Experiences with Building, Deploying and Running a remote-controlled easily installable Network Sensor

Bernd Grobauer, Siemens CERT
Imagine the following situation?

- You have no control over the network,
 - managed largely by infrastructure provider
 - no possibility to collect data
- but want to know whether there is malware activity on the network
- All you do have is helpful IS contacts that may be able to tweak their local infrastructure a bit -- if you ask them nicely

?
Methods for Network-based Malware-Detection

- Passive
 - Packet Inspection
 - Packet Analysis
 - Traffic Analysis
 - Analysis of network service logs
 - Analysis of traffic information

- Active
 - Low Interaction
 - Medium Interaction
 - High Interaction

- DNS
- Proxy
 - HTTP
 - ...
- ...

- Statistics
- Blocked
 - Router
 - Firewall
- Flows
- Flows
- ...

<date>

<Author>
Data Sources for Network-based Malware Detection:

Collector

Packet inspection and analysis of log files is traditionally used on traffic from/to the hosts to be protected
⇒ illegitimate traffic must be found within lots of legitimate traffic
⇒ attacks on / compromises of actual assets can be observed

Host-based

Collecting data from a single host mostly useful for protecting that host, less so for learning about threats to the rest of the network
⇒ if host used as honey-pot, then all observed traffic is suspicious
⇒ only attacks on / compromises of single host can be observed

Network Sink

Network sink = routing configuration that directs traffic to unused/bogus IPs to a central location for monitoring purposes monitor traffic
⇒ all observed traffic is suspicious compromised
⇒ only already assets trying to contact IPs in network sink can be observed
Combining Detection Methods and Data Sources

<table>
<thead>
<tr>
<th>Passive</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Inspection</td>
<td>Low</td>
</tr>
<tr>
<td>Traffic Analysis</td>
<td>Medium</td>
</tr>
<tr>
<td>Pack. Analy.</td>
<td>High</td>
</tr>
<tr>
<td>Log Analysis</td>
<td>Traffic Analysis</td>
</tr>
</tbody>
</table>

Collector
- SNORT
- HTTP Proxy log analysis
- dshield.org

Host-based
- eCSIRT.net

Sink
- ARP-Spoofing Sink

Sources
- Leuree.com
- Nepenthes
- German Honeynet
- CarmentiS
- CarmentiS
- NoaH Project ?

impossible / meaningless
Combining Detection Methods and Data Sources

Passive
- Packet Inspection
- Traffic Analysis
- Pack. Analy.
- Log Analysis
- Traffic Analysis

Active
- Low
- Medium
- High

Collector
- SNORT
- In many cases, infrastructure provider support required
- Requires some helpful souls with access to a switch

Host-based
- For Malware-low environment, only feasible if a non-negligible number of hosts is involved ⇒ requires substantial support of infrastructure provider

Sink
- Requires substantial support of infrastructure provider

.impossible / meaningless
Remote-sensor Architecture and Requirements

- Easy Installation of sensor
- Communication:
 - Authentication
 - Encryption
 - Reliability
- Remote Administration:
 - Communication
 - Scalability
- Signatures

Sensor Controller
Distributed Worm Sensors: Easy installation of sensor

Sensor based on Linux distribution “Ubuntu”
- Linux free & requires little resources
- Ubuntu offers easy mechanism for creating “Life CDs”
⇒ Sensor can be created by setting up a single sensor and creating a life CD

Customization of sensor disk for each user via USB-stick, containing
- token for authentication
- configuration details (network settings, etc.)

Easy usage:
- download CD-image
- ask CERT for authentication token
- save token & config. on memorystick
- use any old PC as sensor
Distributed Worm Sensors: Communication between sensor and controller

- Framework for communication between IDS sensors, IDS concentrators and IDS controller
- Client-server authentication using X.509 certificates
- Spooling functionality: during breakdown of connectivity, data is buffered
- Communication based on IDMEF standard for incident data

- Setup for Sensor Disk:
 - Central controller runs Prelude manager
 - Sensor Disk runs Prelude manager as concentrator for
 - local SNORT sensor
 - local host IDS monitoring log files
- Standard X.509 certificates can be used
 - as authentication tokens for sensors
 - to authenticate central server
- Disruption in connectivity (network problems, maintenance of central server) no problem
Distributed Worm Sensors: Remote Administration (I)

Subversion version control system offers:

- client-server model for centralized repository of text
- client-server authentication using X.509 certificates
- support for merging changes between related development branches

Setup for sensor disk:

Configuration for all sensors maintained within subversion repository.

- Sensor connects to repository (using X.509 authentication token) and downloads configuration:
 - directly after startup
 - regularly during operation

Configuration maintenance scalable to many sensors:

- Sensor configurations based on template
- Changes in template can be merged into individual sensor configurations
Distributed Worm Sensors:
Remote Administration (II): Scalability

1: Create Master Config

2: Copy Master for new sensor

3: Customize for Sensor

4: Update Master Config

5: Subversion supports automated merging
Sensor Installation

- Remote sensor administrator fills in configuration file (template distributed together with sensor certificate)

- Certificate is password protected; password must be entered during boot

- Upon request, boot dialogue helps with identifying right network interfaces (administrator plugs cable and dialogue provides feedback)

- If there is network connectivity, the sensor contacts the central controller, downloads the current IDS configuration and starts sniffing.

```plaintext
[controller_link]
ifcase = <interface>
mode = static
address = <sensor-IP>
netmask = <netmask>
gateway = <gateway IP>
nameserver = <DNS-server IP>
```

```plaintext
[monitored_link]
ifcase = <interface>
```

```plaintext
[debug]
ssh_access=<IP of central controller>
```
Lessons learned: Installation

Installation per Life-CD works pretty well

- Boot menu should provide clear problem descriptions and allow retries without forcing a reboot
 ⇒ easier diagnosis/support per telephone mail

- Support for finding „right“ network device very helpful

- Main installation problem: switch configuration
 - sensor sees nothing
 - sensor sees too little / wrong network
 ⇒ useful enhancement: reporting of IPs that are seen by sensor for debugging purposes
Lessons learned: Stability

- Biggest stability problem: power outages (esp. in non-European countries)

- At the beginning, needed to tinker with parameters for log rotation / log deletion to avoid running out of memory

- Helpful: script reporting daily on
 - vanished sensors (usually due to power outage)
 - changes in amount of traffic that is monitored (switch reconfigured?, cable unplugged?)

- (at the beginning): information about free memory

Information about monitored traffic and memory are sent to sensor controller with sensor heartbeat
Lessons learned: IDS operation

- Also old Pentium III boxes can monitor large amounts of traffic if restricted to most relevant patterns for detecting network worms.

- Dedicated sensors that are able to monitor traffic between web proxy and internal hosts can be used to watch for malicious drive-by-downloads, spyware activity, etc.

- Useful: script on sensor controller checks incident reports every 10 minutes; if new attacking IPs have been reported, NetBios-information is requested from these IPs so as to aide incident handling.
PS: A fun thing to do: Catching malware specimen

- Some shellcode shows the download URL for the malware binary in clear-text

- Write a script on sensor controller to analyse contents of detected packets (contained in Prelude-message) and download binaries with mget ⇒ keep your malware analysis folks happy 😊