

Corporate Technology

Experiences with Building, Deploying and Running a remotecontrolled easily installable Network Sensor

Bernd Grobauer, Siemens CERT

Copyright © Siemens AG 2007. All rights reserved.

SIEMENS

Imagine the following situation?

- You have no control over the network,
 - managed largely by infrastructure providerno possibility to collect data
- but want to know whether there is malware activity on the network
- All you do have is helpful IS contacts that may be able to tweak their local infrastructure a bit -- if you ask them nicely

Methods for Network-based Malware-Detection

Data Sources for Network-based Malware Detection: Collector Host-based Network Sink

Packet inspection and analysis of log files is traditionally used on traffic from/to the hosts to be protected \Rightarrow illegitimate traffic must be found within lots of legitimate traffic \Rightarrow attacks on / compromises of actual assets can be observed

Collecting data from a single host mostly useful for protecting that host, less so for learning about threats to the rest of the network \Rightarrow if host used as honey-pot, then all observed traffic is suspicious \Rightarrow only attacks on / compromises of single host can be observed

Network sink = routing configuration that directs traffic to unused/bogus IPs to a central location for monitoring purposes monitor traffic \Rightarrow all observed traffic is suspicious compromised \Rightarrow only already assets trying to contact IPs in network sink can be observed

Combining Detection Methods and Data Sources

	Passive				Active		
	Packet Inspe	tion Traf		fic Analysis	Low	Medium	High
	Pack. Analy.	Log A	nalysis	Traffic Analysis	LOW	mourain	
Collector	SNORT	HTTP Proxy log analysis		dshield.org			
Host-based	eCSIRT.net				Leuree.com	Nepenthes	German Honeynet
Sink	ARP-Spoofing Sink			CarmentiS		CarmentiS	NoaH Project ?
	mpossible / meaningless						

Page 5

<date>

<Author>

Corporate Technology / CT IC CERT

Combining Detection Methods and Data Sources

Page 6

<Author>

Corporate Technology / CT IC CERT

Remote-sensor Architecture and Requirements

<Author>

Distributed Worm Sensors: Easy installation of sensor

Sensor based on Linux distribution "Ubuntu" Linux free & requires little resources Ubuntu offers easy mechanism for creating "Life CDs" \Rightarrow Sensor can be created by setting up a single sensor and creating a life CD Customization of sensor disk for each user via USB-stick, containing token for authentication configuration details (network settings, etc.) Easy usage: download CD-image ask CERT for authentication token

save token & config. on memorystickuse any old PC as sensor

Distributed Worm Sensors: Communication between sensor and controller

- Framework for communication between IDS sensors, IDS concentrators and IDS controller
- Client-server authentication using X.509 certificates
- Spooling functionality: during breakdown of connectivity, data is buffered
- Communication based on IDMEF standard for incident data

- Setup for Sensor Disk:
- Central controller runs Prelude manager
- Sensor Disk runs Prelude manager as concentrator for
 local SNORT sensor
 - local host IDS monitoring log files
- Standard X.509 certificates can be used
 - as authentication tokens for sensors
 - to authenticate central server
- disruption in connectivity (network problems, maintenance of central server) no problem

Distributed Worm Sensors: Remote Administration (I)

Subversion version control system offers

- client-server model for centralized repository of text
- client-server authentication using X.509 certificates
- support for merging changes between related development branches

Setup for sensor disk: Configuration for all sensors maintained within subversion repository

sensor connects to repository (using X.509 authentication token) and downloads configuration

- directly after startup
- regularly during operation
 configuration maintenance scalable
 to many sensors:
 - sensor configurations based on template
 - changes in template can be merged into individual sensor configurations

SIEMENS

Distributed Worm Sensors: Remote Administration (II): Scalability

1: Create Master Config

Sensor Installation

- Remote sensor administrator fills in configuration file (template distributed together with sensor certificate)
- Certificate is password protected; password must be entered during boot
- Upon request, boot dialogue helps with identifying right network interfaces (administrator plugs cable and dialogue provides feedback)
- If there is network connectivity, the sensor contacts the central controller, downloads the current IDS configuration and starts sniffing.

[controller_link] iface = <interface> mode = static address = <sensor-IP> netmask = <netmask> gateway = <gateway IP> nameserver = <DNS-server IP>

[monitored_link] iface = <interface>

[debug] ssh_access=<IP of central controller>

Lessons learned: Installation

Installation per Life-CD works pretty well

- Boot menu should provide clear problem descriptions and allow retries without forcing a reboot
 ⇒ easier diagnosis/support per telephone mail
- Support for finding "right" network device very helpful
- Main installation problem: switch configuration
 - sensor sees nothing
 - sensor sees too little / wrong network
 - \Rightarrow useful enhancement: reporting of IPs that are seen by sensor for debugging purposes

Lessons learned: Stability

- Biggest stability problem: power outages (esp. in non-European countries)
- At the beginning, needed to tinker with parameters for log rotation / log deletion to avoid running out of memory
- Helpful: script reporting daily on
 - vanished sensors (usually due to power outage)
 - changes in amount of traffic that is monitored (switch reconfigured?, cable unplugged?)
 - (at the beginning): information about free memory

Information about monitored traffic and memory are sent to sensor controller with sensor heartbeat

<Author>

Corporate Technology / CT IC CERT

Lessons learned: IDS operation

- Also old Pentium III boxes can monitor large amounts of traffic if restricted to most relevant patterns for detecting network worms
- Dedicated sensors that are able to monitor traffic between web proxy and internal hosts can be used to watch for malicious drive-by-downloads, spyware activity, etc.
- Useful: script on sensor controler checks incident reports every 10 minutes; if new attacking IPs have been reported, NetBios-information is requested from these IPs so as to aide incident handling

<date>

PS: A fun thing to do: Catching malware specimen

Some shellcode shows the download URL for the malware binary in clear-text

■ Write a script on sensor controller to analyse contents of detected packets (contained in Prelude-message) and download binaries with mget ⇒ keep your malware analysis folks happy ☺