
Beyond The CPU:
Defeating Hardware Based RAM Acquisition

(part I: AMD case)

Joanna Rutkowska

COSEINC Advanced Malware Labs

2 © COSEINC Advanced Malware Labs, 2007

Focus

In this presentation we focus on x86/x64 architecture,
and specifically on AMD64 based systems.

3 © COSEINC Advanced Malware Labs, 2007

Why do we need RAM acquisition?

Find out whether a given machine is compromised or not

Forensic Analysis
Find out how malware “works”

Use as an evidence

Most forensics analysts focus on persistent memory –
i.e. hard disk images

This is obviously not enough, because malware can be
non-persistent

So, we need a reliable way to get an image of RAM…

4 © COSEINC Advanced Malware Labs, 2007

Approaches to memory acquisition

Software-based
Usually uses /dev/mem or \Device\PhysicalMemory

Requires additional software to be run on a target system
e.g. dd/dd.exe, EnCase (?), ProDiscover(?)

Hardware-based
e.g. a PCI or PCMCIA card

Uses DMA access to read physical memory

No additional software on the target machine required

OS-independent

5 © COSEINC Advanced Malware Labs, 2007

Software-based acquisition

Not reliable!
Can be cheated by malware which runs at the same
privilege level as the imaging software:

Shadow Walker Rootkit

\Device\PhysicalMemory memory hooking

Implementation Specific Attacks against acquisition software

Requires additional software on the target machine!
This violates the requirement that forensic tools shall not
cause data to be written to the target machine

6 © COSEINC Advanced Malware Labs, 2007

Hardware-based solutions

Reliable!
Direct Memory Access does not involve CPU

Acquisition device “talks” directly to the memory controller

Even if the whole OS is compromised, still we can get a
real image of the physical memory

“The real image” – i.e. the same image as the CPU sees

No additional software on the target – good!

Possible race conditions when reading memory,
because systems (i.e. CPU) is still “running”…

Is it possible for a PCI device to freeze the host’s CPU?

7 © COSEINC Advanced Malware Labs, 2007

Hardware-based solutions

Tribble by Brian Carrier & Joe Grand
A dedicated PCI card for RAM acquisition, presented in 2004
http://www.grandideastudio.com/portfolio/index.php?id=1&prod=14
Still not available for sale :(

CoPilot by Komoku
A dedicated PCI card – could be used for online system integrity monitoring and
for RAM acquisition
http://komoku.com/technology.shtml
“not generally available right now“ :(

RAM Capture Tool by BBN Technologies
A dedicated (PCI?) card for RAM acquisition
http://www.tswg.gov/tswg/about/2005_TSWG_ReviewBook-ForWeb.pdf
Not available?

Using FireWire bus
http://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-
final.pdf

How does hardware-based RAM acquisition
work?

9 © COSEINC Advanced Malware Labs, 2007

AMD System ex. (Single Processor)

10 © COSEINC Advanced Malware Labs, 2007

Accessing Physical Memory

11 © COSEINC Advanced Malware Labs, 2007

Multi Processor Systems (Opteron)

Source: developer.amd.com

So far, so good!

Attacks!

14 © COSEINC Advanced Malware Labs, 2007

Attacker’s goals

“DoS Attack”
Crash/Halt machine when somebody tries to acquire RAM
using DMA
Can cause huge legal consequences for the investigator

“Covering Attack”
Acquisition tool can not read some part of physical memory –
instead it reads some garbage (e.g. 0x00 bytes).
CPU sees the real content, which e.g. may contain malicious
code and data

“Full Replacing Attack”
Like Covering Attack, but the attacker can also provide custom
contents (instead of “garbage”) for the acquisition tool

15 © COSEINC Advanced Malware Labs, 2007

DoS Attack Illustration

16 © COSEINC Advanced Malware Labs, 2007

Covering Attack Illustration

17 © COSEINC Advanced Malware Labs, 2007

Full Replacing Attack Illustration

So how do we do this?

19 © COSEINC Advanced Malware Labs, 2007

Memory Mapped I/O

20 © COSEINC Advanced Malware Labs, 2007

MMIO cont.

21 © COSEINC Advanced Malware Labs, 2007

MMIO tricks

By using MTTR and IORR registers we can assign
arbitrary range of physical pages to be mapped into bus
address space

However, this is not what we want, because both
processor and bus accesses would be redirected in the
same way…

But keep this in mind…

22 © COSEINC Advanced Malware Labs, 2007

North Bridge’s Memory Map

MTTR/IORR registers instructs the CPU, for a given
physical address, whether to access the system memory
or the bus address space (I/O space)

They have no effect on DMA accesses originating from
I/O devices

DMA accesses are redirected by the Northbridge
So, there must be some kind of address dispatch table in
the Northbridge…

23 © COSEINC Advanced Malware Labs, 2007

NB’s MMIO Address Map

24 © COSEINC Advanced Malware Labs, 2007

MMIO Map Registers

25 © COSEINC Advanced Malware Labs, 2007

Where these MMIO accesses go?

Each PCI/HT device can set their address decoders to
“listen” on particular range of I/O addresses

So, when Northbridge redirects access to address pa to
I/O address space, then (hopefully) there will be a device
who will respond to read/write request to address pa

26 © COSEINC Advanced Malware Labs, 2007

How MMIOs are handled

27 © COSEINC Advanced Malware Labs, 2007

PCI device config space

Base Address

Registers

Expansion ROM Base Addr

28 © COSEINC Advanced Malware Labs, 2007

Accessing PCI/HT config registers

Two dedicated I/O ports (to be accessed via IN/OUT instructions):

0xCF8 – selects the address (Bus, Node, Function, Offset)

0xCFC – data port

29 © COSEINC Advanced Malware Labs, 2007

BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD Opteron Processors
(Publication #26094), page 73.

An interesting behavior

30 © COSEINC Advanced Malware Labs, 2007

Athlon/Opteron Northbridge

Northbridge’s Memory Configuration is accessible via HT
configuration registers

HT configuration space is compatible with PCI
configuration space

Each processor has its own Northbridge config space:
But all cores share the same one!

Bus 0, Device 24-31, Functions 0-3
Device 24  Node 0’s Northbridge’s Config Space

Device 31  Node 7’s NB’s config space

31 © COSEINC Advanced Malware Labs, 2007

AMD processors config space

Bus Address: Bus 0, Device 24-31,

Function 0: HyperTransport™ Technology Configuration

Function 1: Address Map  Yes!
Function 2: DRAM Controller

Function 3: Miscellaneous Control

So, we’re interested in playing with
Bus 0, Dev 24 (-31), Function 1

Within this device, we want to play with Config Registers
MMIOBase and MMIOLimit

32 © COSEINC Advanced Malware Labs, 2007

Setting up the attack

We need to add additional entry to processor’s NB’s
memory map

Let’s assume that we would like to cover physical
memory starting from address pa1 until pa2
So, we need to redirect all access from I/O devices to
that physical range (pa1–pa2) back to I/O…

First, we need to find i (from 0 to 7), so that
MMIOBase[i] is NULL. This indicates an unused entry
in the table…

33 © COSEINC Advanced Malware Labs, 2007

Setting up the attack – cont.

Now we just need to set:
MMIOBase[i].Base = pa1
MMIOBase[i].RE = 1
MMIOLimit[i].limit = pa2

And, of course, we do make sure that neither of
MTTR/IORR registers marks this very range as MMIO
from the CPU point of view

Now, all accesses to <pa1, pa2) from I/O will be
redirected back to I/O. While access from CPU will get to
the real memory!

34 © COSEINC Advanced Malware Labs, 2007

I/O Access Bouncing!

35 © COSEINC Advanced Malware Labs, 2007

Deadlock!

So, what memory is actually read by the I/O device after
we bounce the access back to the H/T bus?

After all, there is nobody on the HT link or PCI bus to
answer the request to read that physical addresses…

Experiments showed that systems will hang after the
acquisition tool will try to read bytes from such a
redirected memory!
This is attack #1: DoS attack!

36 © COSEINC Advanced Malware Labs, 2007

Getting around the deadlock

We need to find a device (on HT link or on PCI bus) that
would respond to the read request for our physical
address,

Usually there are many PCI Bridges in modern systems,

Usually most of them are unused – i.e. no secondary bus
is attached,
We can use such a PCI bridge to be our “responder”.

37 © COSEINC Advanced Malware Labs, 2007

HT Bridge Config Registers

38 © COSEINC Advanced Malware Labs, 2007

HT/PCI bridges

39 © COSEINC Advanced Malware Labs, 2007

Using a bridge to solve the deadlock

We need to find unused bridge
Usually this is not a problem,
Also we might use both Non-Prefetachble and Prefetchable
“part” of the bridge – just one of them should be unused.

Now we do:
Bridge.Mem(P)Base = pa1
Bridge.Mem(P)Limit = pa2

That’s all! :)
Now the bridge will respond to read access request on an HT link,
effectively eliminating the deadlock :)
Experiments showed that the reading device will get bytes of value
0xff, for each redirected byte…
This is attack #2: The Covering Attack!

40 © COSEINC Advanced Malware Labs, 2007

Bouncing Attack with PCI Bridge

Demo!

42 © COSEINC Advanced Malware Labs, 2007

Full Replacing Attack Discussion

Using unused device’s RAM

Using device’s ROM memory

Using HT remapping capability

43 © COSEINC Advanced Malware Labs, 2007

FRA: Using devices RAM (?)

We can remap one of the Base Address Registers of
some device, so that device thinks that its memory has
been mapped starting from pa1 address…
Then we need to fill the device’s memory with our
arbitrary content…
Now, all access to pa1 from I/O devices will be
redirected back to I/O and will be answered by the
device whose memory we’ve stolen.
Problem – if the memory is really used for something, we
will break the device’s functionality

E.g. if we used graphics card memory and the card is
really used to display some hi-res or 3D graphics…

44 © COSEINC Advanced Malware Labs, 2007

FRA: Using device’s ROM (?)

Expansion ROM is not used after system initialization,

If the ROM is programmatically re-flashable (EEPROM)
we can replace it with our content…

We then set ROM Base Address to pa1
Then the device will answer to all requests to read pa1+
Problems

This is type I infection (and we don’t like type I infections!)

Most likely will be easily detected when OS uses TPM to
verify its booting process…

Possible workaround: re-flash back, before rebooting the
system… But, not elegant :(

45 © COSEINC Advanced Malware Labs, 2007

Some Considerations

Because of the layout of MMIOBase and MMIOLimit
registers both pa1 and pa2 should be 64kB aligned,

That also determines the minimal size of the region to be
64kB at least,

That means, in order to implement Full Replacing Attack,
we need to find a PCI or HT device

having at least 64kB of RAM memory

having at least 64kB of reflashable ROM

That should not be a big problem – think about all those
graphics cards we have today and that they are often
used in servers which run in 80x25 text mode…

46 © COSEINC Advanced Malware Labs, 2007

FRA: Using HT Remapping capabilities

Some HT bridges may implement Address Remapping Capability,
which supports so called “DMA Window Remapping”:

47 © COSEINC Advanced Malware Labs, 2007

FRA: Using HT Remapping capabilities

Problem: there must be at least one such HT bridge in
the system which supports this functionality,

On all authors AMD systems that was not the case,

However that seems like a very flexible and powerful
technique,
Further research is needed.

Defense?

49 © COSEINC Advanced Malware Labs, 2007

Defense?

Maybe a smart PCI device could remove the malicious
entry from the Northbridge’s map table?

It’s not clear whether PCI device can access
Northbridge’s config space (i.e. Bus 0, Dev 24-31)?

I don’t know the answer

Even if they could…

…they should not be able to remove the offending entry!

The “lock bit” is to assure that!

50 © COSEINC Advanced Malware Labs, 2007

The “Lock” Bit

51 © COSEINC Advanced Malware Labs, 2007

Locking the MMIO entry

If we set the lock bit in MMIO entry, this entry will
become read-only!

This means, nobody will be able to modify it without
rebooting the system!

PCI/HT device can not remove our malicious MMIO
entry!

even if the device is smart enough to find it!

It seems then, that:

There is no way to defeat this hack, using a
hardware only solution!

Demo

53 © COSEINC Advanced Malware Labs, 2007

Repercussions

DoS Attack: investigator who causes system crash/hang
might face legal actions for disturbing the work of
mission critical servers.

Covering Attack:
Makes it impossible to analyze malware (even though we
might find its “hooks” in case of type I and II malware),

We can’t learn how it works and in consequence can’t find
the “bad guys” behind it :(

Full Replacing Attack
Full stealth even for type I and type II malware

Falsify digital evidences  legal consequences

54 © COSEINC Advanced Malware Labs, 2007

The Near Future: IOMMU

Arbitrary translations between address space seen by
the PCI/HT devices and the physical memory

Using IOMMU to cheat hardware based acquisition will
be trivial

AMD and Intel are expected to release
processors/northbridges fully supporting IOMMU in 2008

IOMMU will be part of the hardware virtualization
extensions

say goodbye to hardware based memory acquisition :(

55 © COSEINC Advanced Malware Labs, 2007

Final notes

Hardware based memory acquisition was considered as
the most reliable way to gather evidence or check
system compromises…

Now, when it has been demonstrated that it is not that
reliable as we believed, the question remains:

What is the proper method to obtain image of
volatile memory?

We live in the 21st century, but apparently can’t reliably
read memory of our computers!

Maybe we should rethink the design of our computer
systems, so that they were somehow verifiable…

Thank you!

joanna@research.coseinc.com

