The Dynamics and Threats of End-Point Software Portfolios

Dr. Stefan Frei
Research Analyst Director

Mail: sfrei@secunia.com
Twitter: @stefan_frei
Agenda

- The Changing Threat Environment
- Demo with Malware Construction Kit
- Measuring the Complexity of End-Points (or the Easy Prey for Cyber Criminals)
- Protective Measures when the Perimeter Failed
Malware Construction Kit
Live Demonstration

- Malware Construction Kit
 - We “trojanize” Windows Minesweeper using an off-the-shelf malware construction kit
 - No coding expertise needed
Malware Construction Kit
Live Demonstration

- Read clipboard
- List and kill processes
- Life capture and control of desktop
- Remote command console
- Online / offline keylogger
- Execute commands
- Life remote target session

- List / start / stop / disable services
- Read / modify registry
- Life capture of webcam or microphone
- Disable taskbar / desktop icons / start-button, reboot,..
- Restart / update trojan. Load new plug-ins
- Command & control options
The Changing Threat Environment

Motivation vs. Expertise

- **Motivation**: Vandalism, Theft, Author of Tools
- **Expertise**: Script-Kiddy, Hobbyist Hacker, Expert

Source: Microsoft
Malware Development Process

Obfuscation and Quality Assurance

1. Original Malware
 Create core malicious functionality: DDoS, steal data, spread infection, ...

2. Permutations
 Obfuscate malware. Create multiple serial variants to thwart detection engines

3. Quality Assurance
 Test new creations against a number of up-to-date anti-virus engines

4. Deployment
 Only malware that passed QA (not detected) is used for deployment

Reject if detected by anti-virus

Image: www.swisscyberstorm.com
Malware Development Process

1. Obfuscation and Quality Assurance

 Original
 Create multiple serial variants to thwart detection engines
 Create core malicious functionality:
 DDoS, steal data, spread infection...

2. Quality Assurance
 Test new creations against a number of up-to-date anti-virus engines
 Only variants that pass quality assurance (bypass antivirus) are used for attacks!

Rejected if detected by anti-virus

Image: www.swisscyberstorm.com
An Arms Race ...

286 million virus samples counted in 2010

783,562 samples / day
32,648 samples / hour
544 samples / minute
9 samples / second

Source: Symantec Internet Security Threat Report (ISTR), Volume 16
Limitations of Traditional Protection

NSS Labs test of 2010/Q3:

25% of 123 publicly known exploits missed by top 10 prevention software

40% missed after slight tweaking of the exploits

Up to 9% of the end-points in enterprises are found to be bot infected

Malware as a Service (MaaS)

Malware offered for $249 with a Service Level Agreement and replacement warranty if the creation is detected by any anti-virus within 9 months.
Evolving Threats Summary

Tools

Tools are created by experts and used by less-skilled attackers

Attacks

More opportunistic and highly automated attacks

What is the potential, what are the preferred targets of this model?
From a Criminal’s Perspective

#Hosts x #Vulnerabilities = Opportunity
Worldwide Internet Usage

2,095 Million
estimated Internet users on March 31st, 2011

31% penetration of population

448% growth from 2000 to 2010

Source: Internet World Stats http://www.internetworldstats.com
Corporate as well as private end-points are increasingly targeted

- End-points are difficult to secure
 - Highly dynamic environment and unpredictable usage patterns by users
- End-point PCs are where the most valuable data is found to be the least protected
 - By definition, end-point PCs have access to all data needed to conduct their business

Everyone is a valuable target for cybercriminals
From a Criminal’s Perspective

#Hosts x #Vulnerabilities = Opportunity
What does a typical End-Point look like?

.. numerous programs and plug-ins!

- How many programs do you think you have installed on your typical Windows machine?

- How many different update mechanisms do you need to keep this PC up-to-date?
Data from Real End-Points in the Field

- Scan results from more than 3 Mio PSI users
 - Secunia Personal Software Inspector (PSI)
 - Free for personal use http://secunia.com/psi

- A lightweight software inspector/scanner to:
 - Identify insecure programs and plug-ins
 - Automatically install missing patches
Software Portfolios …

What programs do users typically have installed on their end-point PCs?

50% of users
- have more than 66 programs
- from more than 22 vendors installed

Analysis based on Secunia PSI scans in 2010
The Top-50 Software Portfolio covers the 50 most prevalent programs to represent a typical end-point.

- **14 Vendors**
- **26 Microsoft**
- **24 Third-party**

26 Microsoft and 24 third-party (non-Microsoft) programs from 14 different vendors.
An Alarming Trend ...

Vulnerabilities affecting a typical end-point increased 71% from 2009 to 2010 alone.

Top-50 Portfolio with Windows XP Vulnerabilities

- 225 vulnerabilities in 2007
- 426 vulnerabilities in 2009
- 729 vulnerabilities at the end of 2010

x 3.25 in three years
A Relevant Trend ...

Top-50 Portfolio with Windows XP Vulnerabilities

>70% of these vulnerabilities are rated as Highly or Extremely critical

>90% of these vulnerabilities are exploitable from remote

>50% of these vulnerabilities provide system access to the attacker
What is the source of this increasing trend?

- OS (Operating System)
- MS (Microsoft Programs)
- TP (Third-party Programs)
Third-party programs are found to be almost exclusively responsible for this increasing trend.

What you patch

Cybercriminals don’t care

Top-50 Portfolio & Windows XP Vulnerabilities in 2010
Third-party Programs Rule ...

In 2010 an end-point with the Top-50 portfolio and Windows XP had:

- **3.8 times** more vulnerabilities in the 24 third-party programs than in the 26 Microsoft programs.

- **5.2 times** more vulnerabilities in the 24 third-party programs than in the operating system.
The Role of the Operating System

Top 50 Portfolio
2010

+

Microsoft Windows XP
Advisories 163
Vulnerabilities 729

Windows Vista
Advisories 153
Vulnerabilities 722

Windows 7
Advisories 148
Vulnerabilities 709

Vulnerabilities -1.0%
Vulnerabilities -2.7%
How do we keep a typical end-point up to date?
14 different update mechanisms
.. are needed to keeping a typical end-point up to date

- 13 update mechanisms
 - to patch the 24 third-party programs,
 - covering 69% of the vulnerabilities

- 1 update mechanism
 - to patch the OS and the 26 Microsoft programs
 - covering 31% of the vulnerabilities
Cybercriminals know

patch available ≠ patch installed
Patch Complexity has a measurable effect... Third-party programs are less likely to be found fully patched...

On average in 2010 Q4:
- 2% insecure Microsoft programs found
- 6%-12% insecure third-party programs found

Source: Secunia PSI scans 2010/Q4
Are we doomed?
Patches are Available!

Availability of security patches within N days upon vulnerability disclosure:

- **65%** patch availability on the day of disclosure
- **75%** available within 10 days
- **90%** available within 56 days
Patches are Available!

 Availability of security patches within N days upon vulnerability disclosure:

- 65% available on the day of disclosure
- 75% available within 10 days
- 90% available within 56 days

Yes YOU can!

.. fix 65% of the vulnerabilities on the spot
Efficient Patching Strategies

What if you can’t patch all programs?
The program had at least one extremely or highly critical vulnerability in a given year.

Some programs are vulnerable in several consecutive years; many programs are only vulnerable in some years while not in others.
Efficient Patching Strategies

Simulation:

- You have a portfolio of 200 programs
 Lets take the 200 most prevalent programs found in the field

- You have the resources to patch 10 of the 200 programs

- Let’s analyze two strategies of selecting the 10 programs
Patch Strategies

Patching 10 of 200 programs with different strategies

Software Portfolio Risk

Risk Remediated by Patching Strategy

- Total Portfolio Risk
- Top-10 by share
- Top-10 by risk

Total risk of Top-200 portfolio

Patching 10 programs every year

Risk remediated by patching the 10 most critical programs every year:
- Average risk reduction 71%

Risk remediated by patching the 10 most prevalent programs every year:
- Average risk reduction 31%

Weighted Risk:

\[4 \times \text{(extremely+highly critical)} + 2 \times \text{(moderately critical)} + 1 \times \text{(low + not critical)}\]
Patch Strategies

Statically patching the most prevalent programs

Percentage of risk remediated by patching N programs

Patching N of 200 programs

Strategy 1: Static
Risk remediated by patching the N most prevalent programs

80% risk reduction achieved by patching the 37 most prevalent programs
Achieve more with less
Knowing what to patch pays out!

Strategy 1: Static
Risk remediated by patching the N most prevalent programs

Strategy 2: By Criticality
Risk remediated by patching the N most critical programs

80% risk reduction achieved by either patching the **12 most critical** programs, or by patching the **37 most prevalent** programs.
Responsibility

It depends when you get compromised ...

It is entirely your fault if you get infected after a patch is available.

- Feasible protection is limited
- Root cause protection available, not implemented
- Root cause neutralised

- Valid excuses, can’t do a lot
- Difficult to find an excuse
- No need for an excuse

- Patch released
- Patch installed

t
#Hosts x #Vulnerabilities x \{Complexity to stay secure\} = Opportunity
A patch provides better protection than thousands of signatures

- it eliminates the root cause
Patch Properties

A Patch...

- Has no false positives (no false alarms)
- Has no false negatives (no attacks that slip through the net)
- Introduces no latency or other delays
- Provides better protection than thousands of anti-virus signatures
- Consumes no resources whatsoever after deployment
Conclusion 1

There is no silver bullet technology

- We need Antivirus, IDS/IPS, ...
 However, we also need to be aware of the limitations of these technologies

- Patching should also be prioritised as a primary security measure
 ... given its effectiveness to neutralise attacks
Conclusion 2

Lock the right doors

- We still **perceive** the operating system and Microsoft products to be the primary attack vector, **largely ignoring** third-party programs.
 - Just like locking the front door while the back door remains wide open.

- Controlled **identification and timely patching** of all programs, **including third-party programs**, is needed.
Stay Secure!
Supporting Material

- Secunia Yearly Report 2010

- RSA Paper “Security Exposure of Software Portfolios”

- Secunia Personal Software Inspector (PSI)
 free for personal use http://secunia.com/psi

- Secunia Corporate Software Inspector (CSI)
 http://secunia.com/vulnerability_scanning/corporate

- Secunia Quarterly Security Factsheets
 http://secunia.com/factsheets