Setting up a Grid-CERT
Experiences of an academic CSIRT

19th Annual FIRST Conference 2007
June 18 - 22, Seville, Spain

Klaus Möller
DFN-CERT Services GmbH
Agenda

• Introduction
• Organisational Challenges
 • Making yourself known
 • Incident reporting
 • International cooperation
• Technical Challenges
 • Grid software expertise
 • Software vulnerabilities
Introduction

What is Grid computing?

• A form of distributed computing
• Different organisations cooperate in a virtual organisation (VO) to share resources
What is Grid-computing?

- Resources can be CPU, storage, sensors, applications, etc.
- Organisations decide themselves how their resources are shared
 - I.e. what a user is allowed to do at their site
- Users of a Grid have a single sign-on to use all resources of the Grid
 - Based on X.509 certificates and/or federated authentication schemes (Shibboleth)
Introduction

Accessing Grid Resources
D-Grid Initiative

- Six (initially five) community projects furthering Grid computing in specific areas
- One integration project
 - Among other tasks: Set-up of Grid-specific CSIRT Services
Introduction

CSIRT Services

<table>
<thead>
<tr>
<th>Reactive</th>
<th>Proactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alerts and Warnings</td>
<td>Technology Watch</td>
</tr>
<tr>
<td>Incident Handling</td>
<td>Security Audits or Assessments</td>
</tr>
<tr>
<td>- Incident analysis</td>
<td>Configuration and Maintenance of Security Tools, Applications, and Infrastructures</td>
</tr>
<tr>
<td>- Incident response on site</td>
<td>Development of Security Tools</td>
</tr>
<tr>
<td>- Incident response support</td>
<td></td>
</tr>
<tr>
<td>- Incident response coordination</td>
<td></td>
</tr>
<tr>
<td>Vulnerability Handling</td>
<td>Intrusion Detection Services</td>
</tr>
<tr>
<td>Artifact Handling</td>
<td>Security-Related Information Dissemination</td>
</tr>
</tbody>
</table>

© 2007 DFN-CERT Services GmbH / Setting up a Grid-CERT
Introduction

Adapting services for Grid needs

- Alerts and warnings
- Incident handling
 - How to detect and analyze Grid incidents
- Vulnerability Handling
 - Promote security best practices with writers/vendors of Grid software
- Security-related information dissemination
 - Develop and distribute security best practices for Grid administrators
Organizational Challenges

Making yourself known

• First task when establishing a CSIRT: Make yourself known to the constituency
 • DFN-CERT is already well known
 • However: This does not extend into Grid-communities
• Easy to solve through the D-Grid Initiative
 • Platform for exchange, simply go there and discuss matters with the community partners
 • Otherwise, it would have been difficult just to find out which Grid-communities exist
 • But does not cover Grids outside the initiative
Organizational Challenges

Finding Security Contacts

• With an incident, you typically have an event (like portscans or SPAM) and an IP-address
• Find the responsible person for the IP-address
 • Traditionally: Use the WHOIS service
 • There is no database about which IP-addresses belong to which Grid
 • Grid and local site security team may not be identical
• New ways of reporting incidents needed
 • Mailing list proposal by Open Science Grid
Organizational Challenges

Incident reporting

Way 1: Reporting through site security teams

Way 2: Reporting through Grid incident mailing-list

INCIDENT-REPORT-L@grid.example.net

Site A

Security Team A

Grid Site A

Site B

Security Team B

Grid Site B
Organizational Challenges

Incident reporting

- Reporting through site security team:
 - Directly involves local site security team
 - Data often incomplete a coordinating CSIRT level
 - Registration with CSIRT is a bottleneck

- Reporting through Grid incident mailing list:
 - Fast, automatic information of all Grid members
 - Only as good as Grid mailing list database
 - Local site security team may not be involved automatically
 - Message content must not make a site, job or user identifiable :(
Organizational Challenges

International cooperation

• Try to pool CSIRTs experience together
 • Terenas TF-CSIRT: European CSIRT forum
 • FIRST: International CSIRT forum
• BoF at joint FIRST - TF-CSIRT meeting in January 2006
 • Pre working group stage
• Grid security since September 2006 part of the TF-CSIRT terms of reference
• A lot of initial interest, but little active cooperation so far
Technical Challenges

• To help securing their infrastructure CSIRTs have to develop an understanding about the software used in Grids, especially
 • How to securely configure Grid software
 • How Grid software interacts with other software
 • How to detect break-ins
 • How to estimate the damage from a break-in
• No or very little experience at other CSIRTs
 • So no opportunity of learning from them
 • Even in the Grid-communities, few people truly understand Grid software
Technical Challenges

Software Audit

• Extrapolate from known attacks on other systems
• Works only with smaller software packages (UNICORE)
• Beyond the resources of academic CSIRTs for larger packages (gLite, Globus)
• Also: Test setup chosen by CSIRT may not be representative

- Manipulate User Mapping Database
 - Sniff unencrypted traffic within site
- Manipulate job mapping

Extrapolate from known attacks on other systems

- Works only with smaller software packages (UNICORE)
- Beyond the resources of academic CSIRTs for larger packages (gLite, Globus)
- Also: Test setup chosen by CSIRT may not be representative
Technical Challenges

Penetration testing of existing Grid sites

- Black box test (no prior knowledge)
 - Basic standard tools: nmap, netcat, OpenSSL
 - Attackers can locate Grid sites and identify to which Grid they belong (server gives list of acceptable X.509 client Cas during SSL handshake)
 - Grid services can be identified, even if running on non-standard port numbers (nmap signatures)
 - Even with custom Linux distributions, services remain open that are not needed (finger) or are configured in an insecure way (SSH protocol version 1)
Technical Challenges

Leveraging penetration test results

• Use CSIRT infrastructures for network monitoring
 • Directly observe attackers or suspicious traffic
 • Automatic alerts to constituency
 • Network telescopes
 • Observe traffic flows to ports used by Grid software
 • So far, very little traffic has been seen
• Honeypots (in planing)
 • Directly observe attacks
 • Start with low interaction honeypots
 • Has to be SSL-capable
Technical Challenges

Software vulnerabilities

- Grid software vulnerabilities in the CVE database
 - 2005: 1 (Sun Grid Engine)
 - 2006: 7 (Globus Toolkit, Sun Grid Engine, OpenPBS/Torque)
- Grid software per se not more secure than anything else
- This does not count vulnerabilities in software the Grid software is build upon
 - OpenSSL, Apache, etc.
Technical Challenges

Software vulnerabilities

• Grid software vendors don't follow standard practices
 • No published point of contact for reporting security problems
 • No open way of disseminating security information, i.e. open security announcement mailing list
 • Unsigned advisories
 • Unsigned software packages: MD5/SHA-1 checksums are not good enough

• Initial contact with some vendors has been made
Conclusions

- DFN-CERTs “Grid-CERT” operational since December 2006
- So far, only a few incidents could be classified as Grid-related
 - Most involve stolen X.509 certificates
 - One false alarm at a cluster site
 - However: Many community projects are not yet operational
- Some solutions are not optimal but will have to do for the beginning
- New developments may change the picture
Thank you!

Questions?