performs a three-way join on source IP
address, destination IP address and destination
port for all dates in the year 2002. The results
of this query will be sent to a TCP/IP socket
on the specified host and port. The second
query has two sub-queries, which search for
two different IP addresses over different date
ranges. The results from each sub-query are
placed in a MySQL database on the same host
in different tables.

<Query date=”8/1/2003-9/15/2003”>
 <SocketResult type=”tcp” host=”3.4.5.6”
port=”10000”/>
 <Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/>
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”/>
</Query>

 The above query violates rule 1 as
described in section 4.5. The date ranges in
bold are conflicting in that the parent query’s
range is not equal to the sub-query’s range.

<Query type=”1”>
 <SocketResult type=”tcp” host=”3.4.5.6”
port=”10000”/>

<Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/>
 <Query type=”2” srcip=”9.8.7.6”
date=”8/1/2003-9/15/2003”/>
</Query>

 The above query violates rule 3 as the types
in bold are conflicting.

<Query>
<SocketResult type=”tcp” host=”3.4.5.6”

port=”10000”/>
<Query srcip=”5.6.7.8” date=”9/1/2003-

9/10/2003”/>
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”>
 <SocketResult type=”tcp”
host=”3.4.5.6” port=”9000”/>
 </Query>
</Query>

 This query is in violation of rule 5, as the
result element of the sub-query is not
consistent with the result element of the parent
in that they have different ports specified.

<Query>

<Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/>
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”>
 <SocketResult type=”tcp”
host=”3.4.5.6” port=”10000”/>
 </Query>
</Query>

 This query violates rule 6: the result
element does not cover the query. Only the
second sub-query has an associated result
element. One must be specified for the first
sub-query as well.

