

Corporate Technology

Dealing with Unreliable Software: Exile, Jail, and other Sentences

Bernd Grobauer, Siemens CERT Heiko Patzlaff, Siemens CERT Martin Wimmer, Siemens CERT

Trust is the basis of good working relationships – or is it?

Page 2

Complexity: Fuzzing Input/Protocol Complexity

Welcome to the Browser Fun Blog!

This blog will serve as a dumping ground for browser-based security research and vulnerability disclosure. To kick off this blog, we are announcing the Month of Browser Bugs (MoBB), where we will publish a new browser hack, every day, for the entire month of July. The hacks we publish are carefully chosen to demonstrate a concept without disclosing a direct path to remote code execution. Enjoy!

posted by hdm @ 8:36 AM

🔍 🛡 24 comments 🛡 links to this post

of Vulns found during MoBB:

MSIE: 25 Apple Safari: 2 Mozilla: mrw2 Opera: 1 Konqueror: 1

mrw2 indent? Martin Wimmer; 11.06.2007

Extensibility: The next big headache ...

Vulnerabilities over Vulnerabilities

Zero-day exploits of MS products 06/07

Attacker-Focus

Then: the good old times of scanning worms

Now: Drive-by infections via browsers & tampered documents

What to do

- Traditional security mechanisms
 - Patch systems
 - Virus scanners
 - Firewalls
 - Host intrusion prevention systems
- Separation / Isolation of critical systems
 - Do not hinder vulnerabilities to be exploited but: restrict their impact!
 - ... but: restrict their impact!

Insufficient w.r.t. zero-day exploits

Poor man's separation

Start browser as different user with limited rights

- What other methods of separation are there?
- How do they affect integration/usability?

Degrees of Separation

Physical Separation

- Basic Idea: Run untrusted client software on dedicated system, enable remote access for users
- Enabling Technologies:
 - Terminal-Server Solutions (RDP, Citrix, ...)
 - Windows-Forwarding (X11)
- Integration/Usability Issues:
 - works only with network access to server
 - how to download/upload data
 - how to view data (where are the viewer applications located?)
 - may be cumbersome to use (cut&paste, ...) (depending on used technology)
- Use Case:
 - Providing tightly controlled Internet-WWW-connectivity in highsecurity environment

OS Virtualization

 Allows running more than one operating system on the same hardware simultaneously

The NSA NetTop Project (1999-2000)

- Project envisioned use of virtualization technology to

 - provide additional layer of security to COTs components
 "unclutter" desktop by putting several devices (filter component, encryption component, different clients for different security levels) on one box
- Commercialized as HP "NetTop"

(Source: Meushaw, R. & Simard D., "NetTop", Tech Trend Notes, Volume 9, Edition 4)

Our Experiment: Secure yet User-Friendly Browsing (I)

Our Experiment: Secure yet User-Friendly Browsing (II)

Implementation using browser helper object and controlled communication between trusted environment and OS in VMWare

Our Experiment: Secure yet User-Friendly Browsing (III)

- Technical Experiences:
 - URL-based dispatch works rather nicely:
 - BHO examines URL
 - If URLis to be displayed in other browser,
 - request is stopped
 - user is informed via information window
 - request is forwarded to other browser
 - Filetype-based dispatch harder: reliable determination of filetype requires download
- Points to ponder:
 - user experience still clumsy
 - OS in virtual machine requires
 - license
 - maintenance (patching!)
 - also virtual machines may be vulnerable (cf. Ormandy, "An Empirical Study into the Security Exposure to Hosts of Hostile Virtualized Environments")

Application Virtualization

- Layer between the operating system and applications
- Virtualizing the system environment of programs, providing components such as registry entries, files, environment variables, and global objects
- First steps towards application virtualization: Unix chroot and BSD jail

Application Virtualization (II)

Several products offering "application virtualization" available for Windows:

Application centric

- Central administration of applications in client-server-environments
- Support for different program versions

- Security driven
 - Security sandboxes
 - Isolating malware infections

OS Virtualization vs. Application Virtualization

- Application Virtualization draws separating border tighter around application; less overhead, easier integration, better usability
- But: what does the exact border look like? Does it keep everything inside that it should?

Test-Cases for Application Virtualization Solutions

- Does the sandbox provide total isolation from infection by hostile web sites, 0day threats, spyware, trojans, keyloggers, blended malware attacks and other contemporary malware threats?
- Is personal data on the "real PC" inaccessible to sandboxed programs?
- Does the product prevent sandboxed programs from reading and writing to raw memory?
- Does the product prevent sandboxed programs from accessing key system data such as system configuration and network information?
- Does the product prevent sandboxed programs from deliberately crashing the system
- Can a hostile program escape the sandbox by terminating the application virtualization solution?

[Source: http://www.techsupportalert.com/security_virtualization.htm]

SIEMENS

Strict Access Controls: SELinux, for example (I)

Concept of <u>subjects/objects</u> and associated <u>access vectors</u>

 Rules that allow/deny access based on some system. SELinux associates each subject/object with a security context:

identity : role : domain/type : sensitivity-level : compartment

- The security context
 - is used to control whether a subject is allowed to access an object with a certain access vector
 - is not static but goes through transitions and getting the transitions right is actually at least as tricky as defining access restrictions for each context

Strict Access Controls: SELinux, for example (II)

SELinux offers several access control systems:

Strict Access Controls: SELinux, for example (III) Type Enforcement applied to Postfix

Strict Access Controls: SELinux, for example (IV)

Type Enforcement offers best possibility for application separation:

- With an appropriate set of rules, the type enforcement mechanism can separate subjects from one another on the same system
- In the default case,
 - a process is given a particular domain
 - all new processes created from that process are labeled with one of a set of domains created specifically for that application
- Thus, if a subject is compromised, the type enforcement rules constrain the actions an attacker can take with help of the compromised subject.
- So far, mostly used for server rather than client applications, e.g., hardening IBM Websphere with SELinux (pilot project for British government)

Windows Vista: Improved Separation Mechanisms built in?

- Windows Resource Protection (WRP)
 - Prevent system registry keys and system files from being replaced
- User Account Control (UAC)
 - Basic idea:
 - Use administrator account only if absolutely necessary
 - In all other cases use standard user profiles
 - \Rightarrow Avoid silent installations of malware
 - How realized:
 - Administrative user tokens are split into
 - a full administrator access token and
 - a standard user access token
 - Desktop and explorer are launched with standard user access token
 - Applications inherit their access control data
 - hence, they all run as a standard user as well
 - Users are prompted if administrative rights are required
- Mandatory Integrity Control (MIC)
- File System and Registry Virtualization

Mandatory Integrity Control

- Based on Biba model
- Four integrity levels
 - Iow (e.g., MS Internet Explorer)
 - medium (default)
 - high (elevated, administrative privileges)
 - system (only for system objects/processes)
- Securable objects:

files, folders, pipes, processes, threads, registry keys, services, ...

Hinders low integrity code from modifying processes of higher integrity levels

Conclusion

- Risk of compromise of untrusted/highly vulnerable applications can be mitigated by separating applications from productive environment
- Several possibilities exist:

- For client applications, user usability not sufficient for most use cases
- Possible solution for highsecurity environment

Page 26

- Allow better integration
- Will increasingly become a part of modern operating systems as standard features