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Abstract

A rootkit enables an attacker to stay unnoticed on a compromised system and to
use it for his purposes. This paper reviews techniques currently used by attackers
on UNIX and Linux systems with a focus on kernel rootkits. Example rootkits are
classified according to code injection and how the flow of execution is diverted within
the kernel. The efficiency of different countermeasures is discussed for these examples.
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1 Motivation

An attack on a system connected to the internet typically shows the following pattern: The
target is scanned for potentially insecure services. The attacked system is called compro-
mised as soon as a vulnerability has been exploited and the attackers are able to execute
commands. Local vulnerabilities are subsequently utilised until the attackers have the same
privileges as the system administrator. The administrator will try to regain control as soon
he realises the compromise. This can be done by eliminating the vulnerability, a full rein-
stall of the system, or simply by taking it offline. Therefore, if the attackers want to maintain
their access to the system they have to take measures not to be noticed.

The typical attacker uses collections of programs to hide his presence and activities on
compromised systems - so called rootkits. This article discusses the techniques employed
by the attacker to stay invisible on the compromised system using rootkits.

1.1 The history of rootkits

Rootkits first appeared at the end of the 80’s [Ditt2002] and consisted of tool collections
used to manipulate UNIX logfiles in order to hide the presence of certain users [BTA1989].
Later on, attackers started to substitute programs like ls, ps or netstat to hide their ac-
tivities. Such programs were soon packaged together with manipulated versions of login
and similar programs to secretly log passwords. Sniffers were used to read unencrypted
passwords from the local network.

In the mid 90’s kernel rootkits appeared on Linux systems [Half1997]. These were
loaded as modules at runtime to manipulate the core of the operating system itself. This
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technique allowed very thorough obfuscation of the attacker’s activities e.g. by redirecting
system calls instead of exchanging single programs. By the end of the 90’s kernel root-
kits existed for practically all modern UNIX-like operating systems. At the same time
rootkits for Microsoft Windows appeared [Hogl1999]. Although attackers had to cope with
a lack of documentation they were able to replay the development of rootkits in the UNIX-
world within a few years. Current Windows rootkits are kernel-based and provide similar
functionality as their UNIX counterparts.

In recent years the methods used by attackers have been refined. New ways of code
injection have been developed, allowing to patch a rootkit into the running kernel without
the usage of modules. Other rootkits manipulate existing modules or kernel images on disk
to install themselves. While manipulation of the kernel by the redirection of system calls is
relatively easy to detect, modern rootkits have become more sophisticated and more difficult
to detect. The flow of execution is diverted at different places and at deeper levels within
the kernel. Furthermore, obfuscation techniques are employed in the rootkit binaries to
prevent analysis if the rootkit is found. In response, the countermeasures have also evolved.
Aside from simple checksum based approaches new methods of detection, like runtime
measurement of system calls, have been developed. Critical resources of the operating
system are checked for consistency to discover the diversion of the execution flow by the
rootkit.

1.2 Technical terms

The concepts of user and kernel mode as well as system calls are briefly introduced in a
general manner for UNIX-like operating systems in order to be able to characterise rootkits.
More information on the subject concerning UNIX [Bach1986] and Linux [BC2002] can
be found in the literature.

1.2.1 User and kernel mode

UNIX-like operating systems distinguish between processes running within the kernel (run-
ning in kernel mode) and processes started by users (running in user mode) including the
special user root. Memory belonging to the kernel can be accessed via the device files
/dev/kmem and /dev/mem. Depending on the configuration, data can be read and maybe
also written. Very few programs use this interface and access is generally restricted to the
user root. Even though access to kernel memory is possible this way, there are not neces-
sarily symbol tables or similar mechanisms, which will give any help finding particular data
structures or functions.

Functions inside the kernel can only be accessed by the use of system calls, which
provide a well-defined and static interface. Even the user root can not run arbitrary code
in kernel mode. Though, most modern operating systems are able to load kernel modules
at runtime. Special system calls are used to bring the code of the module into the kernel.
Modules are often used for drivers of multimedia or hotplug hardware.

1.2.2 Execution of a system call

The command ’ls /tmp’ gives a listing of all files located in the directory /tmp. The
program ls uses the system call open() to access the directory for reading. The flow of
execution can be seen in figure 1. The basic steps are:
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• The program ls makes a call to open(/tmp, O_RDONLY). To do this, parameters are
loaded in the corresponding registers and the interrupt reserved for system calls is
triggered.

• The system switches into kernel mode to handle the interrupt. The interrupt descrip-
tor table (IDT) is referenced and the corresponding interrupt handler is called.

• The interrupt handler references the syscall table to finally call the function sys_open()
with the parameters provided by ls.

sys_open()choose system call

interrupt descriptor table (IDT) syscall table

choose interrupt handler

call open()

flow of execution

kernel mode

user mode

Figure 1: The system call open() is used. The flow of execution is transfered to kernel
mode, where the IDT and the syscall table are used to determine which function to call.

A file handle will be returned to the calling program ls, which will then use more
system calls like getdents() to actually read all the entries of the directory and to print
them out. It is noteworthy that a few central resources like the IDT and the syscall table are
used to determine what function inside the kernel is called.

2 User mode rootkits

The first rootkits worked in user mode and have mostly been abandoned. However, old
rootkits are still found while analysing compromised machines. Especially on unusual hard-
ware where ports of current rootkits are not available.

2.1 Techniques used by early rootkits

To give the full picture, examples are briefly presented for logfile filtering and for rootkits,
which exchange system binaries.

2.1.1 Manipulation of logfiles

The programs for the manipulation of logfiles used in early rootkits [BTA1989] are still in
use - though in more sophisticated versions. Typically logfiles are filtered automatically.
The attacker provides a few keywords and the program scans various logfiles and deletes all
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lines containing the keywords. Such a keyword might be the IP of the attacking machine.
Figure 2 shows the last lines of a logfiles before and after usage of such a tool.

linux:/home/rks # tail -3 /var/log/messages
Jan 13 14:16:10 linux kernel: VFS: Disk change detected on device fd(2,0)
Jan 13 14:19:39 linux sshd[1517]: WARNING: /etc/ssh/primes does not exist,\

using old prime
Jan 13 14:19:43 linux sshd[1517]: Accepted password for seg from\

192.168.1.17 port 36262 ssh2

linux:/home/rks # sh t0rnsb seg
* sauber by socked [07.27.97]
*
* Cleaning logs.. This may take a bit depending on the size of the logs.
* Cleaning messages (414 lines)...1 lines removed!
* Cleaning boot.log (7mlines)...0 lines removed!
[...]
* Alles sauber mein Meister !

linux:/home/rks # tail -3 /var/log/messages
Jan 13 14:16:10 linux kernel: VFS: Disk change detected on device fd(2,0)
Jan 13 14:19:39 linux sshd[1517]: WARNING: /etc/ssh/primes does not exist,\

using old prime
Jan 13 14:20:21 linux syslogd 1.3-3: restart.

Figure 2: The last three lines of a logfile are shown before and after the tool t0rnsb is used
to delete all lines containing the keyword ’seg’.

All lines denoting the login of user seg are deleted from the logfile using the pro-
gram t0rnsb from the rootkit t0rnkit. The program searches various logfiles for the
given keyword. However, the limitations of this approach become obvious at a closer
look. On this system every login is accompanied by an error message concerning the file
/etc/ssh/primes. This line was not deleted since it did not contain the keyword. Further-
more the daemon responsible for the logging has been restarted, which is also a telltale sign
of intrusion. A system administrator closely inspecting the logfiles will always have good
chances to find traces even though the logfiles were manipulated.

2.1.2 Exchanging system binaries

In order to hide the processes and files of the attacker, early rootkits started to substitute sys-
tem binaries for manipulated versions. The manipulated version of ls does not show all files
anymore, ps will forget about some processes and netstat drops some network connec-
tions from the output. In the year 2000 the rootkit t0rnkit was widely used [CERT2000].
It can still sometimes be found on compromised systems. The rootkit replaces the pro-
grams login, ifconfig, ps, du, ls, netstat, in.fingerd, find and top by manipulated
versions. The configuration (and sniffer logs) are stored in /usr/src/.puta. When a ma-
nipulated version of one of the binaries is called, files containing keywords are read and the
output is filtered accordingly.

2.2 Detection

As the need arose, mechanisms were invented to identify manipulated system binaries by
the use of checksums or by other means.
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2.2.1 Checksums

The manipulated binaries might have the same length and timestamp as the original pro-
grams but will differ in their checksums. Programs like tripwire or aide [Aide2004]
automate the task of generating checksums for system binaries and important configuration
files. These tools allow to check the current system against these checksums at a later time,
in order to uncover a compromise.

linux:/home/rks # aide -C
AIDE found differences between database and filesystem!!
Start timestamp: 2003-01-13 21:32:11
Summary:
Total number of files=17520,added files=16,removed files=0,changed files=43
[...]
changed:/bin
changed:/bin/ls
changed:/bin/netstat
changed:/bin/ps
changed:/bin/login
[...]

linux:/home/rks # rpm -Vva
[...]
S.5....T /bin/ls
S.5..... /bin/netstat
SM5..... /bin/ps
.M5....T /bin/login
[...]

Figure 3: Aide is run and the checksums of several programs have changed. The packet
system rpm can provide the same information. The ’5’ in its output stands for a changed
MD5 checksum.

The drawback of this method is the time-consuming overhead of maintaining such a set
of checksums. Accordingly, this approach is unfeasible for many administrators. Naturally,
the checksums and the binaries needed for the test should be stored offline to be safe from
manipulation. A packet system like rpm can provide a limited alternative since it also main-
tains a set of checksums to manage software updates. Figure 3 shows aide and rpm finding
traces of a user mode rootkit.

2.2.2 Special rootkit detectors

Programs like chkrootkit [Chk2004] or Rootkit Hunter [Rkh2004] automate the task
to look for signatures of known rootkits. The signatures often consist of configuration
directories with a fixed path or certain strings appearing in the manipulated version of a
binary. If e.g. the directory /usr/src/.puta exists, it is very probable that the rootkit
t0rnkit (version 6.66) has been installed. The signatures will not match if a very recent or
a slightly modified version of a rootkit is in use. The problem is known from other signature
based methods in intrusion detection systems and virus scanners. To fill this gap, the tools
also look for general traces left by rootkits. Figure 4 shows the output of chkrootkit
detecting a rootkit.
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linux:/home/tools/chkrootkit-0.38 # ./chkrootkit
[...]
Checking ‘login’... INFECTED
Checking ‘ls’... not infected
Checking ‘lsof’... not infected
Checking ‘mail’... not infected
Checking ‘mingetty’... not infected
Checking ‘netstat’... not infected
Checking ‘named’... not found
Checking ‘passwd’... not infected
Checking ‘pidof’... not infected
Checking ‘pop2’... not found
Checking ‘pop3’... not found
Checking ‘ps’... INFECTED
[...]
Searching for t0rn’s default files and dirs... Possible t0rn rootkit installed
[...]

Figure 4: Chkrootkit is run and known strings from the rootkit t0rnkit are identified in
the programs login and ps.

2.2.3 Manual search

There are numerous ways of looking for rootkits manually. Two examples are shown in
figure 5. The content of a directory can be listed in many ways and differences to the output
of ls should raise suspicion. Looking at the system calls done by ls, an open() of the
file /usr/src/.puta/.1file attracts attention. The file is known to be part of the rootkit
t0rnkit.

linux:/usr/src # ls -al
total 8
drwxr-xr-x 3 root root 4096 Jan 13 21:34 .
drwxr-xr-x 25 root root 4096 Jan 13 21:34 ..

linux:/usr/src # echo .*
. .. .puta

linux:/usr/src # tar -cf - . | tar -tvf - | grep "^d"
drwxr-xr-x root/root 0 2003-01-13 21:34:51 ./
drwxr-xr-x root/root 0 2003-01-13 20:19:24 ./.puta/

linux:/usr/src # strace /bin/ls / 2> /tmp/tracefile
linux:/usr/src # cat /tmp/tracefile | grep open
[...]
open("/usr/src/.puta/.1file", O_RDONLY) = 3

Figure 5: Various means are used to display the files in the current directory and it contains
more than ls displays. Strace is used to show all system calls done by ls to open() files.
Strangely, the file /usr/src/.puta/.1file is accessed.
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3 Kernel Rootkits

Today, most rootkits found on compromised systems are kernel-based. The first kernel
rootkits were probably written for Linux [Half1997], but the techniques were quickly trans-
fered to other operating systems like Solaris [PlT1999] and modern BSD systems [PrT1999].
Malicious code is transfered into the kernel e.g. as loadable kernel modules using the meth-
ods provided by the operating system to load drivers at runtime (cf. 1.2.1). Once in the
kernel, system calls are manipulated to hide the attacker. A kernel rootkit by definition
manipulates the innermost core of the operating system and can therefore change any infor-
mation processed by the system. While this, in theory, allows a perfect simulation of the
original system, being in fact compromised, it is near to impossible to realise in practice
[Skou2003].

A classification of kernel rootkits can be implemented by assessing their methods to
inject code into the kernel and by the way the flow of execution is manipulated within the
kernel. The following three examples present the most common methods found in kernel
rootkits.

3.1 Adore BSD 0.34

The rootkit Adore was written for Linux and modern BSD systems like FreeBSD. It was
one of the first kernel rootkits, but can still be found on compromised machines. Adore
allows an attacker to hide files, processes and network connections. Configuration is done
by a userspace tool called ava. Neither a mechanism to reload the rootkit when the system
is restarted, nor a backdoor are part of the rootkit. An attacker has to solve these tasks
by himself, e.g. by installing a manipulated SSH daemon and hiding the process and its
network connections using Adore.

3.1.1 Code injection

The rootkit is loaded into the kernel as a module and the regular interface provided by the
operating system is used. A second module is used to delete Adore from the data structures
used by the kernel to store module information. This makes the rootkit invisible for the
regular system administration tools. To prevent the injection of code by this means, module
support can be switched off on a given system.

3.1.2 Flow of execution

The rootkit manipulates the syscall table to divert the execution of 15 system calls to its own
code. This is the most widely used method of the attackers to change the flow of execution
in the kernel. A schematic view can be seen in figure 6.

3.2 SucKIT 1.3b

The rootkit SucKIT was published and well documented in 2001 [SD2001]. It runs under
Linux and is widely used. The rootkit is very easy to use and already includes a reload-
mechanism for system reboots and a backdoor. The backdoor is only activated after a certain
packet was send to the system.

The mechanism to reload the rootkit works as follows. A UNIX-like system executes
/sbin/init at system start. SucKIT replaces this file with it’s own loader. The loader
injects the rootkit into the kernel and executes the original init, which was renamed. To
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user mode

kernel mode

flow of execution

call open()

choose interrupt handler choose system call rootkit sys_open()

interrupt descriptor table (IDT) syscall table

Figure 6: The syscall table is manipulated and the rootkit is called first when any process
uses the system call open().

hide this manipulation, the renamed original is hidden using the mechanisms of the rootkit.
Furthermore, any access to the file /sbin/init is redirected to the renamed and hidden
original. When the system administrator generates a checksum of the file, it will match the
one calculated before the rootkit was installed as seen in figure 7.

open( /sbin/init )

System starting / rootkit is loaded ...

System running / rootkit is active

open( /sbin/init ) /sbin/init         [rootkit] 
/sbin/init_XY  [renamed & hidden original]

/sbin/init         [rootkit]
/sbin/init_XY  [renamed & hidden original]

Figure 7: The rootkit SucKIT replaces /sbin/init with its own loader. To hide this fact
the rootkit diverts every access to the file /sbin/init to the hidden and renamed original.

The ease of use of SucKIT includes not having to know the exact version of the operat-
ing system. A compiled binary of SucKIT can be installed on systems running any Linux
version from the 2.2 or 2.4 release trees.

3.2.1 Code injection

The rootkit transfers itself into the kernel by the use of /dev/kmem. The method is more
complicated than using kernel modules, but can not as easily be blocked. The code of the
rootkit is injected in several stages:

• The addresses of the syscall table and of the function kmalloc() within the kernel
are found by searching kernel memory for certain patterns.

• The function kmalloc() is internal to the kernel and needed to reserve space in kernel
memory. The address of kmalloc() is put into an unused entry of the syscall table.
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• kmalloc() is executed as a system call and memory in the kernel is allocated.

• The rootkit is written to the freshly reserved space in the kernel.

• The address of the rootkit is put into the unused entry of the syscall table, overwriting
the address of kmalloc().

• The rootkit is called as a system call and finally running in kernel mode.

3.2.2 Flow of execution

The rootkit SucKIT manipulates the syscall table and diverts the execution of 24 system
calls to its own code. In contrast to the method used by Adore, the syscall table is first
copied and then the copy is modified. This way the original stays untouched and tools
designed to check the consistency of critical kernel resources will find no traces looking at
the syscall table alone. The interrupt handler used for system calls is then manipulated to
use the malicious copy of the syscall table. The manipulation is shown in figure 8.

user mode

kernel mode

flow of execution

call open()

choose interrupt handler choose system call rootkit sys_open()

syscall table (original)syscall table (copy)interrupt descriptor table (IDT)

Figure 8: The rootkit SucKIT first copies the syscall table and then only modifies the copied
version. The interrupt handler for system calls is changed to use the manipulated copy of
the syscall table.

3.3 Adore-NG 1.41

The rootkit Adore-NG is a recode of the original Adore and will serve as the third example
in version 1.41 for Linux. The rootkit uses more sophisticated techniques than Adore, but
is not yet in widespread use. The rootkit provides neither backdoor nor reload-mechanism
by itself. The attacker has to solve these tasks himself as is the case with Adore. In addition
to the usual features, Adore-NG automatically filters log messages generated by hidden
processes. This greatly improves the ease of use, since the attacker will not give his presence
away as easily by little mistakes. Child processes are hidden automatically if the parent was
hidden. The hiding of files and processes has also been improved.
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3.3.1 Code injection

The rootkit is loaded into the kernel as a module using the interface provided by the op-
erating system. The injection can be prevented by turning off module support. Adore-NG
comes with tools for the infection of existing kernel modules [tr2003] and potentially the
kernel itself [Jbtz2002] like a virus. Since an infected regular kernel module is recognised
as legitimate, the attacker does not need to hide it.

3.3.2 Flow of execution

The virtual filesystem layer (VFS) is a layer of abstraction, residing between the system
call interface and the actual implementation of different filesystems. Adore-NG redirects the
flow of execution in the VFS and does not manipulate central resources like the interrupt
descriptor table or the syscall table. Since on a UNIX-like system practically everything is
handled as a file, Adore-NG can do anything a traditional kernel rootkit can do by controlling
the VFS. Detection of the rootkit becomes more difficult, since monitoring a single critical
resource is not enough.

4 Countermeasures

Countermeasures should form a closed chain from prevention and detection to reaction. In
the following some aspects of prevention and detection will be presented which have to be
the basis of any appropriate reaction. The latter is an extensive topic by itself which goes
beyond the scope of this article.

4.1 Prevention

Many guidelines on best practise concerning the protection of systems connected to the
internet exist. In the following two methods will briefly be described, which specifically try
to prevent the injection of code into the kernel.

4.1.1 Deactivation of loadable modules

Many rootkits will simply fail to operate, if the dynamic loading of drivers via the module
interface is deactivated. But, since no drivers can be loaded into the kernel at runtime
anymore, administrative overhead is created at the same time. Its amount depends on the
system in question. On server systems which seldomly get new hardware this might be
feasible, but a workstation with multimedia hardware might become unmanageable. Some
rootkits can still be loaded via /dev/kmem.

4.1.2 Protecting /dev/kmem

Since there are many ways to access the device file /dev/kmem, the only effective protec-
tion can be provided by mandatory access controls. These can be used to limit the access
even for the user root. On Linux mandatory access controls can be added by special kernel
patches and are already included in some Distributions like Trusted Debian (aka Adaman-
tix) and SE Linux. On some systems like Trusted Solaris or some modern BSD systems,
mandatory access controls are already included. Very few programs depend on write access
to /dev/kmem. Depending on the hardware configuration the X-server XFree86 might be
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one of them. Deactivation of module support combined with mandatory access controls for
/dev/kmem will effectively keep most rootkits outside the kernel.

4.1.3 Anti-rootkit modules

Several kernel modules have been developed with the only purpose of stopping a kernel
rootkit from loading. To do this, system calls are manipulated in the same manner as rootkits
do. In addition, integrity checkers might be included, which test if the anti-rootkit module
is still working or if it has been sabotaged by a kernel rootkit. An examples of this approach
is the Linux kernel module StMichael. Some rootkits have specifically been adapted to
deal with StMichael, though.

4.2 Detection

Minor malfunctions often raise suspicion and the administrator might want to check for an
installed rootkit. Since nothing definite is known yet, taking a crucial server offline is not
an option at this point. Furthermore, there is usually a strict timelimit. These constraints
limit the possibilities of the investigator severely. The main methods used to detect kernel
rootkits are briefly introduced in the following.

4.2.1 Checksums and special rootkit detectors

Programs to generate and verify checksums have been introduced for user mode rootkits
in section 2.2.1, but are still useful with respect to kernel rootkits even though these can
redirect access to any file. Many attackers are startlingly inapt and even if the rootkit is used
properly, it will never create a perfect simulation of the uncompromised system. Rootkit
detectors, as mentioned in section 2.2.2, can be used to search for traces of kernel rootkits.
Though, they will rely strongly on signatures for known rootkits.

4.2.2 Critical kernel structures

Saving critical kernel structures and comparing offline copies with current versions will
detect many kernel rootkits. A tool for Linux to do this is KSTAT [Fusy2002]. Sample
output is seen in figure 9.

[... before installation of the rootkit ...]

linux:/home/tools/KSTAT24/2.4.16 # ./kstat -s 0
No System Call Address Modified

[... after installation of the rootkit ...]

linux:/home/tools/KSTAT24/2.4.16 # ./kstat -s 0
sys_fork 0xf880c7a0 WARNING! should be at 0xc01058fc
sys_write 0xf880ca30 WARNING! should be at 0xc013193c
(...)
sys_ni_syscall 0xf880c5b0 WARNING! should be at 0xc013ec5c
linux:/home/tools/KSTAT24/2.4.16 # ./kstat -s 1
Restoring system calls addresses...

Figure 9: The syscall table has been recorded beforehand. Then KSTAT is used to check for
changes in the syscall table once before and once after the installation of a rootkit.
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Unfortunately there are many resources, which need to be monitored. A rootkit may
stay unnoticed as soon as it manipulates a different resource or no central structures at all
(cf. 3.2).

4.2.3 Runtime measurements of system calls

Many rootkits employ complex algorithms to hide the presence of the attacker. Therefore,
the number of instructions executed in a given system call might differ widely between the
original system and a compromised system on which a rootkit has been installed. Counting
the number of instructions used to execute a certain system call is a very general approach
to rootkit-detection [Rutk2002]. The output of such a test done with the reference imple-
mentation by Jan Rutkowski can be seen in figure 10. At the best, measurements have been
done beforehand on the original system. Though, often generic values for different kernel
versions are sufficient to identify a rootkit, since the overhead created by some rootkits is
large enough.

linux:/home/tools/rktest # ./patchfinder -c referenz_2.4.16
* FIFO scheduling policy has been set.
* each test will take 1000 iteration
* testing... done.
* dropping realtime schedulng policy.

test name | current | clear | diff | status
------------------------------------------------------
open_file | 7110| 1442| 5668| ALERT!
stat_file | 7050| 1255| 5795| ALERT!
read_file | 608| 608| 0| ok
open_kmem | 7124| 1510| 5614| ALERT!
readdir_root | 6497| 2750| 3747| ALERT!
readdir_proc | 14422| 2401| 12021| ALERT!
read_proc_net_tcp | 11750| 11750| 0| ok
lseek_kmem | 220| 220| 0| ok
read_kmem | 327| 327| 0| ok

Figure 10: The number of executed instructions for certain system calls has been mea-
sured beforehand (column ’clear’) and is now compared to current values. The values differ
widely for some system calls which raises an alert.

4.2.4 Forensic analysis

A forensic analysis will theoretically by able to detect anything that was written to disk and
memory dumps can also be investigated. Such an analysis does not qualify as an ad hoc
countermeasure since it is very time-consuming and the system has to be taken offline at
least shortly. If checksums exist, the analysis might be done faster and the investigator can
much more easily discover the course of events.

4.2.5 Controlling the network

The compromised system will mostly be used to do things, which generate new traffic.
Passive monitoring of the network might reveal this unusual traffic. Active scans for open
ports can be used to detect some backdoors. Intrusion detection systems (IDS) might be
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able to detect the rootkit in transit or activity generated by it. Intrusion detection systems
are a huge research field by their own right and will not be discussed here in further detail.

4.2.6 Manual search

There is no perfect rootkit and the attackers themselves tend to make mistakes. A manual
search for traces in logfiles and in the filesystem might always generate useful evidence.
E.g. the rootkit SucKIT uses advanced techniques to hide itself, but is trivial to reveal as
soon as /sbin/init is checked for the existence of the rootkit loader as seen in figure 11.
The file /sbin/init is simply renamed using the command mv which uses the system call
rename(). The system call rename() is not one of the 24 system calls manipulated by
SucKIT and is hence not redirected to the hidden and renamed original file. Another helpful
method of rootkit discovery is a careful search in the /proc directory, which will often
expose hidden processes.

linux:/sbin # ls -al init*
-rwxr-xr-x 1 root root 392124 Jan 6 2003 init
linux:/sbin # mv init init.bak
linux:/sbin # ls -al init*
-rwxr-xr-x 1 root root 28984 Jan 6 2003 init.bak
linux:/sbin # ./init.bak
/dev/null
Detected version: 1.3b
use:
./init.bak <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
linux:/sbin #

Figure 11: The investigator is specifically checking for the rootkit SucKIT: The file
/sbin/init is listed, renamed and listed again. By renaming, the filesize has changed.
Executing the binary reveals it to be the user mode frontend of the rootkit.

5 Applying the countermeasures

The above methods for prevention and detection of kernel rootkits are applied to the exam-
ple rootkits introduced in section 3. In order to use a single test platform (Linux 2.4.16 on
Intel 32 bit) the Linux version of Adore was used instead of Adore BSD, which provides
the same features.

For a thorough evaluation of the prevention methods presented in section 4.1, local con-
figuration and policies have to be taken into account. Since this is beyond the scope of this
paper, table 2 lists the theoretical impact of mandatory access controls and the deactivation
of module support to give a basic overview. An entry of ’ok’ implies proper usage of the
method, which is by no means trivial in the case of mandatory access controls.

Table 4 lists how successful the different detection tools are with reference to the exam-
ple rootkits. The test was limited to the methods which can be applied at runtime. Check-
sums have been created from crucial files and directories of the system beforehand. After
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Measure Adore 0.34 SucKIT 1.3b Adore-NG 1.41
Deactivate module
support

ok not enough ok

Mandatory access
control lists

ok ok ok

Table 2: The ideal impact of prevention methods on the example rootkits. It is assumed that
the methods are applied properly and corresponding usage policies exist and are observed.

the rootkit was installed, a directory was created and hidden in one of the crucial direc-
tories. Rootkits which do not provide a backdoor themselves have been provided with a
manipulated SSH daemon, which was then hidden using the mechanisms of the rootkit.

Measure Adore 0.34 SucKIT 1.3b Adore-NG 1.41
Checksums tested with
aide 0.7

ok ok
(/sbin/init)

ok

Critical structures with
kstat 2.4

ok not detected not detected

Rootkit detector
chkrootkit 0.43

ok
(hidden process)

ok
(/sbin/init)

ok

Runtime measurement
with patchfinder

ok module did not
load

system crashed

Manual search in /proc ok ok not detected

Table 4: Applying the runtime detection methods to the example rootkits.

Table 4 is briefly discussed by the column. The rootkit Adore can be found using any
detection method proposed. Chkrootkit only finds SucKIT when a process is hidden. The
rootkit is found by aide because the inode number of /sbin/init changes needlessly.
This might easily be changed by the author of the rootkit. KSTAT does not detect SucKIT
because it only checks the original syscall table even though it is not used anymore (cf.3.2).
Chkrootkit detects the rootkit. Again, because the rootkit loader in /sbin/init is easy
to find. The kernel module needed for the runtime measurement could not be loaded while
SucKIT is active. This might raise suspicion and lead to the detection of the rootkit. A man-
ual search for hidden processes in /proc reveals the hidden process. The rootkit Adore-NG
is also found by checksums. Since no central resources are modified, KSTAT does not detect
the rootkit. Chkrootkit detects the rootkit for the same reason the checksums are success-
ful: files are hidden inside a crucial directory. The system crashes every time the module
for runtime measurement is loaded while Adore-NG is active. As above, this might raise
suspicion. A manual search in /proc does not reveal the hidden processes of Adore-NG.

The tool KSTAT is also able to produce a process list from the internal kernel structures
and to compare this list with the output of ps. Hidden processes of all rootkits discussed
above can be detected that way.
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6 Summary and future directions

The development of rootkits has been presented with a focus on kernel rootkits. Example
rootkits have been classified according to code injection and how the flow of execution
is diverted within the kernel. The efficiency of different countermeasures has been tested
discussed with reference to these examples.

The assessment of the prevention method’s impact shown in table 2 looks encouraging.
However, mandatory access controls are not only the most successful preventive measure,
but also create a large administrative overhead and are difficult to configure correctly. Even
if applied properly, a vulnerability in the kernel itself can still be used to circumvent them.
An administrative error, e.g. not reactivating access controls after patching, might provide
ample opportunities for the attacker. This shows that mandatory access controls are an ef-
fective, though not ultimate, protection against rootkits. In section 5 the task of rootkit
detection was aided by checksums the administrator has created beforehand. In case check-
sums are not available Adore-NG is very hard to find. Generally, if no processes or files are
hidden, the investigator has to find the rootkit itself in the kernel. For rootkits which do not
rely on obvious central resources like the syscall table or the interrupt descriptor table (e.g.
Adore-NG) this is very difficult.

With the notable exception of runtime analysis the methods of detection discussed in
section 4 are not universal enough to cope with the new mechanisms employed by current
rootkits. Any rootkit can be detected in theory, if enough effort is dedicated to the task. Yet,
investigators are usually bound by constraints like the time available to spent on the search
and the need to keep the system online. Hence, more general detection methods are needed
which can easily be applied at runtime. One possibility is a consistency check of the kernel,
based on abstract descriptions instead of comparing saved copies of some kernel structures
with the current versions. The authors of Adore-NG follow such an approach: the execution
flow of the kernel is examined at runtime to hide the rootkit in the VFS layer [Teso2003].
On the one hand this exemplifies that current rootkits are more advanced than the tools used
to detect them. But on the other hand this also shows directions to be taken towards more
generic tools for the investigator. I.e. the analysis of the execution flow could also be used
to define consistency checks of the running kernel at an abstract level. While still topic
for future research, such tools and methods should combine generic rootkit detection with
applicability for a system administrator.
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