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Abstract 
 

Two areas in intrusion detection research 
receive little attention: data collection and data 
management. Gigabit Ethernet is becoming 
widely deployed, with ten gigabit Ethernet not 
far behind. Many current solutions strain 
under such bandwidth rates, resulting in data 
loss. This is unacceptable for accurate, reliable 
intrusion detection systems. Data management 
solutions vary greatly from product to product. 
Typically, older data is periodically migrated 
to some archived format. Once archived, the 
data set cannot be easily queried or analyzed 
without being imported back into the original 
tool. This makes forensics and trend analysis 
extremely difficult. 

This paper addresses data collection and 
management for intrusion detection by 
providing a framework designed to 
accommodate high-volume, heterogeneous 
data sets. This framework solves many of the 
problems of conventional approaches to 
intrusion detection. Distributed computing is 
leveraged to assure scalability. Data can be 
captured, queried and analyzed in real-time; 
data set sizes are limited only by available 
storage. Benchmarks of the initial prototype 
are also provided.  

 
 

1 Introduction 
 

Two areas in intrusion detection research 
receive little attention: data collection and data 
management. These areas have become 
increasingly important with the prevalence of 
Gigabit Ethernet. Ten gigabit Ethernet is also 
growing in popularity, resulting in even larger 
data sets to collect and manage. Current 
solutions deployed in large networks strain 
under such bandwidth rates, resulting in data 
loss and potentially missed intrusion events. 
This is unacceptable for accurate, reliable 
intrusion detection systems (IDSs).  

In terms of data management, solutions 
vary greatly from product to product. Often, 
older data is archived to ensure adequate 
performance and minimize storage overhead. 
Once archived, it becomes difficult to query 
and analyze the data, making forensics and 
trend analysis extremely difficult. 

This paper addresses data collection and 
management for intrusion detection by 
providing a framework designed to 
accommodate high-volume, heterogeneous 
data sets. This framework solves many of the 
problems of conventional approaches to 
intrusion detection and network traffic data 
collection. Distributed computing is leveraged 
to assure scalability. Data can be captured, 
queried and analyzed in real-time; data set 
sizes are limited only by available storage. 

The remainder of the paper is as follows: 
Section 2 establishes the motivation behind the 
research and summarizes the contributions. 
Section 3 discusses related work in the area. 
Next, section 4 describes the intrusion 
detection framework and the various modules 
therein. Section 5 gives a high-level 
description of the implementation being 
developed at Los Alamos National Laboratory. 
Section 6 provides some preliminary 
benchmarking results. Section 7 discusses 
future work while section 8 concludes the 
paper. 

 
2 Motivation and contributions 

 
The motivation for this work was provided 

by the network security demands at Los 
Alamos National Laboratory (LANL). At 
LANL, a network intrusion detection system 
(NIDS) is used to monitor the laboratory’s 
high throughput network. Data collected by 
the NIDS is similar to technologies such as 
Cisco’s NetFlow and Riverstone’s LFAP, 
reducing hundreds of gigabytes of packet data 
into a more manageable size. Like these other 
products, the NIDS collects data on source and 
destination IP addresses, source and 



destination ports, byte totals, timestamps and 
various supporting flags. On a given day at 
LANL, the NIDS can capture as many as 30 
million records for a total of over three 
gigabytes of data.  

The NIDS data set is used to perform long-
term analysis on network activity along with 
network forensics. To achieve this, the data is 
often analyzed with custom Perl scripts and 
more rudimentary tools like grep. When 
working with large subsets of the data, this 
process can be very inefficient. To avoid this 
problem, analysis typically begins with a “data 
slicing” operation. These operations are 
typically of the form get all record for IP 
address a.b.c.d for May or get all port xyz 
traffic for the last six months. After 
performing the initial operation, the resulting 
subset is analyzed to answer more complicated 
questions about the data set. With a reduced 
data set, custom Perl scripts can be very 
effective analysis tools.  
 Given the nature of the data analysis being 
performed, it became clear that the data-
slicing problem was the most pressing issue to 
be resolved. A flexible, extensible data 
management solution was needed. The first 
and most obvious solution was to place data in 
a relational database. Clearly, the data-slicing 
problem would be solved by this approach. 
However, there were some fundamental 
drawbacks to this solution. One gigabyte of 
network traffic data does not translate into a 
one-gigabyte relational database. In most 
cases, raw data formats will result in a smaller 
footprint when compared to a relational 
database. Section 6.2 examines this issue in 
detail. Although the cost of storage continues 
to drop, one of the main design goals was to 
avoid keeping redundant copies of data. Using 
a relational database would result in keeping 
two copies of the data: one in relational tables 
and another in raw format. This was not 
acceptable due to the economic reality of 
maintaining multi-terabyte data sets.  

In the end, it was decided that the raw data 
files would be indexed on several key fields 
commonly used in data slicing operations. The 
index structure chosen was a b+ tree with fully 
filled pages. This data structure provides fast 
look-ups and low overhead. Each page in the 
tree if fully filled, because the index is bulk 
loaded and no inserts will ever be made, as the 
data is static. The end result is a small, fast 
mechanism for information retrieval.  

One last motivator for this work was the 
desire to have instantaneous access to records 
gathered by the NIDS. In the past, this data 
would be made available in six-hour segments, 
which would sometimes have a lag in 
processing of twelve hours. Thus, it was 
impossible to analyze network activity in real-
time using this data set. To solve this problem, 
records can be streamed to the system as they 
are recorded by the NIDS. The incoming data 
items are stored and indexed using Berkeley 
DB. These dynamic indices are periodically 
converted into static b+ trees for permanent 
storage. By using this model, the large lag 
times in data availability are eliminated, 
making analysts more effective and timely 
when dealing with this data set.  
 
3 Related Work 
 

Research into the area of abstraction for 
intrusion detection data sets has been ongoing 
for some time. The Common Intrusion 
Detection Framework (CIDF) is one such 
project [12]. The CIDF specifies protocols for 
IDS to interact with one another. The 
protocols are concerned with how individual 
tools interoperate, allowing for the detection 
of sophisticated attacks. A shortcoming of this 
project is that data management is not 
adequately addressed. When dealing with 
multiple data sources on large networks, data 
capture and management become very 
difficult. One primary goal of the work 
presented in this paper is to address this issue. 

Additionally, a specification language, 
Common Intrusion Specification Language 
(CISL), is defined within the CIDF to allow 
the modeling of intrusions. This language 
shares many traits with the Intrusion Detection 
Message Exchange Format (IDMEF), a means 
of representing intrusion alerts using XML for 
interoperability [13]. These languages can be 
seen as complementary to the framework 
defined herein. Intrusion alerts represented in 
either form can be manipulated like any other 
data set within the system. 

In another paper, Ning et al propose an 
extension to CISL to add query capabilities 
across CIDF modules [11]. This work is 
similar to the query language proposed in this 
paper. However, by the authors’ admission, 
this extension is outside the scope of the 
original CIDF design. The query language 
defined herein is a fundamental aspect of the 



system, not an extension as in the case of the 
CIDF.  

Performance and scalability are often 
afterthoughts in intrusion detection research. 
In many cases, projects are evaluated on a 
small, canned data set [1,5]. Real world 
analysis is typically a second step in the 
evaluation process [2]. Even if real-world 
analysis is performed, the size of the data sets 
used for testing are small relative to the data 
rates seen in large network installations.  
 
4 Architecture 
 

The framework architecture can be broken 
down into the following modules: the data 
provider module, the data server module, the 
dynamic index module, the static index 
module and the query module. These modules 
can reside on the same nodes or can be 
distributed across several nodes, allowing the 
system to scale. The data provider module is 
implemented by any application that wants to 
input data into the system. The data server 
module handles data capture from the data 
provider sends data items to the dynamic 
index module. The dynamic index module 
builds an index structure dynamically, 
allowing for data items to be inserted and 
retrieved in real-time. The static index module 
takes indices generated by one or more 
dynamic index modules and merges them into 
a static index structure. Lastly, the query 
module allows transparent data access to both 
dynamic and static indices. These modules 
form a powerful framework for collecting and 
managing intrusion detection and network 
traffic data sets. Multiple heterogeneous 
sensors can feed information into the system 
in real-time. The larger the cluster used to 
implement the framework, the more data that 
can be captured and analyzed. Both data 
capture and information retrieval are 
distributed, ensuring scalability.  

Figure 1 illustrates a typical intrusion 
detection framework (IDF) configuration. An 
intrusion detection system (IDS) implementing 
the data provider module sends data, 
represented by the black arrow, to a node 
running a data server. This node is considered 
the master node, as it will be responsible for 
processing the data stream from the IDS. In 
this case the data server can send data to one 
or more subordinate nodes, labeled Sub1 
through Subn, in the cluster running the 

dynamic index module. When the operation is 
complete, the master node migrates the 
dynamic indices to a static structure using the 
static index module. Also note that all of the 
nodes have implemented the query module, 
allowing for distributed queries across the 
cluster. 

Although only one IDS is shown in figure 

1, numerous input streams can be handled by 
the data server at once, allowing the system to 
capture data from a variety of data sources. 
This allows the system to meet the needs of 
large, complex network installations. In many 
cases multiple sensors and data sources will be 
present and will need to be captured by the 
data server. Each data source or sensor must 
implement the data provider module to feed 
into the IDF. Scalability can be ensured by 
instantiating multiple data server modules, 
static index modules and dynamic index 
modules across a cluster.  

The remainder of this section details the 
high-level concepts of the framework. Section 
5 describes the implementation of the various 
modules in the prototype being developed at 
LANL.  
 
4.1 Data provider module 
  

A data provider is defined as any 
application that inputs data into the system. 
This could be a traditional IDS like Snort, 
sending IDMEF alerts, or a server sending 
system call traces. There are two conceptual 
requirements for a data provider: data 
registration and interface implementation.  
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Figure 1. System architecture 



Before a data provider can input data, it 
must register the type of data it will be sending 
to the system. Each data type must have its 
own unique description in the system’s 
metadata. For instance, IDMEF alerts would 
have one entry. Linux system call traces would 
have an identifier, as would traces from a 
Windows machine. The metadata must be 
flexible enough to accommodate a wide range 
of data types. The requirements for the 
metadata vary for different data types. XML 
based data, like IDMEF, needs little more than 
the location of the DTD. Data such as system 
call traces requires a description of the fields 
that includes information like field lengths, 
field types and delimiters.  

The second requirement, interface 
implementation, is rather straightforward. The 
data server, discussed in the following section, 
defines an application-layer header for data 
providers connecting to the data server. The 
data provider simply opens a socket 
connection to the data server, writes the 
application-layer header to the socket and 
starts sending data items. When the data 
provider is finished sending data, it simply 
closes the connection, signaling the data server 
that it has completed its operation.  

One caveat is that the data server may deny 
the connection attempt from the data provider. 
If this happens, the data provider must either 
wait or attempt to connect to a different data 
server. 
 
4.2 Data server module 
 

The data server is the mechanism that 
provides scalable, high-throughput data 
capture. It allows applications implementing 
the data provider module to send data to the 
system without worrying about how or where 
the data will be stored. In a typical 
configuration, most of the nodes will be 
running a data server module so that one 
single node does not become a bottleneck, 
handling all data input.  

The data server must listen for new 
connections from data providers. When a new 
connection is opened, the process must fork to 
allow additional data providers to connect. It is 
suggested that the data server redirect data 
providers to another node if the data server has 
become overloaded. If the number of currently 
connected data providers exceed a certain 
threshold additional data providers should be 

denied. An overloaded data server should 
suggest a different data server node for the 
data provider to interact with in its reply.  

The data server processes an application 
layer header upon each connection from a data 
provider. This header includes the data type of 
the data being processed, the sensor that is 
sending the data and the date of the data set. 
This information must be recorded in the 
system metadata for use in other modules 
within the IDF.  

The date information imposes the following 
restriction on the data provider: data streams 
must not span multiple days. Thus, the data 
provider must periodically (i.e. at midnight) 
close the data stream and restart it by 
reconnecting to the data server. This 
restriction is necessitated by the requirements 
of the query module. Although it may seem 
prohibitive in some cases, this type of data is 
time series data and can be easily segmented 
in this manner.  

As data items are received from the data 
provider, they must be immediately sent to a 
local or remote dynamic index module. If 
remote index modules are involved, a load 
balancing function is applied to the data item 
to determine where to send the data item. 
Implementation of this algorithm is left up to 
the implementer, however it is suggested that 
system status and metadata be used to 
dynamically load balance the system. 
 
4.3 Dynamic index module 
 

After the data server processes data items, 
the dynamic index module must process them 
immediately to make data available in real-
time. This module is responsible for storing 
the data items and making them accessible to 
the query module. The data items stored and 
indexed can be thought of as transient. That is, 
eventually the data and indices will be 
migrated to a permanent location by way of 
the static index module. 

Upon entering the dynamic index module, a 
data item must be made accessible locally. 
Exactly how the data is stored is dependent on 
the needs of the implementation. Potential 
storage methods include relational databases, 
flat files or embedded databases. Next, the 
data item must be made accessible to the query 
module. How this is achieved is influenced by 
the means of storage. For instance, the query 
module would be easy to implement if the 



dynamic index module stored all its data items 
in a relational database; the dynamic index 
module would not need to perform any 
additional processing. However, if flat files 
were used as the storage medium, additional 
processing would be needed to provide the 
query module with enough information to 
retrieve individual data items.  
 
4.4 Static index module 
  
 Data sets used in network traffic analysis 
and intrusion detection are append-only in 
nature. Once data is recorded, it will not 
change over time. This allows for various 
optimizations that are not possible when 
dealing with dynamic data sets. In the IDF, the 
static index module is where these 
optimizations can be implemented to leverage 
the properties of the data. 

The static index module is used to migrate 
the data items collected by the dynamic index 
module to permanent storage. This process 
involves merging the data items from one or 
more dynamic index modules into one static 
result. This result contains two parts: the data 
and the access method. The data items are 
merged, if necessary, to create one master data 
set. After the data set is built, the static access 
methods must be generated. The static index 
module is an optional module in the IDF, as 
some access methods implemented in the 
dynamic index module may be sufficient for 
permanent data access. In this case, the static 
index module is not necessary and can be 
ignored.  

To begin processing, the static index 
module on a designated master node must 
send a notification to any remote nodes in the 
cluster that have data items relating to the data 
set being processed. These nodes will become 
subordinate nodes in the static index building 
process. The subordinates must have some 
means of returning data to the master node, for 
example NFS or TCP/IP sockets. 

Once all the data is received and the access 
methods are built, the static index module can 
migrate them to permanent storage. At this 
point, the module performs some clean up 
functions, including clearing out the dynamic 
index module’s data sets, as they are no longer 
needed. Also, the module is required to update 
the system’s metadata. The location, size and 
time information are updated in the metadata 
so that the query module, described below, can 

find the access method for the newly 
processed data.  
 Although this module is optional, it is 
useful in most situations. Even if a relational 
database was used in the dynamic index 
module as the storage mechanism, there is still 
much to gain from implementing a static index 
module. For example, the database used in the 
dynamic index module would be tuned for fast 
inserts. The static index module could migrate 
the records to a different database that was 
tuned for query performance.  
 
4.5 Query module 
  

The final and most important module in the 
IDF architecture is the query module. The 
purpose of this module is to search data sets 
using the access methods built and maintained 
and by the static and dynamic index modules. 
When a query is submitted to the query 
module, it divides the query into sub-queries if 
possible. These sub-queries can be executed 
sequentially or sent to query modules in 
remote nodes. In either case, all query results 
must be returned to the originating query 
module.  

Queries submitted to the query module 
must be submitted as XML in adherence to the 
DTD shown in appendix A. This 
representation defines the IDF query language 
(IDF-QL). The schema described herein 
should be seen as a preliminary definition of 
the IDF-QL. Defining the query language is a 
driving factor in the current research direction 
of the IDF.  

The IDF-QL is not tailored to any 
particular data set. However, it is apparent in 
appendix A that the attributes defined by the 
DTD are fields common to a variety of 
intrusion detection and network traffic data 
sets.  

Date information must be provided in each 
query. At least one Date element or date 
attribute must be specified. This information is 
found in the system metadata and is recorded 
when a data provider connects to a data server.  

To support the time attribute, time 
information must be indexed by an access 
method in both the static and dynamic index 
modules. This is the only attribute that is 
required of data sets within the IDF. If time 
information is not available within the data, 
the data provider module must modify the data 



stream in some way to include this 
information.   

In addition to adhering to the schema 
defined in appendix A and the date/time 
requirements, some additional rules must be 
enforced by the query module when 
processing queries. Appendix B provides 
example queries to illustrate these rules. The 
first rule is that overlapping date (or time) 
elements (or attributes) cannot be nested in 
sub-queries. For example, the user cannot 
submit a query specifying a date range of 
March through April at the root Query element 
and then specify another date range in a nested 
query.  Rule 1 is stated as follows: 

 
 Rule 1: Nested queries adhere to the 

date/time ranges specified in the parent, 
unless the parent has no recursively specified 
date/time range 
  

The next set of rules deal with the handling 
of multiple data types within a single query. 
The optional Type element allows the user to 
specify what data types to return in the result 
set. Omission of the Type element implies that 
all data types across all sensors should be 
included in the result set. Also, like Rule 1, 
nested queries cannot have conflicting Type 
definitions. Rules 2 and 3 are stated as 
follows: 

 
 Rule 2: Omission of the Type element 

implies that all data types and all sensors 
should be queried 

 Rule 3: Nested queries adhere to the type 
specification in the parent, unless the parent 
has no recursively specified type 

  
 The next rule deals with mapping attributes 
in the Query element to the data sets being 
searched and returned in the result set. Not 
every data set has the search attributes for a 
given query. For instance, one data set may 
not have a MAC address field. When a query 
on MAC address is requested, that data set 
cannot be queried. Rule 4 is stated as follows: 
 
  Rule 4: In order to be returned in a 
result set, a data set must contain all the 
search attributes in some form 
 

Finally, the result elements must follow the 
same property as defined for time and type: 
nested result types cannot conflict with the 

result type of the parent. Also, there is no 
default result type and some result type, or 
types, must cover the query. Rules 5 and 6 are 
stated as follows: 

 
 Rule 5: Nested queries adhere to the 

result specification in the parent, unless the 
parent has no recursively specified result 

 Rule 6: A result element, or elements, 
must cover the query 

 
In summary, the query module is a critical 

component in the IDF and drives the design of 
many of the system’s other modules. The 
static and dynamic index modules must 
provide access methods that support the 
functionality of the query module. As defined 
here, the query module provides analysts with 
a powerful means of accessing heterogeneous 
data sets with an intuitive, yet powerful, query 
language. Further definition of the IDF-QL is 
ongoing and will undoubtedly have impact on 
the system architecture. Refer to appendix B 
for example queries. 

 
5 Implementation 
 

As of the writing of this paper, all of the 
modules described in section 4 have been 
implemented to provide data capture and data 
access to the NIDS data set. As shown in 
Figure 1 above, the system architecture is a 
distributed environment, however this is not a 
requirement. Section 5.3 explains how the 
system functions in a single-node 
environment. This approach allows the 
framework to scale from one to many nodes, 
depending on the user’s needs. In most cases, 
the distributed approach is preferable.  

Three entities are represented in Figure 1: 
the data provider, the master node and the 
subordinate nodes. The data provider, 
described in section 5.1, connects to the data 
server on the master node. The master 
distributes the load amongst the subordinates. 
Any tool generating intrusion detection data 
can become a data provider. Potential data to 
be collected could include IDMEF alerts, web 
server logs, system call traces or network 
connection summary data like LFAP or 
Netflow. Each tool is associated with system-
wide metadata describing the data format. 
Some of this information includes field 
lengths, delimiters and data types  (i.e. long, 
integer, string). The metadata allows other 



entities in the system to properly parse and 
manipulate incoming data.    

The master node performs much of the 
critical processing of the data stream. As data 
items are read from the data provider, the 
master distributes them to the subordinate 
nodes, which are responsible for maintaining 
the dynamic indices. Currently round robin 
scheduling has proven sufficient for load 
balancing the system. Whenever a data 
provider closes its connection to the master 
without error, the master begins to migrate the 
data to static index structures. This process is 
explained in section 5.4. The static indices are 
currently implemented as b+ trees with fully 
filled pages. The keys are user-defined field 
contents, while the data values are file offsets. 

As subordinate nodes receive data items 
from the master, they must parse the data item 
and update the dynamic indices. The current 
framework prototype utilizes Berkeley DB to 
serve as the dynamic data store. This allows 
for high data capture throughput and fast, 
flexible data access as shown in section 5.1. 
Because the indices are updated in real-time, 
the current query module implementation can 
retrieve data as soon as the subordinate 
processes it. The choice of what fields to index 
is left to the user and is defined in the system 
metadata and configuration parameters. 

At this point it is worth commenting on the 
use of static b+ trees and Berkeley DB as the 
data access methods. Clearly, the use of a 
relational database provides much more 
flexibility than the approach used in this case. 
However, as shown in section 6.1, the 
throughput suffers considerably when a 
relational database is used as the data store. 
This is a critical factor when dealing with 
high-speed networks with high data volumes. 
Also, section 6.2 shows that storage overhead 
is higher compared to the approach 
implemented. The desire to avoid data 
redundancy and to keep the data in its original 
format was a crucial design factor in the 
framework as well. Often, custom tools have 
been written to access the data in its raw state. 
The user might then be forced to choose 
between discontinuing the use of these tools 
and having redundant data. In most cases, 
having two copies of a terabyte-sized data set 
is impractical and expensive.  
 
5.1 Data provider 
 

There are currently two implementations of 
the data provider module, both designed to 
send NIDS data to a data server. The first 
implementation is a simple, 136 line Perl 
script which reads in a NIDS data file, opens a 
connection to a data server and sends the file 
contents over the socket. The primary purpose 
of this script is to illustrate how easy it is to 
implement a data provider module. Aside from 
some information in the IDF metadata, this is 
the only aspect of the implementation that the 
data provider need be concerned with. 

The second implementation has been tested 
in a development and is built into the NIDS 
application. As soon as a record is created by 
the NIDS, it is written to a socket. This data 
provider module, written in C, takes fewer 
than 100 lines of code. When deployed in 
production, NIDS records will be available in 
real-time allowing for accurate and timely 
analysis of network activity.  
  
5.2 Data server 
 

In the current IDF configuration, all of the 
nodes run a data server so that one single node 
does not become a bottleneck. Each data 
server listens for connections and spawns a 
new process for each successful connection. 
At this point, the data server processes an 
application layer header that contains 
information about the operation type, either an 
insert or a dump request, and the data type, a 
global identifier tying the data type to 
information in the system metadata.  

After processing the first portion of the 
header, a function specific to the data type and 
operation is called to perform the majority of 
the processing. The purpose of the dump 
request is discussed in sections 5.5 and 5.6 
below. Insert operations are handled by 
application-specific functions, one for each 
data type. Currently, only NIDS data is 
supported, however it is easy to add support 
for other data types with similar properties 
such as router logs or system logs.  

Before data can be processed, the 
application-specific function must process any 
additional header information. Seven 
additional parameters are processed when 
performing insert operations on NIDS data: 
three integers that tell how to distribute the 
processing and four time-related integer 
parameters. The state of the first three integers 
will result in one of the following three cases: 



single-node server, master server or 
subordinate server. Sections 5.3, 5.4 and 5.5 
deal with these three cases respectively. The 
next three parameters are date information for 
the incoming data: month, day and year. The 
final parameter is the “run” number, which 
allows for multiple builds of data from the 
same day. This is used for high volume 
situations when the user wants to cap the 
number of data items in a particular index 
structure. For example, the user could decide 
that once 10 million data items are sent that a 
new run should be started. The application 
implementing the data provider simply closes 
the socket and opens a new one after 
incrementing the run number.  

The current data server prototype is written 
in Java and supports TCP or UDP sockets, 
optionally using SSL for secure data 
transmission. These decisions are left largely 
up to the developers based on the needs of 
their environment. It is recommended that SSL 
be used within a secure network to ensure 
information safety and system reliability. 
 
5.3 Single node server 
 

In some cases, it is desirable to only use a 
single node to handle data capture. For 
instance, a low-bandwidth network feed might 
only need a single server to manage incoming 
data. The single node server performs four 
primary functions: reading data items from the 
client application, parsing the data items, 
inserting into the temporary data store and 
migrating to the permanent data store. The 
first three functions commence whenever a 
client application connects to the data server 
and continue as long as the connection 
remains open. Migration takes place when the 
connection is closed, or at the data server’s 
discretion. 

Upon client connection, the data server 
must prepare the various data stores needed to 
build the dynamic indices. First the server 
must check to see if a database environment 
has already been instantiated. Berkeley DB 
was chosen for the current implementation 
because it is open source, embedded and 
provides high throughput. The database 
environment in Berkeley DB has several 
functions including buffer pool management, 
transaction logging and disaster recovery. If 
no database environment exists, one must be 
created. Once an environment is instantiated, 

the server can create the new dynamic indices. 
Each field in the data set being indexed needs 
its own database. The field values become the 
database keys in the b+ tree while the data 
values become the offsets of a temporary data 
file. This data file is appended to as new data 
items are received. A delimiter, in the case of 
NIDS records a new line character, signals the 
end of a data item. Finally, a parser must be 
instantiated based on the data type metadata.  

Once the above steps are completed, the 
node can begin performing inserts into the 
dynamic indices. As data is received, it is sent 
to the parser, which returns the fields of the 
data item as an array of strings. The data item 
is appended to the temporary data file at this 
point as well. Next, each field being indexed is 
inserted into its corresponding database along 
with the current file offset. Once these 
operations complete, the data item can be 
discarded and a new one can be processed. 
Also, at this point the data item is available to 
be retrieved through the query module.  

When the data provider closes the 
connection, the node can begin the migration 
process, which will result in the generation of 
static b+ trees, one for each dynamic index. In 
the case of the single-node server, this process 
is very simple. For each dynamic index, the 
node simply traverses the database in 
ascending order and writes the key/data pairs 
to a temporary file that will be used to build 
the static b+ tree.  

Once this operation is completed, the node 
calls the index builder application and waits 
for it to complete. The index builder is written 
in C++ and implements b+ trees [14] in flat 
files. Upon successful completion, the node 
can clear out the dynamic indices and any 
temporary files that are no longer needed.  
  
5.4 Master server 
  

The master server mode of operation is 
similar to the single-node case with the 
addition of distributed data processing on 
remote subordinate nodes. Generally speaking, 
the master reads data items from the provider 
and sends the record to a subordinate. 
Currently, round robin scheduling has proven 
sufficient as the machines are essentially 
identical in performance and perform the same 
set of tasks. When the connection from the 
data provider closes, the master gathers the 



results from the various nodes, merges them 
together and builds a static b+ tree index.  

The initial steps for the master node are 
somewhat different from the single-node case. 
Depending on the application layer connection 
header, the master may or may not record data 
items. If not, the master becomes a “splitter 
node” that simply reads the data in and round 
robins data to the subordinates. This mode is 
typically used when dealing with very high 
data rates. In practice, the splitter node has 
shown to out-perform a configuration with the 
master recording data items.  

Whether or not the master is acting as a 
splitter, it needs to open a connection to a data 
server on each of the subordinate nodes. If the 
master node is also recording data items then it 
must follow the same initialization steps as a 
single-node server. At this point the server can 
start receiving data from the data provider 
application.  

The scheduling algorithm, in this case 
round robin, determines the next step taken by 
the master server for a given record. If the 
scheduler maps a record to the master node it 
must update the dynamic indices and write the 
data item to disk, as in the single-server case. 
Otherwise, the data item is sent to the 
corresponding node’s dynamic index module 
via the node’s data server. 

Data items are processed until the data 
provider closes its connection to the master. 
Then, the master closes its open connections to 
the subordinates. At this point, the master 
enters the merge phase, which is described in 
section 5.6. The process involves reopening 
connections to the subordinates and sending a 
“dump request” to each. The dump results are 
then merged to yield one data set. After the 
merge successfully completes, the master 
behaves just as a single-node server and builds 
the static b+ tree indices. 
  
5.5 Subordinate 
  

Each subordinate node has two forms of 
operation: data capture mode and dump mode. 
While in data capture mode, the subordinate 
receives data, parses it and updates the 
dynamic indices. This is no different than how 
the single-node server case handles data. 
Dump mode becomes important when the 
master is ready to merge the data set and build 
the static indices. The master reopens 
connections to the subordinates, this time 

specifying in the header that a dump of the 
dynamic indices should be created. The 
subordinate writes the contents of each 
dynamic index to a temporary file accessible 
to the master node over NFS. The details of 
this process are described in the following 
section. 
 
5.6 Index building 
 

When a data provider closes a connection to 
the data server, dynamic Berkeley DB indices 
can be migrated to static b+ tree data 
structures. This operation potentially requires 
three steps: merging data from subordinates, 
running the index builder application and final 
migration. Merging requires the raw data and 
the dynamic indices of the subordinates, if 
any, to be combined on one machine. This 
phase prepares the data for the index builder 
application. Optionally, the raw data and static 
indices can be migrated to a final destination, 
an NFS server for instance, to allow access to 
the data and indices from multiple machines.   

At the beginning of the merge phase, each 
subordinate node, and optionally the master 
node, holds a portion of the data set. First, the 
master sends a dump request to each 
subordinate. The subordinates then dump their 
dynamic indices in parallel. In the prototype 
implementation, these dumps are placed in 
locally exported NFS partitions to which the 
master has read access. The dump operation 
writes the key/data pairs to a flat file, one pair 
per line, while traversing the dynamic index in 
ascending key order.  

After dumping the dynamic indices, the 
index builder application is executed to 
generate the b+ trees. The input to the 
application is a file containing the processing 
parameters, which is generated by the data 
server prior to calling the index builder. The 
types of information in the input file include 
date information, the data file path, the type of 
data, fields to index and node information.  

Given this information, the index builder 
takes the temporary data files on the 
subordinate nodes and concatenates them to 
create one large data file. At this point, the 
index dumps still need to be merged from the 
subordinate nodes. For each index being built, 
the corresponding dumps are merged into a 
single file. The file offsets in the dump files 
need to be adjusted to reflect the fact that the 
records are now part of a single, larger file. 



The resulting file contains one line for each 
unique key value. A delimiter, if needed, 
follows the key value and then the file offsets 
of all the data items containing that key. This 
“master dump” file will be stored permanently 
and is used by the query module to retrieve 
data items.  
 
5.7 Query module implementation 
 

At this time, the query module 
implementation supports the features of the 
IDF-QL as defined in section 4.5. A query 
processor application handles query requests 
from clients and returns the results. It also 
performs validation checking and enforces the 
rules defined by the IDF-QL. Once a query 
has been validated, the query processor 
translates the query into a call to an external 
search application that feeds results back to 
the query processor and ultimately to the 
client. The search application is designed to 
traverse the b+ tree data structures and the 
Berkeley DB-based dynamic indices 
transparently and return matching results. It 
performs joins on search criteria using a 
traditional sort-merge join [14] and has a 
simple but effective caching mechanism. The 
cache stores the results of elementary queries 
and leverages these stored results to increase 
query execution time. Information about what 
results are cached is stored in the system 
metadata. Data in the cache is periodically 
flushed to avoid filling up a node’s local 
storage. The cache is very effective when a 
query is repeated in total, or with minor 
modification. Initial performance results of the 
query module implementation, as shown in 
section 6.3, are encouraging.  
 
6 Benchmarking 
 

The primary motivation of this section is to 
provide evidence to support the claim that a 
relational database is not an adequate solution 
to the problems inherent to large network 
traffic data sets. Section 6.1 discusses system 
throughput, first when using a relational 
database as the backend data store a then when 
using Berkeley DB-based indexing techniques. 
Scalability is also discussed therein. In section 
6.2, the overhead of storing network traffic 
data is evaluated. Naturally, any sort of table 
structure or index scheme imposes additional 
overhead above what the raw data requires. 

This section illustrates the storage savings 
when comparing static indexing techniques to 
relational databases. Lastly, section 6.3 
provides initial query performance results, 
comparing the static b+ tree data structure to 
MySQL for a small set of queries. 
 
6.1 Throughput and scalability 
 

As discussed in Section 4.2, data capture is 
a critical element in the system architecture. A 
system attempting to capture large network 
traffic data sets must be able to keep up with 
the high volume and potentially bursty nature 
of the data. Therefore, throughput becomes an 
important metric when evaluating these 
systems. Also, throughput is closely tied to 
scalability. A scalable system is necessary to 
meet the needs of a dynamic and rapidly 
growing network. 

NIDS data from two days was used to 
evaluate the throughput of the system 
prototype. The first data set was from April 1, 
2002, containing approximately seven million 
records. The second data set was from 
September 14, 2003 and contained 
approximately 20 million records. The large 
difference in the number of records can be 
attributed to an increase in network activity 
coinciding with the Microsoft DCOM 
vulnerability. These data sets were chosen 
because they illustrate how rapidly the size of 
the data sets grow. Due to the increase in port 
135 and 445 scans, the number of NIDS 
records tripled over a one-week period. Until 
the number of DCOM scans increased so 
dramatically in late August 2003, the April 1 
dataset was very representative of a typical 
day’s worth of NIDS data. Any system hoping 
to perform data capture of network traffic data 
must be able to handle rapid increases in data 
volume of this sort. 

The primary design decision that impacts 
throughput is the backend storage mechanism. 
The most obvious solution is to insert records 
into a relational database. MySQL (version 
3.23.53) was chosen in this case because it is 
widely used in intrusion detection systems like 
Sno
rt 
and 
thu
s 
ma
ny 

Figure 3. System throughput 



intrusion detection analysts have experience in 
its operation. For this evaluation, records were 
inserted one by one into an empty table. No 
optimizations were made to the database 
environment. Two dual Pentium III 1 GHz 
computers with 1 GB RAM and gigabit 
Ethernet were used for the test. One machine 
implemented the data provider module while 
the other implemented the data server and 
dynamic index modules. Figure 2 illustrates 
the results of this benchmark. 

Although the throughput rate was 
acceptable for the 2002 data, the throughput 
fell 46% on the 2003 data to an average of 135 
records per second. At this rate, it took 1.6 
days to load the data set into MySQL. By 
comparison, the same test using Berkeley DB 
(version 4.1.24) as the backend as described in 
section 4 yielded superior throughput while 
only showing a 24% degradation in 
performance on the larger data set. By contrast 
this data set took only 13 hours to load using 
Berkeley DB.  

Although using MySQL’s bulk data load 
capabilities would yield better results, this 
would not satisfy the real-time requirement of 
the system. Also, it is certain that database 
tuning would result in better throughput for 
MySQL, although similar optimizations could 
also be applied to Berkeley DB. The key point 
made here is that MySQL’s additional 
complexity and overhead results in reduced 
throughput when compared to using Berkeley 
DB as the backend data store. 

Figure 3 illustrates scalability, another key 
element in the system design. To deal with 
rapidly growing data sets, the system must be 
able to scale. For this benchmark, three 
configurations were evaluated: single-node, 
three-node and five-node. In each case there 
was one master node implementing the data 
server. In the one-node setup, the master 
handled all the processing, implementing the 
dynamic index module as well. In the three 
and five node setups, each subordinate node 
implemented the dynamic index module to 
allow for distributed processing of the 

incoming data. As shown, the system scaled 
well over the 2002 data set.  Resource and 
time constraints limited the ability to test the 
scalability of larger environments. The five-
node environment’s throughput has proven to 
be more than sufficient for current data rates. 

One additional point about Figure 3 
requires clarification. The throughput 
increased 138% from the single-node 
environment to the three-node environment. 
The throughput increase from the three-node 
case to the five-node case was 180%. The 
disparity here stems from the fact that the 
three-node environment had only one more 
dynamic index module implemented than the 
single node case - one on the master for the 
single-node configuration and one on each of 
the subordinates for the three-node setup. The 
five-node environment had two more indexing 
modules than the three-node setup, accounting 
for the 42% difference in performance. Thus 
the initial results of the scalability benchmarks 
show that adding one dynamic indexing node 
results in around 40% increase in throughput. 
This result is encouraging, although additional 
research is needed to verify this claim on 
multiple larger data sets and larger clusters. 
 
6.2 Storage overhead 
 

The desire to keep storage overhead at a 
minimum was a key driver in the IDF design 
and implementation. Two long-term storage 
methods were examined: relational databases, 
in this case MySQL, and static b+ trees. Both 
approaches have advantages and 
disadvantages. Relational databases provide 
the user with a great deal of power in 
manipulating the data. The drawback is that 
the overhead is high and it introduces data 
redundan
cy. One 
of the 
design 
goals was 
to keep 
only one 
copy of 
each data 
set 
online. 
Storing each record in a relational database 
and storing the raw data essentially doubles 
the size of the data set. To avoid this, static b+ 
trees were evaluated. The advantage of this 

Figure 2. Backend data store performance 

 Time (sec)   
Query B+ Tree MySQL % Diff # Results

1 7.84 0.45 5.69% 18
2 0.37 0.03 6.94% 184
3 0.36 1.60 448.37% 758
4 98.16 1,012.94 1,031.93% 820,410
5 136.53 1,831.13 1,341.19% 369,186

Table 2. Query performance 



approach is that the raw data itself is indexed, 
eliminating the need for an additional copy of 
the data. The disadvantage is that the analyst 
no longer can leverage the power of a 
relational database. However, given the nature 
of the types of queries used by analysts, the b+ 
tree solution provides enough power to 
compute the majority of these queries, while 
maintaining a low overhead.  
 For the purposes of this benchmark, three 
cases were examined: a relational database 
with raw data, a relational database without 
raw data and static b+ trees with raw data. 
MySQL 3.23.53 was used on Mac OS X 
version 10.2.7. For both the b+ tree and 
MySQL databases, four fields were indexed: 
destination address, source address, 
destination port and start timestamp. Table 1 
shows the results of the benchmark.  

As is evident in Table 1, using static b+ 
trees requires around 45% less overhead than 
using MySQL as the access method without 
storing the raw data. However, since it 
necessary to save the data in many cases, the 
overhead becomes substantial. These issues 
led to the adoption of the b+ tree solution in 
the current IDF implementation, although 
other solutions could be implemented to meet 
the needs of the user. 
 
6.3   Query performance 
 

A set of five different queries were run five 
consecutive times on matching dual Xeon 
servers with 2 GB of RAM to evaluate the 
performance of the b+ tree index structure. 
MySQL version 4.0.18 was used for 
comparison in this test. Table 2 illustrates the 
averaged results from each query. 

The data set used was a single high volume 
date from September of 2003. Since there are 
four NIDS data files generated per day, four 
MySQL databases were built to correspond 
with this arrangement. Each database was 
indexed on destination port and source 
address.  

For brevity, the actual query syntax used to 
generate the above results is not included. 
Query 1 returned results matching on a source 
address and destination port. Query 2 returned 
results from the same destination port as query 
1 but with no restriction on source address. 
Query 3 returned results matching on a small 
range of destination ports. Query 4 returned 
results matching a highly active destination 
port. Query 5 returned results matching a 
larger port range than Query 3.  
 As is evident in table 2, the static b+ tree 
structure performed well for cases generating a 
large number of results. The results from 
queries 1 and 2 were substantially better when 
using MySQL, as the caching mechanism 
helped consecutive runs perform very well. 
Even so, the total time to return these queries 
was low when using either system.  
 These initial results support the decision to 
use the b+ tree data structure as the underlying 
data retrieval mechanism. Performance is very 
good when dealing with large volumes of data, 
as was the initial design goal of the system. It 
is also reassuring that queries with small result 
sets also return quickly, although not as fast as 
when using MySQL in some cases.   
 
7 Future Work 
 

The most pressing task in the development 
of the IDF at LANL is the inclusion of other 
data types. Although the NIDS data set is an 
interesting data source, it does not meet the 
needs of all situations. Additional data sets 
such as router logs and IDS alerts need to be 
integrated to provide analysts with a more 
comprehensive view of network activity. 
Adding new data types may also lead to 
creating new access methods other than the b+ 
tree solution.  

The query module is an area of research 
that will receive a large amount of attention. 
The definition of the IDF-QL as defined here 
is a preliminary definition. The current 
implementation provides adequate 
functionality for many task related to network 
traffic analysis and intrusion detection but 
requires additional research to realize its 
potential. Once the query language is 
complete, attention can be shifted to focus on 
distributed query processing and optimization. 

In addition, robustness and survivability 
must be addressed. As with any distributed 
system, there are many potential points of 

Storage Method Size (MB) Ratio
Raw 858.41 100.00%
Raw + Index 1124.52 131.0%
MySQL 1523.60 177.49%
Raw + MySQL 2382.01 277.49%
Table 1. Storage overhead 



failure. These areas must be better understood 
so that the system can survive failures at 
various levels. Currently, node failures are 
addressed by simply ignoring the node until it 
becomes available. A more robust fail-over 
system needs to be implemented so that data 
capture can continue unhindered when a node 
fails. 

Lastly, an exhaustive benchmark of the 
system must be made. Areas to address 
include throughput, scalability, robustness and 
query performance. The results presented here 
are encouraging but not comprehensive. 
Additional research must focus on this aspect 
of the system. 
  
8 Conclusions 
 

In this paper, a framework for the collection 
and management of intrusion detection data 
sets is proposed and initial results are reported. 
The design of the system was driven by the 
network security needs inherent in high-
volume network installations. Managing the 
data sets associated with network traffic and 
intrusion detection becomes very inefficient 
using current techniques. Therefore, a uniform 
mechanism for capture and retrieval of this 
data is essential to enable security analysts to 
effectively perform their duties. The initial 
results of the IDF implementation being tested 
at LANL have been encouraging. High 
throughput data capture and retrieval has been 
shown using the high volume NIDS data set as 
a test case. Furthermore, the static b+ tree 
indexing methods have shown promise in 
minimizing storage overhead while still 
providing analysts with a powerful 
information retrieval tool. Additional work in 
data set integration, query capability and 
robustness need to be performed before the 
IDF can be a viable solution for network 
security at large installations. 
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Appendix A: IDF-QL DTD 
 
 A preliminary document type definition 
(DTD) for IDF-QL is provided below. The 
IDF-QL is currently being enhanced and thus 
this DTD should not be seen as a definitive 
specification of the language. 
 
<?xml version="1.0"?> 
<!ELEMENT Query (Query*, TCPResult?, 
DBResult?)> 
<!ELEMENT SocketResult EMPTY> 
<!ELEMENT DBResult EMPTY> 
<!ATTLIST Query srcip CDATA> 
<!ATTLIST Query srcmac CDATA> 
<!ATTLIST Query srcport CDATA> 
<!ATTLIST Query dstip CDATA> 
<!ATTLIST Query dstmac CDATA> 
<!ATTLIST Query dstport CDATA> 
<!ATTLIST Query date CDATA> 
<!ATTLIST Query time CDATA> 
<!ATTLIST Query dataset CDATA> 
<!ATTLIST Query sensor CDATA> 
<!ATTLIST SocketResult host CDATA> 
<!ATTLIST SocketResult port CDATA> 
<!ATTLIST SocketResult type CDATA> 
<!ATTLIST DBResult host CDATA> 
<!ATTLIST DBResult port CDATA> 
<!ATTLIST DBResult db CDATA> 
<!ATTLIST DBResult database CDATA> 
<!ATTLIST DBResult table CDATA> 
 
Appendix B: IDF-QL examples 
 

The following examples illustrate several 
correct and incorrect queries specified in IDF-
QL. 
 
<Query srcip=”1.2.3.4” dstip=”5.6.7.8-
9.8.7.6” dstport = “1-1024” date=”1/1/2002-
12/31/2002”> 
 <SocketResult type=”tcp” host=”3.4.5.6” 
port=”10000”/> 
</Query> 
 

<Query> 
 <Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”> 
  <DatabaseResult host=”3.4.5.6” 
port=”3306” db=”MySQL” 
database=”temp” table=”results1”> 

<Query/> 
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”> 
  <DatabaseResult host=”3.4.5.6” 
port=”3306” db=”MySQL” 
database=”temp” table=”results2”> 
 </Query> 
</Query> 
 
 The two queries above adhere to the DTD 
specified in appendix A and do not violate any 
of the rules from section 4.5. The first query 
performs a three-way join on source IP 
address, destination IP address and destination 
port for all dates in the year 2002. The results 
of this query will be sent to a TCP/IP socket 
on the specified host and port. The second 
query has two sub-queries, which search for 
two different IP addresses over different date 
ranges. The results from each sub-query are 
placed in a MySQL database on the same host 
in different tables. 
 
<Query date=”8/1/2003-9/15/2003”> 
 <SocketResult type=”tcp” host=”3.4.5.6” 
port=”10000”/> 
 <Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/> 
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”/> 
</Query> 
 
 The above query violates rule 1 as 
described in section 4.5. The date ranges in 
bold are conflicting in that the parent query’s 
range is not equal to the sub-query’s range.   
 
<Query type=”1”> 
 <SocketResult type=”tcp” host=”3.4.5.6” 
port=”10000”/> 

<Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/> 
 <Query type=”2” srcip=”9.8.7.6” 
date=”8/1/2003-9/15/2003”/> 
</Query> 
 
 The above query violates rule 3 as the types 
in bold are conflicting.  
 



<Query> 
<SocketResult type=”tcp” host=”3.4.5.6” 

port=”10000”/> 
<Query srcip=”5.6.7.8” date=”9/1/2003-

9/10/2003”/> 
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”> 
  <SocketResult type=”tcp” 
host=”3.4.5.6” port=”9000”/> 
 </Query> 
</Query> 
 
 This query is in violation of rule 5, as the 
result element of the sub-query is not 
consistent with the result element of the parent 
in that they have different ports specified. 
 
<Query> 

<Query srcip=”5.6.7.8” date=”9/1/2003-
9/10/2003”/> 
 <Query srcip=”9.8.7.6” date=”8/1/2003-
9/15/2003”> 
  <SocketResult type=”tcp” 
host=”3.4.5.6” port=”10000”/> 
 </Query> 
</Query> 
 
 This query violates rule 6: the result 
element does not cover the query. Only the 
second sub-query has an associated result 
element. One must be specified for the first 
sub-query as well. 
 
 
 
 
 


