# Why Protection against Viruses, Bots, and Worms is so hard

Malware seen as Mobile Agents

Till Dörges

td@pre-secure.de

PRESECURE Consulting GmbH

June 20, 2007



foundations

Agents and Multi Agent Systems Agents and Malware

2 Security in MAS

Desirable Properties
Protecting the Platform
Protecting the Agent

3 Conclusion



- 1 Foundations
  Agents and Multi Agent Systems
  Agents and Malware
- Security in MAS
   Desirable Properties
   Protecting the Platform
   Protecting the Agent
- 3 Conclusion



1 Foundations

Agents and Multi Agent Systems

Agents and Malware

- Security in MAS
   Desirable Properties
   Protecting the Platform
   Protecting the Agent
- 3 Conclusion



# Agents

What is an Agent?





# Agents

#### What is an Agent?

- Modeling Paradigm
  - Software Engineering (unlike e.g. objects, ...)
  - Artificial Intelligence





# Agents

#### What is an Agent?

- Modeling Paradigm
  - Software Engineering (unlike e.g. objects, ...)
  - Artificial Intelligence

#### Important Properties

- Encapsulation and Modularization
- Reactivity
- Proactivity
- Autonomy
- Mobility (not generally required)





# Agents (cont'd)

#### Definition

- Subject to quite a bit of debate
  - Social Behavior
  - Ability to Adapt
  - Goal Orientation
  - •
- Key properties are safe to assume

#### Particularly Suited for

- Distributed and Concurrent Systems
- Systems across Multiple Administrative Domains



# Agents (cont'd)

### Colloquially Speaking

- Program/Code and Data
- Travel between Platforms
- Run on different Platforms

#### Examples

- "Shopping Agent"
  - "Find (buy) a blue Bicycle for not more than EUR 500."
  - Inquires at several platforms
  - Finds best solution
  - Possibly purchases a bike on behalf of owner/user





### Distinction from Mobile Code

#### Examples for Mobile Code

- JAVA applets
- ActiveX controls
- . . .

#### Mobile Code lacks

- Autonomy
- Proactivity
- Goal Orientation



#### **Platforms**

#### What is a Platform?

- Runtime Environment for Agents
- Responsible Protection of Agents
- Services for Interaction (communication, directory services, ...)
- Transportation of Agents between Platforms

#### Colloquially Speaking

Application on a Computer



# Multi Agent Systems – MAS

#### What is a MAS?

- Technically
  - n with n > 0 Platforms
  - m with m > 0 Agents
  - Infrastructure/Policies
- Service Point of View
  - Shopping Platform
  - Database Querying
  - Research
  - . . . .
- Multi Agent Application
  - ...



# Multi Agent Application?

#### Agent Orientation as Modeling Paradigm

- Comparable to Object Orientation
- AO development environments readily available
- AO application doesn't have to show agents on the outside



1 Foundations
Agents and Multi Agent Systems
Agents and Malware

- Security in MAS
   Desirable Properties
   Protecting the Platform
   Protecting the Agent
- 3 Conclusion



#### Malware

#### Definition (Wikipedia)

Malware is software designed to infiltrate or damage a computer system without the owner's informed consent. ... [The term designates] a variety of forms of hostile, intrusive, or annoying software or program code.

#### Taxonomy

- Species
  - Virus
  - Bot
  - Worm
  - ...
- Distinction blurry



# Malware (cont'd)

#### **Properties**

- Provision of "Services"
  - Spying
  - Attacking
  - Back Doors
  - . . .
- Reactivity
- Proactivity
- Autonomy
- Mobility
- Self Replication
- Adaption



# Malware (cont'd)

### **Properties**

- Provision of "Services"
  - Spying
  - Attacking
  - Back Doors
  - ...
- Reactivity
- Proactivity
- Autonomy
- Mobility
- Self Replication
- Adaption



# Comparison

#### Malware?

Comparison Malware 

⇔ Agents holds

#### Platforms?

- Infected Computers provide for Runtime Environment
- Other services implemented by Malware directly
- Comparison for Infected Computers ⇔ Platforms holds

#### MAS?

- Less interesting (1 malware is enough to control 1 computer)
- Holds, too.



# Comparison

#### Malware?

Comparison Malware ⇔ Agents holds

#### Platforms?

- Infected Computers provide for Runtime Environment
- Other services implemented by Malware directly
- Comparison for Infected Computers ⇔ Platforms holds

#### MAS?

- Less interesting (1 malware is enough to control 1 computer)
- Holds, too.



- Foundations
   Agents and Multi Agent Systems
   Agents and Malware
- Security in MAS
   Desirable Properties
   Protecting the Platform
   Protecting the Agent
- 3 Conclusion



- Foundations
   Agents and Multi Agent Systems
   Agents and Malware
- Security in MAS Desirable Properties

Protecting the Platform Protecting the Agent

3 Conclusion



# Security

#### Conventional Aspects / Definition

- Confidentiality
- Integrity
- Availability



# Security

#### Conventional Aspects / Definition

- Confidentiality
- Integrity
- Availability



# Security

#### Conventional Aspects / Definition

- Confidentiality
- Integrity
- Availability

#### **Shortcomings**

- Every System is Special
- Definition has to be adapted
- What about (for example)
  - Identity
  - Trust
    - ...



# Desirable Security Properties in MAS

#### Security for Agents?

- Communication
  - Integrity
  - Confidentiality
  - Availability
  - Non-Repudiation
  - ..
- Mobility
- Agent Execution

#### Different Points of View

- Protection of Platforms
- Protection of Agents



- Foundations
   Agents and Multi Agent Systems
   Agents and Malware
- 2 Security in MAS

Protecting the Platform

Protecting the Agent

3 Conclusion



# Approaches to Protection

#### Briefly

- Reference Monitor
  - Security Kernel
  - Sandbox
- Signed Code
- Path Histories
- State Appraisal
- Proof Carrying Code



# Approaches to Protection

#### **Briefly**

- Reference Monitor
  - Security Kernel
  - Sandbox
- Signed Code
- Path Histories
- State Appraisal
- Proof Carrying Code
- ⇒ Not the focus of this presentation



# State Appraisal

#### Description

- Assurance to Platform that Agent will not reach certain states
- Appraisal functions become part of Agent's code
- State Space Explosion
- Requires Prediction of all (harmful) States



# **Proof Carrying Code**

#### Description

- Executor (e.g. Platform) can check Program/Code (e.g. Agent)
- Dynamic Approach
- Code comes with Proof not to violate Policy
- Generation of Proof difficult
- Validation of Proof easy
- Does not solely rely on States



- Foundations
   Agents and Multi Agent Systems
   Agents and Malware
- 2 Security in MAS

Desirable Properties
Protecting the Platform

Protecting the Agent

3 Conclusion



# Approaches to Protection

#### Overview

- Trusted Hardware
- Policies
- Logging
- Cooperation
- Cryptography
- Code Obfuscation



#### Trusted Hardware

#### Description

- Probably best Protection Possible
- Hardware can be tampered with, too
  - Power Supply, Voltage
  - Timing
  - Information Leaking
  - ...

#### **Trusted Computing**

- Needs Trusted Hardware
- Other Issues (e.g. DRM)



#### Trusted Hardware

#### Description

- Probably best Protection Possible
- Hardware can be tampered with, too
  - Power Supply, Voltage
  - Timing
  - Information Leaking
  - ...

#### **Trusted Computing**

- Needs Trusted Hardware
- Other Issues (e.g. DRM)
- ⇒ Not relevant for this analysis



#### **Policies**

#### Description

- Recommended for any Setup
- Regulatory Approach
- "Prohibit" Malicious Activity
- Enough for certain Scenarios

#### **Problematic**

- Enforcement of Policies
  - Prevention of Violations
  - Sanctions after Violations
- Employ together with Logging



#### **Policies**

#### Description

- Recommended for any Setup
- Regulatory Approach
- "Prohibit" Malicious Activity
- **Enough for certain Scenarios**

#### **Problematic**

- Enforcement of Policies
  - Prevention of Violations
  - Sanctions after Violations
- Employ together with Logging



⇒ Not relevant for Malware

# Logging

## Description

- Keep a History of Actions
- Possibly with Signatures
  - Platforms
  - Agents
- Useful in conjunction with Policies

#### **Problematic**

- Logging alone does not prevent most Incidents
- Sanctioning is supported



# Logging

## Description

- Keep a History of Actions
- Possibly with Signatures
  - Platforms
  - Agents
- Useful in conjunction with Policies

#### **Problematic**

- Logging alone does not prevent most Incidents
- · Sanctioning is supported
- ⇒ Not relevant for Malware



# Cooperation

#### Description

- Distribution of Information or Functionality
- Simply Redundancy



# Cooperation

## Description

- Distribution of Information or Functionality
- Simply Redundancy
- ⇒ Redundancy often at least implicitly present



# Cryptography

#### Main Question

Cryptography on Untrusted Platform

#### Overview

- Partial Results Encapsulation
- Computing with Encrypted Functions
- Undetachable Signatures
- Environmental Key Generation
- Secure Communication



#### Partial Results Encapsulation

- Secure Data Storage for Agent
- Several Approaches in Literature
- Encrypt Data with Public Key (e.g. owner's)
- Useful for collecting data from several Platforms
- Agent cannot use Data
- Current Platform sees Data
- Signatures can be problematic



#### Partial Results Encapsulation

- Secure Data Storage for Agent
- Several Approaches in Literature
- Encrypt Data with Public Key (e.g. owner's)
- Useful for collecting data from several Platforms
- Agent cannot use Data
- Current Platform sees Data
- Signatures can be problematic
- ⇒ Applicable to Malware



## Computing with Encrypted Functions

- f(): Function to be run by Agent
- enc(): Function to encrypt (hide) Information from Platform
- $g = f \circ enc$ : Function executed on Platform
- Platform knows: g(), might also know enc()
- Platform cannot compute f(x), only g(x) = enc(f(x))
- enc() not easy to find
- f(x) might be needed by Agent
- Denial of Service, Replay Attacks



## Computing with Encrypted Functions

- f(): Function to be run by Agent
- enc(): Function to encrypt (hide) Information from Platform
- g = f ∘ enc: Function executed on Platform
- Platform knows: g(), might also know enc()
- Platform cannot compute f(x), only g(x) = enc(f(x))
- enc() not easy to find
- f(x) might be needed by Agent
- Denial of Service, Replay Attacks
- ⇒ Applicable to Malware



# Undetachable Signatures

- Application of Computing with Encrypted Functions
- f(): Agent's Signature Function
- enc(): Also includes Agent's Constraints
- x: Contract to be signed
- g(x) = enc(f(x)): Agent's Signature of Contract
- enc() restricts what can be signed



# Undetachable Signatures

- Application of Computing with Encrypted Functions
- f(): Agent's Signature Function
- enc(): Also includes Agent's Constraints
- x: Contract to be signed
- g(x) = enc(f(x)): Agent's Signature of Contract
- enc() restricts what can be signed
- ⇒ Applicable to Malware



## **Environmental Key Generation**

- Unlock Code (or Data) based on Condition in the Environment
- Condition Encoded Using Hash Functions
- Code available in clear just before Execution



## **Environmental Key Generation**

- Unlock Code (or Data) based on Condition in the Environment
- Condition Encoded Using Hash Functions
- Code available in clear just before Execution
- ⇒ Applicable to Malware



#### **Secure Communication**

- Securing Command and Control Channels inside Network
- Hiding Contents from Platform not possible
- Undetachable Signatures applicable



#### Secure Communication

- Securing Command and Control Channels inside Network
- Hiding Contents from Platform not possible
- Undetachable Signatures applicable
- $\Rightarrow$  Applicable to Malware



## Code Obfuscation

## Description

- Perfect Obfuscation = Perfect Information Hiding
- Obfuscation ≠ Encryption
- Perfect Obfuscation impossible
- Current Quality of Obfuscation
  - leaking of "negligibly small" amount of information
  - polynomial time



#### Code Obfuscation

## Description

- Perfect Obfuscation = Perfect Information Hiding
- Obfuscation ≠ Encryption
- Perfect Obfuscation impossible
- Current Quality of Obfuscation
  - leaking of "negligibly small" amount of information
  - polynomial time
- ⇒ Applicable to Malware



# **Table of Contents**

- Foundations
   Agents and Multi Agent Systems
   Agents and Malware
- Security in MAS
   Desirable Properties
   Protecting the Platform
   Protecting the Agent
- 3 Conclusion



#### Conclusion

#### Summing up

- Advanced Protection Possible for Malware
- Perfect Protection Impossible
- Some Measures Used already

#### Not to forget

- Turing and the Entscheidungsproblem
- Current Malware already "successful"
- Complexity of Current Setups makes for good Hiding Spots



#### Remains ...

Thanks for your Attention!



#### Remains ...

- Thanks for your Attention!
- Questions?

