
Tools and Techniques to
automate the discovery of Zero

Day Vulnerabilities
A.K.A – Fuzzing 101

Agenda

• GEEKZONE
• Overview of fuzzing techniques
• Tutorials on specific open-source fuzzers
• Demonstrations
• DIY fuzzing!

Who are we?

• Mark Rowe, Joe Moore
• IT Security Consultants and Researchers
• Pentest Limited
• Independent IT Security Consultancy

Software Security Assessment

• Information Gathering
• Decomposition of application
• Information Analysis and Planning
• Testing of application components
• Analysis and Reporting

Information Gathering
• Design documentation
• RFC’s
• Security requirement specifications
• Data flows
• Source code
• Reverse Engineering
• Informal interviews with key personnel (e.g. developers /

product managers)
• Runtime analysis
• Goal is to obtain a detailed picture of the product’s

composition, which technologies it uses, how it is
typically deployed and how it integrates into its
environment

Decomposition of an application

• Produce a list of interfaces and features
• Understand how end users and other

systems interact with the application
• Identify the application’s attack surface

Information Analysis and Planning

• Develop security test scenarios (thinking like an
attacker)

• Understanding of how vulnerabilities get into an
application

• Threat/Risk modelling
– Is the component security critical?
– Ease of attack.
– Impact.
– Is the component or feature enabled by default?
– Known vulnerabilities in similar products, technologies

or components.
– How potential attackers are likely to view the product.

• Prioritise based on risk

Testing of application components

• Use knowledge obtained from previous
phases

• Uncover design and implementation flaws
• Regular progress meetings
• Discuss findings with developers

Analysis and Reporting
• Bug reports throughout the assessment
• Final written report

– Details of discovered problems
– Highlighting possible solutions
– Prioritised issues

• Presentation
– Senior management
– Architects/Developers

• Or sell your 0days ☺

Which box is it in?

• White Box
• Black Box
• Grey Box
• Fuzzing complements more traditional

testing

CERT statistics

• Vulnerabilities identified and cataloged
• 2000-2007

Fault Injection

• Understand how the application works
• Enumerate all inputs – “Attack Surface”
• Design tests with input that the application

may struggle to handle
• Prioritise tests

What is Fuzzing?

• Sending invalid data to inputs of a
program with the purpose of highlighting
software defects

• Based on fault injection
• Often automated
• Barton Miller, University of Wisconsin-

Madison first person credited with carrying
out a rudimentary form of fuzzing (1990)

What can fuzzers discover?
• Buffer overflows
• Integer overflows
• Format string vulnerabilities
• Race condition vulnerabilities
• SQL injection
• Cross Site Scripting (XSS)
• Remote command execution
• Filesystem attacks (reverse traversal, etc)
• Information leaking vulnerabilities
• Memory/Resource exhaustion (DoS)
• Null pointer dereferences

Who uses Fuzzers?

• Security researchers (0days, exploit dev.)
• Software QA
• Developers
• Has gained in popularity over the last few

years
• Vendors such as Microsoft have adopted

fuzz testing as part of their SDL
http://msdn2.microsoft.com/en-
us/library/ms995349.aspx

What can you Fuzz?

• Network protocols
• Files
• IPC methods
• Command line arguments
• Environment variables
• APIs
• Network stacks
• Anything that uses a structured data format

Fuzzing process

• Choose your target
• Identify inputs (attack surface)
• Prioritise
• Develop fuzzer or fuzz test cases
• Supply to inputs
• Monitor for exceptions
• Determine exploitability (optional)

Deciding what to Fuzz

• You can’t test everything at once
• Need to be systematic
• Decide which areas to mutate with fuzz

data
• Still relies on human expertise!

Runtime analysis

• Processes (ps, ProcessExplorer)
• Network ports (netstat, TCPView, portscanners)
• Network Sniffing (Wireshark, tcpdump)
• Proxies (Paros, WebScarab, ITR)
• Files (Filemon, lsof)
• IPC (OLEView, strace)
• Registry keys (Regmon)
• Debugging (gdb, ollydebug)

Approaches to fuzzing

• Manual
• Semi-automated
• Fully automated

Approaches to automated Fuzzing

• Generate valid inputs from scratch or work
from captured inputs (e.g. RFC versus
Sniffed traffic)

• Insert fuzz data to produce faulty inputs
• Random fuzzing
• Pre-generated test cases e.g. Protos
• Brute force – bit flipping, raw byte

manipulation
• “Intelligent” Fuzzing

Fuzz data
• Bit flipping, random byte changes
• Varying length strings (larger than buffer)
• Large integers, zero, negative integers
• Format strings %n, %25n
• Metacharacters
• ../../../
• <script>alert(‘eek’)</script>
• ‘ OR 1=1 etc.
• , ‘ “)] } NULL
• 0x00

Block based fuzzing

• Originated from Dave Aitel, SPIKE
• Simple and flexible (not Dave! ☺)
• Decompose protocol into length fields and

data fields
• Avoids fuzz data being ignored

HTTP POST
POST /path/script.cgi HTTP/1.0
User-Agent: Mozilla/5.0 (Windows; U; Windows NT

5.1; en-US; rv:1.8.1.4) Gecko/20070515
Firefox/2.0.0.4

Content-Type: application/x-www-form-urlencoded
Content-Length: 32

postcode=AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA&county
=cheshire

Spike
• <block_size><data_block><block_size><data_block>…

……..
• Data blocks and sizes (Word, Halfword, Little Endian

etc.)
– s_block_start(), s_block_end(),
– s_blocksize_halfword_bigendian();

• String data
– s_string(“Hello\r\n”)

• Binary data
– s_binary(“41 41”)

• Fuzzing
– s_string_variable
– s_string_repeat(“A”,30)

Spike (2)

• Create .spk file
• Sending data

– generic_send_tcp
– generic_send_udp

• Lots of examples in audit directory
• Other useful tools like “dcedump”
• Spike Proxy for web apps

Bug Detection
• Segmentation faults
• Debuggers (can sometimes mask the presence of a bug)
• Search for core dumps
• Network port closure
• Processes restarting
• High CPU usage
• Memory usage
• Errors in error logs
• Other activity that you wouldn’t expect during normal

operation
• Need to match with test case

Problems you may encounter

• Application becomes slow or unresponsive
• Encryption, checksums, compression,

obfuscation
• One bug hides another bug
• Combinations of tests cause problems,

single test doesn’t trigger the bug!
– Memory depletion/leaking
– Process exhaustion
– Timing issues

Advantages
• Allows fast detection of exploitable security

bugs, often serious
• Identify implementation errors not discovered

during code reviews or other testing
• Useful when time is limited
• Reusable
• You don’t need source code
• Can make testing of complex environments

easier
• Fire and Forget

Disadvantages

• Modelling complex protocols can be
difficult and time consuming especially if
they aren’t documented

• Maintaining state is often difficult
• Not guaranteed to expose all bugs
• Poor code coverage
• Low yield, simple faults
• Tedious to watch!

Fun Stuff!

• Putting it all together
• MS07-029 RPC DNS vulnerability
• Start with dnscmd.exe

Fun Stuff!

Fun Stuff!

Fun Stuff!

Fun Stuff!

User supplied string

DCE Bind (DNS)

05 00 0b 03 10 00 00 00 48 00
0040 00 00 01 00 00 00 d0 16 d0 16 00 00 00 00 01 00 :...............
0050 00 00 00 00 01 00 a4 c2 ab 50 4d 57 b3 40 9d 66 PMW.@.f
0060 ee 4f d5 fb a0 76 05 00 00 00 04 5d 88 8a eb 1c .O...v.....]....
0070 c9 11 9f e8 08 00 2b 10 48 60 02 00 00 00

DnssrvQuery ***a0 00*** packet size

05 00 00 03 10 00 00 00 ***a0 00*** ..._............
0040 00 00 01 00 00 00 64 00 00 00 00 00 01 00 40 3c d.......@<
0050 08 00 0c 00 00 00 00 00 00 00 0c 00 00 00 31 00 1.
0060 37 00 32 00 2e 00 31 00 36 00 2e 00 35 00 2e 00 7.2...1.6...5...
0070 38 00 38 00 00 00 d5 3d 26 00 10 00 00 00 00 00 8.8....=&.......
0080 00 00 10 00 00 00 61 61 61 61 61 61 61 61 61 61aaaaaaaaaa
0090 61 61 61 61 61 00 e5 3d 26 00 0c 00 00 00 00 00 aaaaa..=&.......
00a0 00 00 0c 00 00 00 41 6c 6c 6f 77 55 70 64 61 74 AllowUpdat
00b0 65 00

EIP: 62626262!

Open Source Fuzzers

• SPIKE
• Autodafé
• PEACH
• And many, many more…

Commercial Fuzzers

• BeStorm protocol fuzzer
• OULU commercial fuzzer
• Codenomicon
• Mu-4000
• BreakingPoint

Homegrown Fuzzers

• Specific purpose
• Often quick, not very comprehensive
• Modify other (open source) fuzzers
• Not really something you could sell(!)

Autodafé

• An act of software “torture”
• Similar to SPIKE

• Block based scripts

• File and Network fuzzing
• Monitoring tools built in
• Weighting attacks (very cool!)

Autodafé
block_begin("rmf_header");
hex(2e 52 4d 46);
block_size_b32("rmf_header"); /* chunk size */
hex(00 01); /* chunk version */
hex(00 00 00 00); /* file version (0) */
hex(00 00 00 06); /* number of headers */
block_end("rmf_header");

PEACH

• Written by Michael Eddington (IOActive)
• Python based framework

• Cross-platform

• Can fuzz just about anything!
• Syntax and concepts needs to be learnt
• Easily re-usable code

PEACH (continued)

• Four components to a PEACH script
• Generators
• Transformers
• Protocols
• Publishers

• Sounds complicated, really isn’t!

File Fuzzing

• Targets
– Common application formats
– One format many targets

• Manual approach
– Create a series of corrupted files (hex editor

for binary protocols)
– Open each file with the application
– Very slow
– Boring!

Automated File Fuzzing

• Binary file formats can be complicated
• In depth knowledge may be required
• Often not documented
• Makes intelligent fuzzing difficult
• Good news is dumb fuzzing often yields results
☺

• Randomly overwrite bytes or perform bit flipping
• File headers are often a good place to start

DIY fuzzing

• Modified BackTrack live-cd
• Real world example – RealPlayer 10 .smil

file stack overflow
• Suggest you use SPIKEfile
• Sample .smil file in /usr/local/examples

BackTrack CD

• Should autoboot
– Possible problems :

• IRQ - bt irqpoll
• PCMCIA – bt nopcmcia
• ACPI – bt acpi=off
• DHCP – bt nodhcp

Questions?

Useful resources
• http://www.threatmind.net/secwiki/FuzzingTools
• http://www.owasp.org/index.php/Fuzzing
• http://www.owasp.org/index.php/OWASP_Testing_Guide

_Appendix_C:_Fuzz_Vectors
• http://www.immunitysec.com/downloads/advantages_of_

block_based_analysis.pdf
• http://www.immunitysec.com/resources-

freesoftware.shtml
• http://autodafe.sourceforge.net
• Fuzzing mailing list

http://www.whitestar.linuxbox.org/mailman/listinfo/fuzzing

