
The Network Expect Framework
for Building Network Tools

Forum of Incident Response Teams (FIRST)
19th Annual FIRST Conference
Sevilla, Spain, June 20th, 2007

Eloy Paris
Cisco Systems

Who Am I?

● Member of Cisco's Product Security
Incident Response Team (PSIRT)
– I handle security vulnerabilities in Cisco

products
● I worked in Cisco's Technical

Assistance Center (TAC)

➔ I have had the need to recreate situations of
strange, unusual, or exceptional network traffic

What is Network
Expect?

● A packet manipulation framework
● It allows to:

– Craft and inject network packets
– Decode received network packets
– Take decisions based on received traffic

 NetExpect is the result of my need to scratch the itch
of recreating strange, unusual, and exceptional
network traffic

A Brief Example
set target google.com

Spawn a listener for ICMP messages from our target
spawn_network -i eth0 icmp and src host $target

for {set seq 0} {1} {incr seq} {
 send_network \
 ip(dst = $target)/ \
 icmp-echo(seq = $seq)/ \
 raw(12345678901234567890)

 expect_network -timeout 1 {$icmp(type) == 0 && $icmp(id) == [pid]} {
 puts [format "$pdu(2,tot_len) bytes from $ip(src): icmp_seq=$seq
ttl=$ip(ttl) time=%.3f ms" [expr [txdelta ip]*1000]]
 sleep [expr 1.0 - [txdelta ip]]
 }
}

A Brief Example (Cont.)
shell# nexp script.nexp
28 bytes from 64.233.167.99: icmp_seq=0 ttl=245 time=29.010 ms
28 bytes from 72.14.207.99: icmp_seq=1 ttl=243 time=56.790 ms
28 bytes from 64.233.167.99: icmp_seq=2 ttl=245 time=24.312 ms
28 bytes from 64.233.187.99: icmp_seq=3 ttl=246 time=19.919 ms
28 bytes from 64.233.167.99: icmp_seq=4 ttl=245 time=57.324 ms
28 bytes from 72.14.207.99: icmp_seq=5 ttl=243 time=34.879 ms
28 bytes from 72.14.207.99: icmp_seq=6 ttl=243 time=34.339 ms
28 bytes from 64.233.167.99: icmp_seq=7 ttl=245 time=24.263 ms
28 bytes from 64.233.167.99: icmp_seq=8 ttl=245 time=24.427 ms
[...]

What Can We Learn From
This Example?

1.Three key commands are the
foundation of Network Expect:
– spawn_network
– send_network
– expect_network

2.A common behavior of network-aware
applications: action-reaction

3.There is a high-level language that
glues everything together

spawn_network [options] [<PCAP
filter>]

● Creates network “listeners” and
“speakers”
– A listener is used to read traffic from a

source (PCAP file, network interface, UDP
or TCP socket)

– A speaker is used to send traffic to a
destination (PCAP file, network interface,
standard output, UDP or TCP socket, etc.)

● Think of spawn_network as the
equivalent of the Unix socket() call

send_network [-o <speaker>] <packet def>

● Sends traffic to a destination using a
“speaker”
– Speaker is created with spawn_network
– Speaker can be implicit ($speaker_id

variable) or explicit (-o option)
● Great flexibility when defining packets

– Ethernet, MPLS, 802.1Q, GRE, ARP, RARP,
ICMP, ICMPv6, IP, IPv6, IPX, IGMP, BGP, OSPF.

– Variable fields
● Very efficient

send_network <packet def> (Cont.)

● <packet def> defines the packet:
– '/' separates PDUs
– PDUs are listed from lower to higher

layers
– PDUs defined with pdu_name(pdu parms)
– Sensible defaults

● Examples:
ip(dst=1.2.3.4,ttl=64)/tcp(flags=s,dst=80)

ether(dst=de:ad:be:ef:00:00)/ \
ip(dst=1.2.3.4)/icmp-echo()/raw('abcedef')

expect_network [-i <listener>]
{<expr>} {<code block>}

● Reads packets from a source using a
“listener”
– Listener is created with spawn_network
– Listener can be implicit ($listener_id

variable) or explicit (-i option)
● After reading a packet a condition is

evaluated
● If condition is true, a block of code is

executed

expect_network (Cont.)

● When a packet is read, several high-
level language variables are created
– $ether(src), $ip(dst),
$tcp(srcport), $icmp(type), etc.

● These variables can be used in the
expression of the expect_network
command. For example:

expect_network {$icmp(type) == 0} {<code
executed when ICMP type is 0>}

Action-Reaction: The
Expect Connection

● Network Expect was inspired on Don
Libes' Expect, the Tcl-based toolkit for
automating interactive programs

spawn telnet 192.168.1.1
expect "login:"
send "eloy\r"
expect "Password:"
send "myp4ssw0rd\r"
expect "$prompt"
send "/usr/local/bin/script.sh\r"
expect "$prompt"
send "exit\r"

The Expect Connection
(cont.)

● spawn spawn_network
– Spawn a network listener or speaker, not

a process
● send send_network

– Send to the network, not to a process
● expect expect_network

– Expect something from the network, not
from a process

➔ If you know Expect then you are well on your way
to mastering Network Expect

Do You Mean I Need To Learn
Yet Another Language?

● The answer is “it depends” - it
depends on what you want to do:
– For simple packet crafting you only need

to know about send_network
– For more complex tasks the answer is,

unfortunately, “most likely yes”.
However...

● Tcl is easy (but perhaps not very powerful)
● Tcl is easier to learn than others
● Little Tcl knowledge is needed to accomplish

useful things

Something Not in Expect

● The send_expect command
– Inspired by Scapy's send-and-receive

family of functions
– Injects stimuli, collects responses, and

matches stimuli with responses
– Very powerful command; allows to build

useful tools in a few lines of code

send_expect Example: An
ARP Scanner

set interface eth0
set network "$iface($interface,ip)/$iface($interface,netmask)"

Spawn a listener for ARP replies
spawn_network -i $interface {arp[6:2]} == 2

send_expect -o $interface -delay 0.001 -tries 2 \
 ether(dst = BROADCAST)/ \
 arp-request(tha = BROADCAST, \
 tip = '$network', \
 sha = $iface($interface,hw_addr), \
 sip = $iface($interface,ip))

puts "\nFound [llength $_(received)] hosts alive:\n"

foreach r $_(received) {
 packet decode r
 puts "$arp(sip) is at $arp(sha)"
}

Another send_expect
Example: A TCP Traceroute

set target google.com
set port 80
set interface [outif $target]

spawn_network -i $interface

send_expect -tries 2 -delay 0.010 \
 ip(id = random, dst = $target, ttl = 1:30)/ \
 tcp(src = random, dst = $port, flags = s)

foreach r $_(received) s $_(sent) {
 packet decode r
 set source $ip(src)
 set pdu_type $pdu(1,type)

 packet decode s

 puts [format "$ip(ttl) $source %.3f ms $pdu_type" [expr [packet tdelta r
s]*1000]]
}

The 0trace Proof-of-Concept

● Traceroute that rides an existing TCP
session

● Published by security researcher Michal
Zalewski in January 2007

● 114 lines of complicated shell scripting
that calls tcpdump, cat, head, tail, sed,
cut, grep, awk, the works + 172 lines of
C code + out-of-band TCP connection

● 40 lines of NetExpect code

Re-Writing PCAP Files

● Basic skeleton code:

set infile in.pcap
set outfile out.pcap
set filter "tcp and host 192.168.1.1"

spawn_network -r $infile -w $outfile $filter

expect_network {1} {
 send_network raw('$_(packet)')
 nexp_continue
} eof

close_network nexp0

Under The Hood

● NetExpect is written in C and some
Yacc and Flex
– “Should” behave well under heavy load
– Will meltdown your network when

injecting packets
● It has been built (and run) on Linux,

FreeBSD, OpenBSD, MacOS X, Solaris
● Uses libpcap for reading packets and

libdnet for sending packets great
portability

Final Thoughts

● Network Expect will be released with
an Open Source license
– Project's home is www.netexpect.org

● Currently a one-man show
– Looking for help (code and

documentation)

http://www.netexpect.org/

Final Thoughts (Cont.)

● Documentation in a very sorry state
– Have a mediocre Unix manual page
– Using examples as documentation
– Will hopefully improve when I shift my

focus from development to
documentation

● Contact: eloy@cisco.com

mailto:eloy@cisco.com

Does The World Need Yet
Another Packet Generator?
● Lots and lots of tools out there, but...

– Didn't know about them when I started
● Nemesis, Packit, SendIP, Scapy, CASL, hping,

etc.
– Not all of them have the flexibility I need
– Not all of them do everything I need
– Some can have steep learning curves
– I need more than just a packet crafter
– Competition is good; let the user decide!

Extra Slides

C Versus Tcl Performance

● SYN flood attack in C
send_network -count 1000000 ip(src =
random, dst=1.2.3.4)/tcp(dst = 80,
flags = s)

● SYN flood attack in Tcl
for {set i 0} {$i < 1000000}
{send_network ip(src = random, dst
= 1.2.3.4)/tcp(dst = 80, flags =
s)}

● 430 kpps in C versus 10 kpps in Tcl

