
Automated Extraction of
Threat Signatures from

Network Flows

Piotr Kijewski
CERT Polska/NASK

FIRST 2006 Conference, Baltimore, USA
25-30th June 2006

Agenda

Identifying the problem

Definition of a network threat signature

Characteristics of a good signature

Architecture of a signature extraction system

Comparing by hashing – extracting signatures ”on-line”

Extracting signatures ”off-line”

Reduction of false alarms

Classifying the extracted signatures

Implementation

Test results

The future

Identifying the problem

Time window between vulnerability publication and the
appearance of a threat utilizing the vulnerability
constantly growing shorter

The generation of threat signatures mostly a manual
process

The process is slow and prone to errors

Can it be automated?

Definition of a network threat signature

A representation of a set of features of a threat

Examples:

• information from network packet headers

• packet payload

• frequency of appearance of certain ASCII characters

• temporal characteristics of flows

Relationship between a threat signature and an attack
signature

Example of a signature

alert udp any any -> any 1434 (msg: „SQL Slammer"; content:
"|04 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 DC C9
B0|B|EB 0E 01 01 01 01 01 01 01|p|AE|B |01|p|AE|B|90 90 90
90 90 90 90 90|h |DC C9 B0|B|B8 01 01 01 01|1|C9 B1
18|P|E2 FD|5 |01 01 01 05|P|89 E5|
Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f
|B9|etQhsockf|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF
16|P|8D|E|E0|P|8D|E|F0|P|FF 16|P|BE 10 10 AE|B|8B 1E 8B
03|=U |8B EC|Qt|05 BE 1C 10 AE|B|FF 16 FF D0|1|C9|QQP|81
F1 03 01 04 9B 81 F1 01 01 01 01|Q|8D|E|CC|P|8B|E|C0|P|FF
16|j|11| j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16 89 C6
09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D 14 88 C1 E2 04 01
C2 C1 E2 08|)|C2 8D 04 90 01 D8 89|E|B4|j|10
8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6
EB|";)

Characteristics of a good signature (1/2)

Detects the attack

Low false alarm rate

Can be generated quickly

Independent of application level protocols

Can be used in existing IDS/IPS systems

Characteristics of a good signature (2/2)

Exploit vs vulnerability

Usage of the ”de facto” standard: signatures representing
a sequence of bytes that characterize a threat

Operating at a network level allows for the quick
deployment of the signature until hosts patched
(important from an early warning point of view)

Architecture of a signature extraction system

Comparing by hashing (1/6)

Simplest way to identify attacks – comparing and
cataloging packets by cryptographic hashes

MD5 hash = attack signature

In practice works only in a honeynet environment
(example: Internet Motion Sensor project)

Any modification to packet -> new hash

Cannot identify the sequence of bytes that make up the
essence of the attack

Comparing by hashing – sliding window across a
packet (2/6)

Comparing by hashing (3/6)

Sliding window mechanism: better identification of the
constant in the packet

… but many hashes formed (if s is the packet size in
bytes, β is the window length, the amount of hashes
equals s – β + 1)

Comparing by hashing (4/6)

Rabin fingerprints as a hash function (basis of the Rabin-
Karp string searching algorithm)

Calculate the hash of a window shifted by one character
based on the calculation of the previous window

Rabin hash = attack signature

Method may be applied both to production networks and
honeynets

Comparing by hashing (5/6)

To improve efficiency:

• Sample based on a bitmask (for example sample only
hashes that have four least significant bits set to zero)

• Compute flows only in one direction (for example only from
a client to a server)

Comparing by hashing (6/6)

Sampling introduces the risk of missing an attack or not
identifying the most interesting sequence

Problems with window length: the smaller the window
size the higher the probability of detecting the attack but
also the higher the chance of a false alarm

Polymorphism: polymorphic attacks may be missed as
they may not contain long enough sequences to fill a
window

Efficiency

Generating signatures ”off-line” (1/3)

More complex algorithms may be utilized in the ”off-line”
mode

Example: Longest Common Substring algorithm (LCS)

Our proposal: use Rabin windows to initially classify flows
(detected anomalies), the actual generation of signatures
transferred to other algorithms (like LCS)

Generating signatures ”off-line” (2/3)

Define grouping rules:

• Completed flows are periodically grouped based on their
Rabin similarity (for example, group all expired flows to the
same destination port that contain 30% of the same
fingerprints)

• Heuristics: for every group, check the amount of unique
sources in a given period. If a threshold is reached, the
group is sent for further analysis ”off-line”

• An external process computes LCS on every submitted group

Generating signatures ”off-line” (3/3)

Potential to detect polymorphic attacks (if in a honeynet
environment)

The grouping rule checks the groups that are composed
of only one flow and are sent for off-line analysis

Algorithms other than LCS (example, Smith-Waterman)
can analyse all the submitted groups together – there
should exist small disjoint common sequences that have
to remain constant for the exploit to function

Reduction of false alarms

The longest common substring may not be the best
substring

The created signature should be compared to a list of
benign signatures (whitelists)

A pool of normal flows may be kept for comparison

Vetting by an operator

Classification of signatures (1/2)

It is important to review a new event on the network

A generated signature may be compared to previously
classified ones

There may be very many signatures, it is useful to
compare with a certain signature class

Need to define a similarity function

Classification of signatures (2/2)

Levenshtein distance between strings as a distance metric

Use clustering algorithms (simplified dbscan)

Signatures are periodically clustered and manually
classified (with support from Bleeding Snort rules)

For efficiency reasons, long repetitions of characters (such
as NOOPs) are packed to a certain maximum length

Dynamic radius of a cluster based on the length of the
core member in order to allow for better clustering of
both short and long signatures

Implementation (1/2)

Base software: snort and Apache2

Rabin fingerprints implemented as snort plugin called flow-rabin
on top of the standard flow and stream4 plugins

The flow-rabin plugin is the basis for the flow-classifier plugin,
which implements various preliminary grouping rules

When a threat cluster is detected, the cluster is transferred to
the mod_lcs Apache module for LCS signature extraction

Communication between snort and mod_lcs TCP based

External clustering process (implemented in PHP5)

Implementation (2/2)

Test results (1/2)

24 hours monitoring of 5 /26 subnets (honeyd/nepenthes)

Total 775 716 packets collected

Grouping rules: 3 distinct sources with flows that are 30%
similar in a space of 5 minutes

408 LCS signatures generated (LCS generated per packet)

63 clusters formed

63 signatures computed (one per cluster)

7 signatures found to generate false positives (based on a trace
of ”normal” traffic)

21 further signatures dropped (vetting process)

Test results (2/2)

The 35 remaining clusters:
• LSA exploit (port 445/TCP) – 10 clusters
• ASN1 exploit (port 445/TCP, port 139/TCP) – 8 clusters
• Winpopup spam (ports 1026-1029 UDP) – 5 clusters
• RPC DCOM (port 135/TCP, 1025/TCP) – 4 clusters
• Shellcode x86 NOOP (port 445/TCP) – 2 clusters
• Port 1026/UDP unknown [1] – 2 clusters
• SQL Slammer (port 1434/UDP) – 1 cluster
• Port 1433/TCP unknown [2] – 1 cluster
• NetBIOS query (port 139/TCP) – 1 cluster
• HTTP OPTIONS query (port 80/TCP) – 1 cluster

[1] Probably related to Winpopup spam
[2] A large amount of short packets to the standard MS SQL Server port - possibly a

brute force attempt. It was not identified by any Snort rules.

Future

Current implementation in testing phase

Application in a an environment other than honeynet

Application of new algorithms for detection of anomalies
and classification of flows

Implementation of ”off-line” algorithms other than LCS

Development of methods for signature management

