
who’s watching the watch dogs?

kowsik@mudynamics.com
http://labs.mudynamics.com

agenda

 rant on the state of affairs
 winds of change
 test driven development
 new perspectives
 summary

the early days

 “close this port”
 morphed into

 omg! ftp doesn’t work
 along came proxies and ips

 protocol dissectors to detect protocol bugs
 and we now have…

layered [in] security

 anti-spam
 anti-spyware
 anti-phishing
 anti-virus
 network/application firewalls
 stateful/deep inspection and ips
 ssl/ipsec vpn
 data leak detection
 network access control
 …

security software, not secure software

 software wrapped in aluminum
 as vulnerable as the targets they protect
 software flaws at multiple levels

 configuration
 protocols
 file formats

 don’t forget centralized management
 typically the weakest link

winds of change

 “routers no longer route”
 networks are ever more application aware
 applications are acting like infrastructure

 machine to machine
 broken up into services and components

 perimeter is blurring fast
 happy hour at the confluence

time to unask the question?

mainframes

 monolithic
 all parts came from the same vendor
 minimal attack surface
 minimal dependencies to other systems
 typically tested for

 reliability
 availability
 serviceability

services

 huge attack surface and interdependencies
 speed mismatch between rollouts and testing
 problems are punted to incident management

test driven development

a brief detour

unit testing

 key aspect of TDD
 5 steps to TDD

 add a test
 run all tests and see the new one fail
 write some code
 run the automated tests and see them succeed
 refactor code

interfaces, objects and methods

 method invocation
 arguments and return values

 assertions
 positive and negative
 cause and effect

 automated tests accelerates innovation
 you know exactly what changed and what broke

negative testing

 has its roots with the origins of the Internet
 “where wizards stay up late”

 is about boundary conditions
 ability to handle exceptions
 unanticipated input
 fuzzing is one type of negative testing

 security testing is inherently negative
 “hacking is outsourced QA”

 automation is a must-have
 test case generation
 test case execution

interface-based applications

service oriented applications

 in essence XML-RPC
 REST
 SOAP

 machine to machine
 well-defined interfaces
 code generateable

 but remoted
 application as an API
 can we unit test them?

unit testing soa

uddi wsdl/xsd java, …

unit tests

what are we testing?

method

{

xml

{
soap

https

attack surface

 is not just the method
 exposure is from the

 method
 encoding
 message
 protocol
 channel

 and all the pieces of infrastructure in front of it!

are we doomed?

 cannot test applications in isolation
 cannot change infrastructure without affecting

applications
 and it’s not about

 known vulnerabilities
 incident management
 log correlation
 and patching

 can we unit test a service?
 for their capabilities and dependencies
 to anticipate and detect failures

testing 2.0

new perspectives

next generation services

 VoIP, IMS, IPTV
 applications or infrastructure?

 characteristics
 complex
 highly interconnected
 real-time
 high rate of change

 before we talk about security…

some insights…

 critical services on standard OS’
 minimal to no hardware acceleration

 higher order application protocols
 just valid traffic alone leads to crashes

 interoperability or security?
 highly susceptible to dos
 functional and load testing no longer sufficient

r.a.s

 spin on what mainframes were tested for
 reliability
 availability
 security

 but takes into account the interconnectedness
 protocols are key

 can we test them in a unified way?

protocols

 are nothing like each other
 seem adhoc with structures and encodings
 arbitrarily complex
 no canonical form to operate on
 not necessarily machine parsable
 or are they?

kevin bacon and six degrees

rfc’s

re
fe

re
nc

es

six degrees of protocols

 SIP uses LDAP DN’s
 which use ASN

 which are in X.509 certificates
 which is used in TLS/SSL

 which contains Name/Value pairs
 that’s used in iCal format

 DHCP has NetBIOS names
 which is used in CIFS

 which uses Kerberos
 which uses ASN

 which …

abstracting protocols

 state, structure, semantics and constraints
 a semantic DOM
 with associated vulnerability patterns

 io/delivery mechanism (channels)
 sockets (raw, v4, v6, tcp, udp, ssl, sctp, …)
 interactive channels (telnet, ssh, console, …)
 bluetooth, wireless, usb, firewire
 ioctl’s
 files

fuzzing

 is really about semantic data structures
 free form deformation
 dependency propagation
 constraint violation

unification

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

http://labs.mudynamics.com/2008/03/28/cansecwest-slides/

dos

 channel abuse
 not just layer 2/3
 stateless for best effect
 20,000 packets/sec more than sufficient

 so many tools, so much redundancy
 is there a pattern here?
 can we characterize systems subject to dos?

characteristics

 unsolicited packets
 mgcp notification
 isakmp notifcation
 rtp flood

 lack of rate limiting for responses
 icmp ping’s

 incomplete session setup
 sip invite/register
 syn floods
 sctp init
 dhcp discover

uniqueness

 not enough to spoof src-ip/src-mac
 application dos

 has unique regions inside payloads
 has references to l3/l4 header

 packet has to be sufficiently valid
 force target to allocate resources

breaking up dos

 underlying transport
 ethernet, ipv4, ipv6, udp, tcp

 payload with update regions
 references and random

 traffic pattern
 service monitors

 stateful transactions

dos’ing SIP

INVITE sip:bob@example.com SIP/2.0
Via: SIP/2.0/UDP client.example.com:5060;branch=z9hG4bKa1b2c3d4;rport
To: "Bob" <sip:bob@example.com>
From: "Alice" <sip:alice@example.com>;tag=x1y2z3
Call-ID: abcd1234@192.168.1.1
CSeq: 1 INVITE
Contact: <sip:alice@client.example.com>
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 0

update regions

INVITE sip:bob@example.com SIP/2.0
Via: SIP/2.0/UDP client.example.com:5060;branch=z9hG4bKa1b2c3d4;rport
To: "Bob" <sip:bob@example.com>
From: "Alice" <sip:alice@example.com>;tag=x1y2z3
Call-ID: abcd1234@192.168.1.1
CSeq: 1 INVITE
Contact: <sip:alice@client.example.com>
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 0

results

 INVITE dos with OPTIONS monitor
 multiple src-ip’s with payload randomization
 5000 packets/sec

summary

 watch dogs are just software
 as susceptible as the targets

 functional and load testing no longer sufficient
 testing 2.0 is proactive

 a concrete automated way to measure r.a.s.
 a prerequisite for NG services

questions?

kowsik@mudynamics.com
http://labs.mudynamics.com

