
Copyright© 2007 KRvW Associates, LLC

Integrating Tools Into the
SDLC

FIRST Conference 2007



Copyright© 2007 KRvW Associates, LLC

The problem

Too many organizations have either:
– Failed to try software security tools at all
– Tried tools, but became overwhelmed

 Tools relegated to “shelfware”
 Never got past “pilot study”

This is a loss for all parties involved!



Copyright© 2007 KRvW Associates, LLC

What caused the failures?

Possible reasons include
– Simple lack of awareness
– Tried to use tools too late in the lifecycle
– Expected more from tool technologies than

they can deliver
– Poor integration into the build process
– Cost
– Excessive learning curve



Copyright© 2007 KRvW Associates, LLC

Let’s avoid those pitfalls

We’ll take a balanced
view of the tools and
how best to use them

We’ll also look at what
tools cannot do for us



Copyright© 2007 KRvW Associates, LLC

Process

Start by considering your process



Copyright© 2007 KRvW Associates, LLC

Uneven distribution

In terms of “touchpoint” processes, the
available tools are not spread evenly
– Most common tools are useful for testing
– Newer tools useful during code development
– Not so much available for “early” stages



Copyright© 2007 KRvW Associates, LLC

Now, what is possible

Two general categories are available today
– IT security tools
– Software security tools

Hint: Consider too their origins in CIO and
dev organizations



Copyright© 2007 KRvW Associates, LLC

Infosec tools

Categories include
– Network port scanners
– Vulnerability scanners
– Application scanners
– Web application proxies
– Network sniffers

(For a great list, see http://sectools.org/)



Copyright© 2007 KRvW Associates, LLC

Software security tools

Categories include
– Static code analysis tools
– Testing tools

 Fuzzers
 Interposition tools
 System monitors
 Process analyzers
 Etc.



Copyright© 2007 KRvW Associates, LLC

Utilization

Let’s consider the applicability of each to our
purposes
– How best to apply the tool
– What pitfalls to avoid
– How to interpret the results



Copyright© 2007 KRvW Associates, LLC

Network and vul scanners

Usage: determine open and potentially
vulnerable network services
– Mainstay of “penetration testers”
– Useful for verifying deployment environment
– Validating on-going maintenance
– Rarely directly valuable to developers

Examples
– Nmap, nessus, Metasploit, ISS, Core Impact,

Retina



Copyright© 2007 KRvW Associates, LLC

Application vul scanners −1

Category of black box test tools that attempts
additional “application level” vul probes
– E.g., SQL injection, buffer overflows, cookie

manipulation, Javascript tampering
– Increasing in popularity among pen testers
– Useful at verifying (web) app is not

vulnerable to the most common attacks
– Moderately useful to developers



Copyright© 2007 KRvW Associates, LLC

Application vul scanners −2

– Challenge is inverting finding into actionable
dev guidance

– Danger in over reliance!
– Test coverage is very low (10-20% code is not

uncommon)
 Example: if (mystate==FOO) {

printf(userstr);}

– Too often used in uninformed testing



Copyright© 2007 KRvW Associates, LLC

Application vul scanners −3

Examples
– Watchfire’s Appscan, SPI Dynamics’

WebInspect, Nikto



Copyright© 2007 KRvW Associates, LLC

Web app proxies −1

Interposition tools between browser and web
app
– Exposes entire web session, data, scripts, etc.,

to the tester
– Ideal for verifying boundary conditions, script

over reliance, etc.
– Another mainstay of pen testers



Copyright© 2007 KRvW Associates, LLC

Web app proxies −2

– Developers should also use these!
– Useful for verifying web code, variables,

cookies, etc.
Examples

– Paros proxy, WebScarab



Copyright© 2007 KRvW Associates, LLC

Network sniffers

Essential tool for accurately capturing
network traffic
– Eavesdrops on network data
– Encrypted protocols can be problematic
– Lowest level tool to verify network

communications
Examples

– Wireshark (formerly Ethereal), Kismet,
Tcpdump, Cain and Abel



Copyright© 2007 KRvW Associates, LLC

Fuzzers −1

Growing field of app testing that involves
sending malformed data to/from app
– Tools, frameworks, and APIs are popping up
– “One size fits all” approach is highly

problematic
 Informed fuzzing vs. uninformed fuzzing

– Still early adoption among pen testers
(arguably)

– Dev knowledge is necessary to get most of it



Copyright© 2007 KRvW Associates, LLC

Fuzzers −2

– Fuzzing can and should be done from unit to
entire app tests

– QA test team needs to acquire and learn
Examples

– OWASP’s JBroFuzz, PEACH, SPI Fuzzer

“At Microsoft, about 20 to 25 percent of security bugs are found through
fuzzing a product before it is shipped”



Copyright© 2007 KRvW Associates, LLC

Interposition and monitors

Conceptually similar to web app proxies and
network sniffers, but work with stand-
alone or client-server apps
– Enables tester to watch and manipulate all

system interaction
 Sys calls, file i/o, registry keys

Examples
– Holodeck, filemon, regmon, AppVerif



Copyright© 2007 KRvW Associates, LLC

Static code analysis

Peer (manual) review vs. automated
– Each has pros and cons
– Many organizations already do peer review
– Don’t lose sight of the benefits when adopting

tools for automated review
– The value of mentoring is enormous



Copyright© 2007 KRvW Associates, LLC

Static code analyzers −1

Review source code for common coding
bugs
– A bit of history

 1999: First examples appear from research projects
– E.g., ITS4, RATS, Flawfinder
– Tokenize input streams and perform rudimentary

signature analysis
– Accurate at finding strcpy() and the like, but lacking

context to really be useful



Copyright© 2007 KRvW Associates, LLC

Static code analyzers −2

 2001: “2nd generation” tools arrive
– E.g., Fortify, Ounce Labs, Coverity
– Parse and build abstract syntax tree for analysis
– Enables execution flow, data flow, etc., traces
– Significant leap forward, but much work remains
– Hundreds of common bugs in several languages
– Management tools for overseeing, measuring, and policy

enforcement
– Integration into popular IDEs

 Still, many are shelfware



Copyright© 2007 KRvW Associates, LLC

Static code analyzers −3

 Biggest mistake is to dump entire src tree
into tool and expect miracles
– Increasingly being done by IT security

 Unreasonable expectation
 Consider instead

– Give coders access to tool
– Incorporate into nightly build process
– Take many small steps instead of one big one



Copyright© 2007 KRvW Associates, LLC

Static code analyzers −4

– Then do large scale analysis at project
completion

– Possibly using more than one tool set



Copyright© 2007 KRvW Associates, LLC

Selecting a static analyzer −1

Considerations abound
– Cost

 Per seat
 How many do you need?

– Infrastructure needed
– Language/technology support
– Knowledge base



Copyright© 2007 KRvW Associates, LLC

Selecting a static analyzer −2

Management features
– Capabilities vary tremendously

 Metrics, trending, visualization
 Per project, team, person…
 Policy centralization (next slide)

– What works best in your dev process and
organizational culture?



Copyright© 2007 KRvW Associates, LLC

Selecting a static analyzer −3

Policy centralization
– Most of the tools enable central policies

 E.g., overriding a buffer overrun requires 2-person
sign-off

– Consider these features carefully
 Technical features and cultural impact to your org



Copyright© 2007 KRvW Associates, LLC

Selecting a static analyzer −4

Extensibility
– All the commercial tools enable the user to

custom build rules
 Allows localization of rules that matter to you
 Ensure the rule builder suits your needs

– What sort of learning curve will be required to
get the most out of the tool?



Copyright© 2007 KRvW Associates, LLC

Selecting a static analyzer −5

Consider a “bake-off”
– The vendors hate (but expect) this
– Start with a src tree you’ve already analyzed

 And you know where the problems are
– Invite vendors to prove their tools on this code

base
– Compare and contrast



Copyright© 2007 KRvW Associates, LLC

Static analysis of binaries

Tools and services just beginning to emerge
– Many pros and cons
– Src analysis nearly always preferable
– Sometimes you don’t have src
– Consider 3rd party code

Examples
– Veracode, AspectSecurity



Copyright© 2007 KRvW Associates, LLC

Getting the most out of them −1

Regardless of the tools you choose, you
should get the most of your investment
– Vendor-based tool training for key personnel
– Internal/external forums for sharing tips and

pitfalls
 Talk with others who have similar experiences
 Be cautious about what you say in public

– Tech support from vendor



Copyright© 2007 KRvW Associates, LLC

Getting the most out of them −2

– Test scenario development
 Especially if your QA testers or IT security use the

tools
 Assist them in developing realistic test scenarios
 Prioritize level of effort in descending risk priority

order
– This presumes you’re doing risk analysis!



Copyright© 2007 KRvW Associates, LLC

References
Some useful additional reading
 “The Security Development Lifecycle”, Michael

Howard and Steve Lipner
 OWASP (http://www.owasp.org)

– Webgoat, Webscarab, JBroFuzz, in particular
 Insecure.org’s “Top 100” list (http://sectools.org/)
 Fuzz testing tools and techniques

http://www.hacksafe.com.au/blog/2006/08/21/fuzz-
testing-tools-and-techniques/

 System Internals (now owned by Microsoft)
(http://www.sysinternals.com)



Copyright© 2007 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com


