Flaws and Frauds in IDPS evaluation

Dr. Stefano Zanero, PhD

Post-Doc Researcher, Politecnico di Milano
CTO, Secure Network
Outline

- Establishing a need for testing methodologies
 - Testing for researchers
 - Testing for customers
- IDS testing vs. IPS testing and why both badly suck
- State of the art
 - Academic test methodologies
 - Industry test methodologies (?)
- Recommendations and proposals
The need for testing

• Two basic types of questions
 – Does it work?
 • If you didn't test it, it doesn't work (but it may be pretending to)
 – How well does it work?
 • Objective criteria
 • Subjective criteria
Researchers vs. Customers

• What is testing for researchers?
 – Answers to the “how well” question in an objective way
 – Scientific = repeatable (Galileo, ~1650AD)

• What is testing for customers?
 – Answers to the “how well” question in a subjective way
 – Generally, very custom and not repeatable, esp. if done on your own network
Relative vs. absolute

• Absolute, objective, standardized evaluation
 – Repeatable
 – Based on rational, open, disclosed, unbiased standards
 – Scientifically sound
• Relative evaluation
 – “What is better among these two?”
 – Not necessarily repeatable, but should be open and unbiased as much as possible
 – Good for buy decisions
Requirements and metrics

• A good test needs a definition of requirements and metrics
 – Requirements: “does it work?”
 – Metrics: “how well?”
 – I know software engineers could kill me for this simplification, but who cares about them anyway? :)

• Requirements and metrics are not very well defined in literature & on the market, but we will try to draw up some in the following

• But first let's get rid of a myth...
To be, or not to be...

• IPS ARE IDS: because you need to detect attacks in order to block them... **true!**
• IPS aren't IDS: because they fit a different role in the security ecosystem... **true!**
• **Therefore:**
 – A (simplified) does it work test can be the same...
 – A how well test cannot!
• And the “how well” test is what we really want anyway
Just to be clearer:
difference in goals

- IDS can afford (limited) FPs
- Performance measured on throughput
- Try as much as you can to get DR higher

- Every FP is a customer lost
- Performance measured on latency
- Try to have some DR with (almost) no FP
Anomaly vs. Misuse

- Find out normal behaviour, block deviations
- Can recognize any attack (also 0-days)
- Depends on the metrics and the thresholds
- = you don't know why it's blocking stuff

- Uses a knowledge base to recognize the attacks
- Can recognize only attacks for which a “signature” exists
- Depends on the quality of the rules
- = you know way too well what it is blocking
Misuse Detection Caveats

• It's all in the rules
 – Are we benchmarking the *engine* or the *ruleset*?
 • Badly written rule causes positives, FP?
 • Missing rule does not fire, FN?
 – How do we measure coverage?
 • Correct rule matches attack traffic out-of-context (e.g. IIS rule on a LAMP machine), FP?
 – This form of tuning can change everything!
 • Which rules are activated?! (more on this later)

• A misuse detector alone will never catch a zero-day attack, with a few exceptions
Anomaly Detection Caveats

• No rules, but this means...
 – Training
 • How long do we train the IDS? How realistic is the training traffic?
 – Testing
 • How similar to the training traffic is the test traffic? How are the attacks embedded in?
 – Tuning of threshold

• Anomaly detectors:
 – If you send a sufficiently strange, non-attack packet, it will be blocked. Is that a “false positive” for an anomaly detector?
• And, did I mention there is none on the market?
An issue of polimorphism

• Computer attacks are polimorph
 – So what? Viruses are polimorph too!
 • Viruses are as polimorph as a program can be,
 attacks are as polimorph as a human can be
 – Good signatures capture the vulnerability,
 bad signatures the exploit
• Plus there's a wide range of:
 – evasion techniques
 • [Ptacek and Newsham 1998] or [Handley and Paxson 2001]
 – mutations
 • see ADMmutate by K-2, UTF encoding, etc.
Evaluating polymorphism resistance

- Open source KB and engines
 - Good signatures should catch key steps in exploiting a vulnerability
 - Not key steps of a particular exploit
 - Engine should canonicalize where needed
- Proprietary engine and/or KB
 - Signature reverse engineering (signature shaping)
 - Mutant exploit generation
Signature Testing Using Mutant Exploits

• **Sploit** implements this form of testing
 – Developed at UCSB (G.Vigna, W.Robertson) and Politecnico (D. Balzarotti - kudos)
 • Generates mutants of an exploit by applying a number of mutant operators
 • Executes the mutant exploits against target
 • Uses an oracle to verify the effectiveness
 • Analyzes IDS results

• Could be used for IPS as well

• No one wants to do that :-(
But it's simpler than that, really

- Use an old exploit
 - oc192’s to MS03-026
- Obfuscate NOP/NULL Sled
 - s/0x90,0x90/0x42,0x4a/g
- Change exploit specific data
 - Netbios server name in RPC stub data
- Implement application layer features
 - RPC fragmentation and pipelining
- Change shell connection port
 - This 666 stuff ... move it to 22 would you?
- Done
 - Credits go to Renaud Bidou (Radware)
Measuring Coverage

• If ICSA Labs measure coverage of anti-virus programs ("100% detection rate") why can't we measure coverage of IPS?
 – Well, in fact ICSA is trying :)
 – Problem:
 • we have rather good zoo virus lists
 • we do not have good vulnerability lists, let alone a reliable wild exploit list

• We cannot absolutely measure coverage, but we can perform relative coverage analysis (but beware of biases)
How to Measure Coverage

• Offline coverage testing
 – Pick signature list, count it, and normalize it on a standard list
 • Signatures are not always disclosed
 • Cannot cross compare anomaly and misuse based IDS

• Online coverage testing
 – We do not have all the issues but
 – How we generate the attack traffic could somehow influence the test accuracy

• But more importantly... ask yourselves: do we actually care?
 – Depends on what you want an IPS for
False positives and negatives

• Let's get back to our first idea of “false positives and false negatives”
 – All the issues with the definition of false positives and negatives stand

• Naïve approach:
 – Generate realistic traffic
 – Superimpose a set of attacks
 – See if the IPS can block the attacks

• We are all set, aren't we?
Background traffic

• Too easy to say “background traffic”
 – Use real data?
 • Realism 100% but not repeatable
 • Privacy issues
 • Good for relative, not for absolute
 – Use sanitized data?
 • Sanitization may introduce statistical biases
 • Peculiarities may induce higher DR
 • The more we preserve, the more we risk
 – In either case:
 • Attacks or anomalous packets could be present!
Background traffic (cont)

• So, let's really **generate** it
 – Use “noise generation”?
 • Algorithms depend heavily on content, concurrent session impact, etc.
 – Use artificially generated data?
 • Approach taken by DARPA, USAF...
 • Create testbed network and use traffic generators to “simulate” user interaction
 • This is a good way to create a **repeatable**, scientific test on solid ground
 – Use no background…. yeah, right
 – What about broken packets?
 • http://lcamtuf.coredump.cx/mobp/
Attack generation

• Collecting scripts and running them is not enough
 – How many do you use?
 – How do you choose them?
 – … do you choose them to match the rules or not?!?
 – Do you use evasion?
 – You need to run them against vulnerable machines to prove your I P S point
 – They need to blend in perfectly with the background traffic

• Again: most of these issues are easier to solve on a testbed
Datasets or testbed tools?

• Diffusion of datasets has well-known shortcomings
 – Datasets for high speed networks are huge
 – Replaying datasets, mixing them, superimposing attacks creates artefacts that are easy to detect
 • E.g. TTLs and TOS in IDEVAL
 – Tcpreplay timestamps may not be accurate enough
 • Good TCP anomaly engines will detect it's not a true stateful communication

• Easier to describe a testbed (once again)
Generating a testbed

• We need a realistic network...
 – Scriptable clients
 • We are producing a suite of suitable, GPL'ed traffic generators (just ask if you want the alpha)
 – Scriptable and allowing for modular expansion
 – Statistically sound generation of intervals
 – Distributed load on multiple slave clients
 – Scriptable or real servers
 • real ones are needed for running the attacks
 • For the rest, Honeyd can create stubs
 – If everything is FOSS, you can just describe the setup and it will be repeatable!
 • Kudos to Puketza et al, 1996
Do raw numbers really matter?

• If Dilbert is not a source reliable enough for you, cfr. Hennessy and Patterson
 • Personally, I prefer to trust Dilbert... kudos to Scott Adams :-)
• Raw numbers seldom matter in performance, and even less in IDS
• Great concept from signal detection, but:
 – they are painful to trace in real world
 – they are more meaningful for anomaly detectors than misuse detectors
 • Depends, again, on definition of false positive
It is written “performance”...

• But it reads like “speed”
 – If you want to measure “how fast” an IDS is, you once again need to define your question
 • Packets per second or bytes per second (impacts NIC capacity, CPU, and memory bus speed)
 • Number of hosts, protocols and concurrent connections (memory size and memory bus speed, CPU speed)
 • New connections per second (memory bus speed, CPU speed)
 • Alarms per second (memory size, CPU speed, mass storage, network, whatever...)
 – Each metric “measures” different things!
Metrics, metrics

• Throughput ? Delay ? Discarded packets ?
 – On an IPS you want to measure delay and eventually discarded packets
 – On an IDS you want to measure throughput and discarded packets
Models, models...

• In theory, this thing acts like an M/M/1/c finite capacity queue...
 – Arrival process is Poisson (simplification, it actually isn't)
 – Service time is exponential (simplification, it is load-dependent and depends on the number of open connections)
 – There is a finite buffer c (this is realistic)

• Delay, rejection, throughput can be statistically computed with simple tests
Queues quirks

- The queueing model also says...
 - That traffic distribution matters!
 - That packets/connections/open connections ratios matter!
 - Packets/bytes ratio matters!
 - We have also verified, as others showed before, that types of packets, rules and checks impact on the service times

- So, all these things should be carefully documented in tests... and you should read them when evaluating other people tests

- And if they don't write down them, just assume the worse
Existing IDS tests

• A bit outdated
 – Puzetzka at UC Davis (oldies but goldies)
 – IBM Zurich labs (God knows)
 – IDEVAL (more on this later)
 – AFRL evaluations (cool, but not open)
• Current tests (2002-2003...)
 – NSS group tests
 http://www.nss.co.uk
 – Neohapsis OSEC
 http://osec.neohapsis.com/
 – Miercom Labs/Network World
MIT/LL and IDEVAL

- IDEVAL is the dataset created at MIT/LL
 - Only available resource with synthetic traffic and full dumps + system audit files
 - Outdated systems and attacks
 - Very few attack types, in particular host-based IDS have just basic overflows...
 - Well known weaknesses in NIDS data:
 - TTLs, TOS, source IP, ... all detectable
- IDEVAL has been used by each and every researcher in the field (including me), i.e. it has biased all the research efforts since 1998
NSS Tests

- NSS Group tests are perhaps the most famous industry testing ground
- On the whole, not bad, but:
 - They are non repeatable (since attacks and other parameters are unspecified)
 - Being not really scientific and not really based on a specific scenario, what's their aim
 - Include lots of qualitative evaluations
 - Use either noise or HTTP traffic for stress testing
 - Unspecified distribution characters of traffic
 - Aging attacks and evasions (for what we
Neohapsis / OSEC

• A new pretender on the block
• Good idea, an open, repeatable methodology, but:
 – Not addressing breadth of KB
 – Use either noise or HTTP traffic for stress testing
 – Unspecified distribution characters of traffic
 – Not really suitable for anomaly based products
Miercom/Network World

• Less known than the others
• More journalistic than scientific
• Yet, a very good description of the setup, the attacks, and the testing conditions
 – Still not addressing breadth of KB
 – Still HTTP traffic for stress testing
 – Still unspecified distribution characters of traffic
 – But a very very good testing methodology indeed
Existing tests for IPS

• Even less than the ones for IDS!
 – NSS tests
 http://www.nss.co.uk
 – E-week
 http://www.eweek.com/article2/0,1895,1759490,00.asp
 – Network World
 – Network Computing
 http://www.networkcomputing.com/showArticle.jhtml?articleID=163700046&pgno=1&queryText=IPS+review
NSS Tests

• NSS Group tests are perhaps the most famous industry testing ground
• On the whole, not bad, but:
 – They are non repeatable (since attacks and other parameters are unspecified)
 – Include lots of qualitative evaluations
 – Use either noise or HTTP traffic for stress testing
 – Unspecified distribution characters of traffic
 – “resistance to FP” using neutered exploits?! Puh-lease...
 – Evasion techniques one at a time
Network World

- A very good description of the setup, the attacks, and the testing conditions
 - They already did a good job on IDS
 - No performance test for very good reasons: the vendors cannot even agree on what an IPS is, let alone how to test it for speed
 - A very good testing methodology indeed, very well described
 - Unluckily, just qualitative results... but what can be really expected?
Network Computing

• A not-so-good description of the setup, the attacks, and the testing conditions

• Still they have performed interesting testing
 – No performance test for very good reasons: the vendors cannot even agree on what an IPS is, let alone how to test it for speed
 – Quantitative results but no good indication of how they were computed
E-week

• Quoting directly:
eWEEK Labs' testbed for <censored> combined an artificial, lab-created Internet connection with traffic carried by our ISP. To get repeatable, comparable results, we also ran attack tools such as the open-source Nessus on network devices ... Using predictable attack traffic significantly speeds up proof-of-concept testing.
Whether you run IPSes in front of or behind firewalls depends on many factors.

• My comments will not be written down in order to avoid lawsuits :) but you may guess them by comparing with the previous slides
Conclusions

• Testing IPS is a real, huge mess
 – But still, we must do something
• We are still far away from designing a complete, scientific testing methodology
 – But we can say a lot of things on wrong methodologies
• You can and should design customer-need driven tests in house
 – Difficult, but the only thing you can do
• In general, beware of those who claim “My IPS is better than yours”
QUESTIONS?

Thanks for your attention !!!

Feedback/Followup/Insults welcome
zanero@elet.polimi.it

Have a look at our website
www.securenetwork.it
• **Traffic measurements, internet traffic mixes**

• **Polimorphism resistance testing**

• **General performance literature**
Bibliography (2)

- **General IDS testing literature (no IPS literature exists... sorry ;)**