Network Incident Severity Assessment

Automatic Defense Mechanisms

Luis Francisco Servin Valencia Till Dörges Klaus-Peter Kossakowski

ls,td,kpk@pre-secure.de

© 2000-2007 PRESECURE Consulting GmbH

Outline

Introduction and motivation

POSITIF

- Assessment Model
- Outlook & Future Work

Information Security

Information Security

attempts to preserve

- Information Security
 - attempts to preserve
 - Confidentiality

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity
 - Availability

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity
 - Availability
 - depends on

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity
 - Availability
 - depends on
 - Intrusion Prevention (isolation, data encryption, anti-virus software)

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity
 - Availability
 - depends on
 - Intrusion Prevention (isolation, data encryption, anti-virus software)
 - Intrusion Detection (IDS, IPS, Honeypots, Log analysis)

- Information Security
 - attempts to preserve
 - Confidentiality
 - Integrity
 - Availability
 - depends on
 - > Intrusion Prevention \rightarrow reactive
 - \blacktriangleright Intrusion Detection \rightarrow reactive

Intrusion Detection solutions work isolated and uncoordinated

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats
 - Alert flood

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats
 - Alert flood
 - False Positives

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats
 - Alert flood
 - False Positives
 - Repeated alerts (same alert, different sensor)

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats
 - Alert flood
 - False Positives
 - Repeated alerts (same alert, different sensor)
 - Alert Correlation reduces information amount

- Intrusion Detection solutions work isolated and uncoordinated
 - Different output formats
 - Alert flood
 - False Positives
 - Repeated alerts (same alert, different sensor)
 - > Alert Correlation reduces information amount \rightarrow doesn't provide knowledge!

Incident Severity Assessment

Incident Severity Assessment

Incident's effect on "health" of

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)
 - Network as a whole

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)
 - Network as a whole
 - Manual Method

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)
 - Network as a whole
 - Manual Method
 - Time between alert and reaction

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)
 - Network as a whole
 - Manual Method
 - Time between alert and reaction
 - Evaluate impact on network

- Incident Severity Assessment
 - Incident's effect on "health" of
 - Affected system(s)
 - Network as a whole
 - Manual Method
 - Time between alert and reaction
 - Evaluate impact on network \implies Topological knowledge helps, but challenging for big networks

Problem Statement

Extract knowledge from information in alerts

Problem Statement

- Extract knowledge from information in alerts
- Determine influence of individual events on network

Problem Statement

- Extract knowledge from information in alerts
- Determine influence of individual events on network
- React to detected anomalies

Outline

- Introduction and motivation
- POSITIF
 - Goal
 - Workflow
 - Structure
 - Proactive Security Monitor
- Assessment Model
- Outlook & Future Work

Policy-based Security Tools and Framework (POSITIF)

- Policy-based Security Tools and Framework (POSITIF)
- Goal: Provide a network administrator with tools for:

- Policy-based Security Tools and Framework (POSITIF)
- Goal: Provide a network administrator with tools for:
 - Centralized network management

- Policy-based Security Tools and Framework (POSITIF)
- Goal: Provide a network administrator with tools for:
 - Centralized network management
 - Definition of Security Policies

- Policy-based Security Tools and Framework (POSITIF)
- Goal: Provide a network administrator with tools for:
 - Centralized network management
 - Definition of Security Policies
 - Policy Monitoring

- Policy-based Security Tools and Framework (POSITIF)
- Goal: Provide a network administrator with tools for:
 - Centralized network management
 - Definition of Security Policies
 - Policy Monitoring
 - Reaction to intrusions

POSITIF Workflow

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.8/28

POSITIF Structure

© 2000-2007 PRESECURE Consulting GmbH - p.9/28

Proactive Security Monitor

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.10/28

- Proactive Security Monitor
- Functions:

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.10/28

- Proactive Security Monitor
- Functions:
 - Monitor violations to policies

- Proactive Security Monitor
- Functions:
 - Monitor violations to policies
 - Report detected problems

- Proactive Security Monitor
- Functions:
 - Monitor violations to policies
 - Report detected problems
 - Situational assessment

- Proactive Security Monitor
- Functions:
 - Monitor violations to policies
 - Report detected problems
 - Situational assessment
 - Corrective actions

Components:

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.11/28

Components:

 Reactive Elements: IDS and Policy violation sensors (PVS)

- Reactive Elements: IDS and Policy violation sensors (PVS)
- Proactive Elements: Proactive Security Scanner
 (PSC) and Proactive Configuration Checker (PCC)

- Reactive Elements: IDS and Policy violation sensors (PVS)
- Proactive Elements: Proactive Security Scanner
 (PSC) and Proactive Configuration Checker (PCC)
- Processing Elements: PSC & PCC Correlation,
 PSM-Assessment

- Reactive Elements: IDS and Policy violation sensors (PVS)
- Proactive Elements: Proactive Security Scanner
 (PSC) and Proactive Configuration Checker (PCC)
- Processing Elements: PSC & PCC Correlation, PSM-Assessment
- Communication:

- Reactive Elements: IDS and Policy violation sensors (PVS)
- Proactive Elements: Proactive Security Scanner
 (PSC) and Proactive Configuration Checker (PCC)
- Processing Elements: PSC & PCC Correlation,
 PSM-Assessment
- Communication:
 Format: IODEF messages

Components:

- Reactive Elements: IDS and Policy violation sensors (PVS)
- Proactive Elements: Proactive Security Scanner
 (PSC) and Proactive Configuration Checker (PCC)
- Processing Elements: PSC & PCC Correlation, PSM-Assessment
- Communication:
 - Format: IODEF messages

Protocol: BEEP (Blocks Extensible Exchange P.)

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.11/28

PSM Structure

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.12/28

Outline

- Introduction and motivation
- POSITIF
- Assessment Model
 - Preparation
 - Model
 - Reaction State Machine
 - Process

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH $\,-$ p.13/28

Separate essential - non-essential services/hosts

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.14/28

- Separate essential non-essential services/hosts
 - Sensitivity levels in SDL

Assessment - Preparation

- Separate essential non-essential services/hosts
 - Sensitivity levels in SDL
- Defined security levels in network (SPL)

Assessment - Preparation

- Separate essential non-essential services/hosts
 - Sensitivity levels in SDL
- Defined security levels in network (SPL)
- Current Security level

Adaptation Dynamic Fusion Model

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.15/28

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.15/28

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities
 - Initiate general network policy change (green level ↔ red level)

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities
 - Initiate general network policy change (green level ↔ red level)
 - Initiate service reconfiguration

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.15/28

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities
 - Initiate general network policy change (green level ↔ red level)
 - Initiate service reconfiguration
 - Emit alerts and warnings for human interaction

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities
 - Initiate general network policy change (green level ↔ red level)
 - Initiate service reconfiguration
 - Emit alerts and warnings for human interaction
 - Self-stabilization

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.15/28

- Adaptation Dynamic Fusion Model
 - Use active & reactive elements
 - Incorporate event reactions
 - Check valid configuration
 - Check for vulnerabilities
 - Initiate general network policy change (green level ↔ red level)
 - Initiate service reconfiguration
 - Emit alerts and warnings for human interaction
 - Self-stabilization

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECUR Com X市合和SHOA15718 OVERALL NETWORK health measure

PSM - State Machine

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.16/28

Alert Prioritization

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.17/28

- Alert Prioritization
 - System's Sensitivity

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.17/28

- Alert Prioritization
 - System's Sensitivity
 - Impact Severity

- Alert Prioritization
 - System's Sensitivity
 - Impact Severity
 - Corroborating / Contradicting successive events

- Alert Prioritization
 - System's Sensitivity
 - Impact Severity
 - Corroborating / Contradicting successive events
- Alert Association

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.17/28

Assessment - Process

- Alert Prioritization
 - System's Sensitivity
 - Impact Severity
 - Corroborating / Contradicting successive events
- Alert Association
- System Situational Assessment

Assessment - Process

- Alert Prioritization
 - System's Sensitivity
 - Impact Severity
 - Corroborating / Contradicting successive events
- Alert Association
- System Situational Assessment
- Network Situational Assessment

Clustering

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.18/28

Clustering

Structural relations between alerts (\approx Content, \neq level)

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.18/28

Clustering

- Structural relations between alerts (\approx Content, \neq level)
- Generalization hierarchies: IP Address, ports, time

Clustering

Structural relations between alerts (\approx Content, \neq level)

- Generalization hierarchies: IP Address, ports, time
- Correlation

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.18/28

Clustering

- Structural relations between alerts (\approx Content, \neq level)
- Generalization hierarchies: IP Address, ports, time
- Correlation
 - Cause-effect relations in abstract cognitive model

Clustering

- Structural relations between alerts (\approx Content, \neq level)
- Generalization hierarchies: IP Address, ports, time
- Correlation
 - Cause-effect relations in abstract cognitive model
 - Correlates IDS Correlation with other sensor

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.18/28

*Attribute-Oriented Algorithm" to do clustering

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.19/28

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.19/28

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together
 - Specific attributes first

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together
 - Specific attributes first
 - Generalize attributes

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together
 - Specific attributes first
 - Generalize attributes
 - Each belongs to only one (most specific attributes)

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together
 - Specific attributes first
 - Generalize attributes
 - Each belongs to only one (most specific attributes)
 - Calculate ea. cluster's elements "closeness"

- *Attribute-Oriented Algorithm" to do clustering
 - Cluster alerts together
 - Specific attributes first
 - Generalize attributes
 - Each belongs to only one (most specific attributes)
 - Calculate ea. cluster's elements "closeness"
 - Calculate effect of all clusters (Cluster)

Network Incident Severity Assessment Survey, 2007 Severite, Spain gth) © 2000-2007 PRESECURE Consulting GmbH - p.19/28

Alert Clustering Hierarchies

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.20/28

Alert Correlation

Correlate IDS-Correlation w. other POSITIF Sensors.

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.21/28

Alert Correlation

- Correlate IDS-Correlation w. other POSITIF Sensors.
- Determine effect on system "Compromise" and "Attack" levels

Alert Correlation

- Correlate IDS-Correlation w. other POSITIF Sensors.
- Determine effect on system "Compromise" and "Attack" levels

Fuse "Compromise" level w. Cluster Association Strength

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.22/28

Fuse "Compromise" level w. Cluster Association Strength

Fuzzify values

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.22/28

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)
 - Aggregate them

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)
 - Aggregate them
 - Partial Agreement: additive

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)
 - Aggregate them
 - Partial Agreement: additive
 - Partial Disagreement: compromising

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)
 - Aggregate them
 - Partial Agreement: additive
 - Partial Disagreement: compromising
 - \blacktriangleright Total Agreement: h

- Fuse "Compromise" level w. Cluster Association Strength
 - Fuzzify values
 - > Calculate Consensus ($h = sup(min(C_f, CAS_f))$)
 - Aggregate them
 - Partial Agreement: additive
 - Partial Disagreement: compromising
 - \blacktriangleright Total Agreement: h
 - \blacktriangleright Centroid Defuzzification \rightarrow Overall Degree

© 2000-2007 PRESECURE Consulting Grade - p.22/28 STCM)

Network Degree of Concern (NDOC) → Weighted average of "healthy" and ODC of affected systems

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.23/28

- Network Degree of Concern (NDOC) → Weighted average of "healthy" and ODC of affected systems
 - weights are represented by their SDL Sensitivity

- Network Degree of Concern (NDOC) → Weighted average of "healthy" and ODC of affected systems
 - weights are represented by their SDL Sensitivity
- Information clutter reduced to single value: low, caution, elevated, high, severe

- Network Degree of Concern (NDOC) → Weighted average of "healthy" and ODC of affected systems
 - weights are represented by their SDL Sensitivity
- Information clutter reduced to single value: low, caution, elevated, high, severe
- Level changes can trigger (de-)increase in Network Security Level

Outline

- Introduction and motivation
- POSITIF
- Assessment Model
- Outlook & Future Work

Outlook

Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.25/28

Outlook

- Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.
- Proposed method pairs-up alerts with actions through a Finite State Machine

Outlook

- Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.
- Proposed method pairs-up alerts with actions through a Finite State Machine
 Aims to:

- Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.
- Proposed method pairs-up alerts with actions through a Finite State Machine
 - Aims to:
 - Obtain confirming/denying evidence

- Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.
- Proposed method pairs-up alerts with actions through a Finite State Machine
 - Aims to:
 - Obtain confirming/denying evidence
 - Survivability

- Network Situational Assessment is the process of winning knowledge from a set of heterogeneous sensors' output.
- Proposed method pairs-up alerts with actions through a Finite State Machine
 - Aims to:
 - Obtain confirming/denying evidence
 - Survivability
 - Self-Stabilize

Network Incident Severity Assessment June 20, 2007 Seville, Spain $©~2000\mathchar`20$

Alerts aggregated into clusters and correlated to measure the impact they have on the affected resource

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.26/28

- Alerts aggregated into clusters and correlated to measure the impact they have on the affected resource
- Confidence values for all affected resources are merged to determine overall health of the network.

- Alerts aggregated into clusters and correlated to measure the impact they have on the affected resource
- Confidence values for all affected resources are merged to determine overall health of the network.
 - Deteriorating / improving conditions are reflected by changes in the overall Policy Security Level

Project's Current Status: Component Integration for Review

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.27/28

Project's Current Status: Component Integration for Review

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.27/28

Future Work

- Project's Current Status: Component Integration for Review
- Issues:
 - Quality of Information from sensors

Future Work

- Project's Current Status: Component Integration for Review
- Issues:
 - Quality of Information from sensors
 - Interoperability w/ framework

Future Work

- Project's Current Status: Component Integration for Review
- Issues:
 - Quality of Information from sensors
 - Interoperability w/ framework
 - Tests

Questions?

Network Incident Severity Assessment June 20, 2007 Seville, Spain © 2000-2007 PRESECURE Consulting GmbH – p.28/28