Russ McRee Bryan Casper INCIDENT RESPONSE IN VIRTUAL ENVIRONMENTS: CHALLENGES IN THE CLOUD

About us

- We're part of the security incident response team for Microsoft Online Services Security & Compliance
- We ask more questions than provide answers
- This presentation is meant to evoke discussion and likely provide more takeaways for you
- Incident response in the cloud is relatively new
 - Trial and error, experience gained on the fly

Agenda

- Definition
- Services
- Motives
- Incidents
- Enhancements
- Assumptions
- IR
- Recommendations

Cloud definition

- How do we define "the cloud"
 - highly redundant
 - resources on demand
 - scalable
 - operations managed by someone else on your behalf
 - rapid deployment of code and VMs
- How do cloud services vary?

Services considered

- Amazon EC2
- Google GAE
- Windows Azure

 Clearly there others, only so much time to play

Cloud services – Amazon EC2

- Full OS control (Windows and Linux)
- Can use S3 to backup snapshots
- Network ACL's
 - Whitelist rules only
 - TCP\UDP\ICMP [SRC and DST Ports]
 - Source IP range

Cloud Services – Google (GAE)

- O Python or Java apps
- Can manage access via Google Aps Domain
- Dashboard with lots of metrics
- Security-centric features include
 - Permissions
 - Blacklist
 - DoS Protection Service for Python or Java
 - Additional security-specific logging must be developed for the app via the appropriate SDK

Cloud services – Windows Azure

- Supports .NET, PHP, Ruby, Python, or Java
- Application Logging via Trace Listeners
 - ETW, trace, debug
 - To access logs, must write log data to blob storage / table storage
- Monitoring Agent
 - event logs, perf counters, crash dumps, custom logs
- Use Diagnostics API to Configure and Collect
 - Event Logs
 - Performance Counters
 - Trace/Debug information (logging)
 - IIS Logs, Failed Request Logs
 - Crash Dumps or Arbitrary files

Attacker Motives

- Abuse resources
- Fraud
- Attack other resources from the cloud
- Competition attacks
 - Force resource expenditure causing net loss
 - Billing models based on storage, bandwidth, CPU time/count, node count
 - Repudiation

Real incidents

- MSN 3rd party Korea: Gumblar
 - Content Delivery Network
- Twitter component of Bing Maps
 - Social networking component hosted in Azure

MSN 3rd party Korea: Gumblar

- Gumblar steals FTP credentials, modifies JavaScript files
- Korean staff running AV noticed that a Korean web page contained the Gumblar malware.
- Security team notified and engaged
- Having a listing of URL's and identify those that belong to caching services
 - In this case the URL from cache was different than the normal sites URL
- Critical to understand how files are uploaded into the cloud
- Critical to understand how to effectively remove files from the cloud

MSN 3rd party Korea: Gumblar

- Investigation revealed that a 3rd party developer system was compromised by Gumblar
- Infected JavaScript was uploaded to the cloud a month earlier
 - Enhanced Detection critical
 - Failure of site owner to appropriately purge the cloud due to inadequate knowledge on how to perform this activity.

MSN 3rd party Korea: Gumblar

- Lessons learned:
 - Good Logging is critical; understand how to request logs.
 - The file moves through the cache and after a period of time the file is deleted from the cache.
 - Logs of when the file was originally uploaded along with MD5 hash allowed for the team to know when it was uploaded and by what IP address / username.
 - Understanding of which time zone the logs may be in (Most likely GMT format)

Twitter component of Bing Maps

- App deployed to Azure
 - No input request size check for x and y map variables
 - Large values loaded, causing the application to crash

Twitter component of Bing Maps

• Lessons learned:

- No app logs, actual failure discovered by accident
- No immediate access to web logs
- Build logging into app
- Standard web app sec best practices still apply
- Beware Agile development without proper SDL, gateway check, etc.

Enhance the apps you deploy

What APIs are being utilized?

- To write to storage
- To allocate more resources
- Is the app code itself secure?
 - SDL?
- Ensure proper app logging
 - How are your logs stored at rest?
 - Are you fully cognitive of where logs are stored and do you have immediate access to them per incident?

Enhance the apps you deploy

You cannot respond to what you cannot see

 Apps should provide visibility with end to end monitoring if they are deemed "critical"

Baselines

- What is normal and expected?
- Can you threat model against deployment and architecture assumptions in order to validate?
- "Application ACLs will protect my cloud instances and apps from being abused."
 - Are you sure?

Infrastructure assumptions

- Are your apps/instances appropriately...
 - Routing
 - DNS
 - TMI via lookups?
 - What if cache is poisoned or records are manipulated, how would investigate it if you're not managing DNS?
 - You've given up further control, classic attacks still work i.e. registrar hacks. Are they harder to analyze as a result?
 - Firewall
 - ACL

Data in the cloud

- Should you store sensitive information in the cloud at this time?
 - Are cloud services proven enough yet?
- Recommended that no medium or high business impact data be stored in the cloud
- This gets a bit cloudy when you measure SaaS vs. pure cloud services

Incident response capability

IR node?

- Log collection
- tools
- Need snapshot capability: can it be remounted for investigation as read only, state preserved?
- See Forensics considerations in next generation cloud environments - Robert Rounsavall

Incident response changing

- Incident response teams for entities using cloud services must intimately understand architecture and data flow
 - What are the attack vectors?
 - From cloud to your enterprise
 - From your enterprise to the cloud
 - Can you effectively do an "operational threat model"?
- IR team must understand content "upload" and the native application attributes

Incident response changing

- Touch points between legacy infrastructure and cloud
 - Do vulns or exploits in non-cloud resources that have access to cloud become realized
 Think Gumblar incident
 - Think Gumblar incident
- Vulns in cloud deployed apps vs. classic deployment are still simply vulns
 - A Ruby on Rails 0-day doesn't care where it lives

Incident response changing

- Do you trust your cloud neighbors?
 - Remember abusing WCF to perform remote port scans?
- Memory analysis?
- Blob storage analysis?
- Will legacy tools run on your cloud nodes?
 - Have you tested, confirmed, and drilled the process?

Cloud services as mitigations

- Caching cloud can help offset DDoS
- Assuming contracts/SLAs are met and cloud service is well managed, service may be better than ISP/colo services
- Outage prevention via failover capabilities may be more nimble
 - Your core datacenter L2/L3 router pair fails, need hot standby to stay online
 - Cloud services assume redundancy that could prevent concerns as above

Recommendations - Technical

- IP filters
 - DoS protection
- flow monitoring
- cloud toolkit
 - scripts and tools relevant to the cause
 - IR node

 cloud developer kits for better deployment understanding

Recommendations - Risk

- Application portability is part of all provider's charter, but also moves the risk around
 - From data center to the cloud
 - From the cloud to a private cloud (back in your data center)
- Data classification defined by business
 - If PII, high impact data is to go in the cloud can you wrap in a hard candy shell around it just like you already do?
 - Are cloud services ready to handle sensitive data?

Recommendations - SLA

SLA

- Contract language
 - Is it clearly defined?
- What can incident responders expect from provider?
 - support
 - response time
 - account reset
- Evidence and log retention and acquisition
- Legal considerations if your cloud instances are compromised and utilized maliciously (subject to subpoena)

Recommendations - Development

- Agile development and operational best practices don't always converge
- Developers don't typically account for operational considerations
- Security Response Plan (SRP)
 - All apps deployed should have an SRP
 - IR needs to be part of the development process
 - Define requirements for logging, tooling, access management, fix deployments, escalation
- Code level threat modeling applies

Recommendations - Operational

- Vulnerability assessment
 - Scanning your cloud presence
- Vulnerability management
 - Patching
 - Updates
 - Fix deployment
 - Standard images
- Who deploys what?
 - Separation of duties
- Operational threat modeling

Recommendations – Threat Model

 The same threat modeling practices developers should utilize for code development can be utilized in an operational capacity

Infrastructure threat modeling

- Vision (scope)
- Model (diagram)
- Identify Threats
- Mitigate
- Validate

In closing

- IR teams should be very clear about operational considerations for resources beyond their control
 - KNOW YOUR CLOUD
- Log, log, log
- Balance risk against business gain
 - If risk exceeds your well-informed comfort, assign risk via threat modeling or assessment

Q & A

rmcree@microsoft.com
bcasper@microsoft.com