Introduction

Christopher Day

- Joined Terremark December 2005
- Chief Security Architect
- Responsible for Terremark's global information security services
- Have led numerous projects around the world ranging from large-scale incident response and forensics to vulnerability assessments and penetration testing

Agenda

- Who is Terremark?
- Intrusion Suppression
- Challenges
- Conclusion and Questions

Terremark Facilities

NAP of the Americas

- 750,000 square foot purpose-built data center
- The most connected hub in the world; switching 90% of traffic to/from Latin America to rest of the world
- Global connectivity from >160 carriers
- 100% SLA on power and environmentals; significant access to power

Strategic Global Footprint to Deliver Services

Compliance

- We must adhere to, or provide support for, a number of control and compliance frameworks:
 - SAS Type 2
 - PCI
 - ISO 27001
 - FISMA
 - DIACAP
- Now that we are a Verizon subsidiary, the scope is increasing greatly

Security Services Portfolio

Managed Security Services

- Managed Firewall
- Intrusion Detection/Prevention
- Log Aggregation and Correlation
- Network Traffic Session Monitoring and Analysis
- Full-packet capture and attack replay
- Network Forensics
- Data Leak Detection/Prevention
- Rapid deployment 'SOC in a Box' and cloud based 'SOC in a Box'

Engagement Services

- Incident Response
- Digital Forensics
- Vulnerability Assessment
- Penetration Testing
- Compliance Support

Effective Information Security - What Problem Are We Trying to Solve

Effective Information Security = (Administration and Compliance) + (Threat Awareness, Assessment, and Mitigation

Intrusion Suppression

- Platform architecture and technology choices primarily designed to support an *intrusion* suppression methodology
- Intrusion suppression assumes that given time, an advanced and persistent adversary will compromise your environment; the goal is to minimize the impact of compromise while denying the adversary further use of their attack vector
- Detect the compromise, not the attack
- Approach is far more realistic and resilient given the complexity of modern IT environments and adversary sophistication

Intrusion Suppression – Requirements

- Visibility is key!
 - If you rely only on signature-based systems and SIM aggregators to tell you when you have a problem in your environment then you are effectively blind with respect to many of today's threats
- Speed is key!
 - The ability to mitigate compromised systems quickly is extremely important
 - A capable, mature incident response capability is necessary
 - O What do we mean by 'mitigate' and 'quickly'?
 - If you must wait for your vendor or service provider to react to a sophisticated adversary then you lose

Intrusion Suppression – Requirements

- A threat intelligence capability is key!
 - Don't wait for the bad guys
 - Must be able to process the 'take' from a compromise and make it actionable
 - Be able to do your own in-house malware analysis
- So, how do we actually do this and how do we measure success?

Intrusion Suppression – Platforms

 We want to maximize our visibility and automate as much as possible while enabling analysts Platforms - Voltage
Platforms - NetWitness
Platforms - Voltage +
NetWitness
Platforms - Straylight/Malytix
Threat Intelligence

Offense

Intrusion Suppression – "Ecosystem"

Intrusion Suppression – Some Metrics

- Observed attack and threat classification correlated (sanitized, non-attributable) across commercial, Federal government, and military customer network targets
- Average time to detect compromised systems
- Average time to mitigate compromised systems from detection point
- Number of 0-day exploits and malware discovered
- Threat and malware analytics including network, disk, and memory detection observables
- Numbers of observed attacks per day, week, and month
- Source Internet Protocol (IP) addresses, source country, and geographical location of observed attacks
- Numbers of mitigated attacks and

- mitigation method
- Number of detected compliance violations (FISMA, PCI, etc.)

Intrusion Suppression - Challenges

- This approach isn't easy nor cheap
- Labor intensive
- Very skill intensive (network, malware analysts)
- Must have a capable IR capability to mitigate otherwise you are just "stamp collecting"
- No existing compliance framework requires it so it can be difficult to justify to management
- ROI is hard to quantify (though the Sony breach helps)
- Data reduction is important so as not to drown in an unstructured sea of data

 The number of nodes (sensors, hosts, users, etc.) must not be

Conclusions

- We use the intrusion suppression approach to defend our infrastructure and our customers from compromise
- No guarantees but we succeed more than we fail and can measure
- You must know, or be able to know, your environment (topology, flow patterns, traffic types, encryption in use, protocols) better than an adversary. If not, all is lost.
- Rapidly knowing the capabilities of your adversary's tool chain allows you to know when you can 'fight' through and operate in a 'degraded' state
- Need a strong, fast IR capability for IS to work

Conclusions

- Signatures are the output of the process
 - Rapid Detection by SOC
 - Encapsulation of 'expertise'
- Questions?